
RC 21865 (98398) 27 October 2000 Computer Science

IBM Research Report

Design of an Instruction Set for Modular Network Processors

Tilman Wolf
IBM Research Division

Thomas J. Watson Research Center
P. O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research
Center , P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Design of an Instruction Set for Modular Network Processors

Tilman Wolf

IBM T. J. Watson Research Center

Abstract

The demand for more exibility and functionality in networks has lead to a new router gen-
eration that is equipped with software controlled processors in the datapath. These network
processors range from con�gurable protocol processing units to general-purpose processor cores.
Being able to combine various modules that implement di�erent packet manipulation functions
in a single architecture is key to an modular, extensible, and scalable network processor. We
introduce an instruction set architecture that allows to centrally control a number of modules
that can work on packets in a pipelined, parallel fashion. We show how the instruction set can
be used on an example and compare its performance to a traditional RISC processor system.

1 Background

Flexibility has become an increasingly important aspect of networking hardware. Traditional
packet forwarding engines implemented as special purpose logic cannot adapt to the numerous new
protocols that are introduced networking environment, like IPv6, multicast, and various quality
of service schemes. Additionally, research in \active networks" or \programmable switches" has
promoted the idea of a store-process-forward paradigm in routers that allows custom processing
of data streams [13], [2]. As a result, it is desirable to have the ability to control the data path
processing by software rather than hard-wired logic.

This application pull is met by technology push on the integrated circuit side. Application
speci�c integrated circuits (ASIC) have reached the point that it has become possible to combine
multiple processing engines, memory, and I/O components on a single piece of silicon. These
systems-on-a-chip (SOC) have the advantage of much smaller communication delays between
components, higher clock rates, and lower manufacturing costs. In a more recent development,
�eld-programmable gate arrays (FPGA) with a size of ten million gates are becoming an alterna-
tive to ASICs for SOC implementations.

While network processors have to be able to do general purpose processing, there is also a large
amount of processing that is generic to the network environment and can be done more eÆciently
with specialized components. Thus, many network processor architectures contain standard RISC-
like cores and specialized hardware accelerators. We believe that an architecture that integrates
such components in a modular fashion provides the necessary exibility and scalability. In this
paper, we propose an instruction set architecture (ISA) that can be used to program such a
modular network processor. We de�ne the instruction set, give an example architecture, and
compare its properties to a traditional RISC ISA.

Sections 2 and 3 motivate the use of a modular architecture. Section 4 introduces the basic
system architecture. Section 5 describes the instruction set in detail. An example of IP processing
is shown in Section 6. Section 7 addresses performance evaluation issues and Section 8 shows
related work.

1

2 Modularity

The key to a exible, scalable network processor architecture is the ability to adapt the con�g-
urations to di�erent tasks. Network processors can be used on end-systems, edge routers, and
in the backbone. The location determines if the processing requirements are focused on protocol
conversion, QoS routing, payload transcoding, or other custom processing.

Another important aspect of a scalable architecture is to span the range from high-performance
backbone equipment to low-cost end-point equipment. Modularity is an ideal concept for that
since di�erent modules can be implemented in various grades of performance and cost. A target
system can be build by combining the interchangeable modules with the appropriate performance
and cost. Thus, the main advantages of modular network processors are:

� ability to specialize modules to common or computationally intense task,

� achieve scalability by using various module con�gurations.

Using specialized hardware (\hardware accelerators"), like digital signal processors (DSP) [7]
or customized logic, is useful for common and computationally intense tasks. These modules are
tradeo�s between silicon real-estate and processing speedup for packets that can make use of the
specialized module. Thus, it is important to use the accelerators for common tasks (Amdahl's
Law). Compared to workstation processors, network processors operate in a very limited domain.
While packet forwarding can be seen as \general-purpose processing," it is still restricted to
processing data packets. Thus, a lot of tasks performed on a packet are the same { or at least
very similar to { tasks performed on other packets. As a result, acceleration of these tasks has
a performance impact on almost all packets. Examples of such common tasks are CRC and
checksum computations or packet classi�cations.

Scalability is also an important property that can be achieved with modularity. Network pro-
cessors can be used in all levels of the network, from LAN routers to edge systems to backbone
routers. The resulting processing demands are di�erent and cannot be accommodated eÆciently
by a single con�guration. For backbone network processor it makes sense to include high-end,
specialized components to achieve maximum performance. On high-volume, low margin compo-
nents it might be more suitable to aggregate modules in a single more general processor module
and have software perform certain functions. This will yield lower performance, but smaller and
cheaper processor chips. As the integration level increases over time and gates become cheaper,
more and more specialized modules can be introduced to take over the functions performed by
software.

Finally, modularity also helps to isolate processing steps to components, which can be used
to eÆciently parallelize and pipeline processing of multiple packets at the same time. This is
explained in more detail the following section.

3 Parallelism and Pipelining

Network traÆc typically is an aggregate of many connections (ows) from a multitude of inde-
pendent end-systems. On the low end, a LAN router might encounter only a few dozen active
connections at any point in time. Back-bone routers, on the high end, are designed to handle
several thousands of active ows at a time. The independence between di�erent ows can be
exploited by parallelizing the packet processing tasks. The only order that typically has to be
maintained is the sequence of packets within any given ow (actually, the IP does not even require
that, but it is commonly assumed). Additionally, there is a basic sequence of steps that packets go
through: demultiplexing, processing, forwarding. While the detailed processing sequence might
vary, it still leads to possibilities of pipelining the process. The ISA described here is designed to
support parallelism as well as pipelining.

2

Today's network protocols are based on Open Systems Interconnection (OSI) seven layer model
and the Department of Defense (DoD) four layer model. Each layer encapsulates the functions of
a speci�c communication abstraction (e.g., link layer for point-to-point communication, network
layer for end-system to end-system communication). In general, layers only pass information
to the next upper or lower layer. The layered abstraction makes it possible that heterogeneous
networking components can communicate together if they implement the same layer interfaces.

Packets that are forwarded by a router, are typically demultiplexed header-by-header to the
layer where enough information is available to forward the packet. Plain routers only need to
demultiplex packets to layer 3 (network layer) to obtain the destination address of a packet.
Routers that perform QoS or context-sensitive routing, though, need to demultiplex packets to
layer 4 (transport layer) or even higher to be able to discriminate packets. The signi�cant perfor-
mance bottleneck with a layered model is that one cannot `jump' over layers. Each header needs
to be `parsed' before the next header can be decoded. This is due to variable header lengths and
arbitrary protocol combinations. This is described in more detail in [3].

As a packet is demultiplexed and passed on to higher layers, there is more information available
about the packet. After processing the network layer header, the source and destination of a
packet is known. When processing the transport layer, the source and destination ports become
available and the packet can be assigned to a ow. Going further into application headers (like
HTTP), one can determine the actual content of a packet. This information can be used then to
process/forward the packet. Based on how much information on the packet is available, di�erent
levels of \customized processing" is possible. There are four levels of processing that we can
distinguish:

� Interface Level: only the data link protocol is known, possible functions: framing, integrity
check, bridging

� Protocol Level: set of used protocols is know, possible functions: routing

� Flow Level: connection to which packet belongs is known, possible functions: QoS, �re-
walling

� Packet Level: packet is treated as individual datagram: \active processing"

As the packet goes through the various levels, the system has to make the instruction code
available that processes the packet in its individual way.

4 System Architecture

To illustrate the network processor instruction set (NPIS), we introduce a basic system architec-
ture.

4.1 Control

The network processor instruction set (NPIS) is the control interface to the network processor.
The goal is to provide one common control architecture to the various modules. While di�erent
modules can be implemented in a variety of ways, like custom logic or DSPs, they are programmed
through on single instruction set. This requires a lot of exibility in the instruction set, since each
module might use a di�erent programming abstraction. This exibility is achieved by having the
individual module translate the instruction into microcode.

In a traditional RISC processor, a program is compiled to binary code. Each instruction then
is dynamically decoded and the respective microcode controls all the hardware components of
the processor (see Figure 1). In the modular approach, the control component should be fairly
independent from the particular modules that are used in a con�guration. Thus, the individual

3

Signals Signals Signals Signals

Binary Code
(NPIS)

Program
(C, ...)

Module
Microcode

Module
Microcode

Hardwired
Logic

Program
(C, ...)

Binary Code
(RISC IS)

Microcode

Figure 1: Per-Module Microcontrol.

module control should be contained in the module itself. In this case, NPIS instructions are
decoded by the central control only to the point where it is clear to which module they refer.
Then they are passed to the module where they are translated into microcode or directly trigger
customized logic.

4.2 Network Processor

A high-level, functional illustration of the network processor architecture is shown in Figure 2.
There are �ve main components: the I/O system that receives and transmits packets, the memory
that stores packets, classi�cation tables, and processing instructions, the various modules, a set
of context mappers that make the proper registers available to the modules, and a centralized
system control.

Packets that are received on the I/O interface are placed in a free memory location (the system
controls provides the I/O interface with a list of free memory locations). For the processing of a
packet, a context mapper and a control modules is assigned to the packet. The control module
executes the basic packet processing code. The context mapper makes a set of registers, memory
locations, and special purpose registers (instruction counter, status register) available to the
control module and any other module that is assigned to the packet. The control module can
dynamically acquire other modules that are necessary for the packet processing. These modules
then get access to the packet data over the context mapper. The processing control always stays
with the control module. When processing has �nished, the packet is sent out and the context
mapper is used to process another packet.

As long as there is no conict in accessing modules or memory locations, several packets can
be processed independently in parallel. By logically segmenting the memory and making enough
special purpose modules available, these conicts can be avoided.

5 Network Processor Instruction Set

The network processor instruction set (NPIS) provides the programmability of the various modules
that are available in the system. As described in the previous section, modules are controlled by
control modules that execute the processing code.

4

memory
main memory cache registers

context
mapper

control

control

general
purpose

general
purpose

CRC/
checksum

CRC/
checksum

flow
classification

... X

context
mapper

X

...

modules

packet

packet context, processing state

packet

packet context, processing state

flow classification table

packet processing code

I/O

system control

Figure 2: Architecture.

5.1 Instruction Layout

The instruction set has to provide the extensibility to support many di�erent modules. One basic
observation, though, is that, although there might be many di�erent modules in a system, a single
packet requires only a handful of modules for its processing on a router. This leads to the idea to
augment instructions by a short `tag' that identi�es for which module the instruction is destined.

The basic process of executing instructions on a module follow the following sequence:

� The control module acquires another module M and de�nes a tag T that is used to repre-
sent M .

� All instruction opcodes O that are to be executed by M are tagged with T : O@T .

� Once a module is not needed for the processing anymore, it can be released and the tag T

reused for another module.

While the explicit acquisition of modules represents an overhead over direct addressing of
modules, it provides the following bene�ts:

� Small tag space. Tags are used on a per-packet basis and only have to be unique within the
code fragment where they are used.

� Indirect mapping of physical modules to tags. Tags allow the usage of the same code
fragment in parallel on di�erent packets. One packet can acquire module M1 for tag T and
another packet can use module M2 for tag T . If both packets execute O@T , there is no
conict, because di�erent modules execute the instruction in parallel.

� Resource control and load balancing. The explicit acquisition and release of modules makes
it possible to determine which modules are used in which code fragment. This can be used
to determine how processing can be parallelized and pipelined.

Except for the bit �eld of the module tag, there is no speci�cation on how the remaining bits
are used for the instructions. This allows to de�ne instructions that are suited to the individual

5

module
id

module-spcific instruction

control
module LD address destination register

general
purpose
module

ADD source register 1 source register 2 destination register

system
module MDEF module

id
global module identifier

(a)

(b)

(c)

(d)

Figure 3: Instruction Set.

module. It is the job of the compiler to generate the appropriate sub-instructions for the modules
used. Of course, there are two pre-de�ned tag-module combinations for our system. The system
module that is responsible for receiving, transmitting, and dropping the packet is referred to by
tag 0. The control module that is necessary to run basic load/store and control ow operations
has tag 1.

Figure 3 shows four examples for NPIS instructions. It is assumed that the instruction size is
32 bit, where 4 bit are used for module tags. Instruction (a) shows the basic instruction layout.
The �rst 4 bit represent the module tag (i.e., 0000 for the system module, or 0001 for the control
module). The remaining 28 bit are de�ned for the individual module. Instruction (b) shows the
MDEF instruction of the system module that de�nes a tag for a module. The 4 bit module id is
the tag that is to be used for a module of the type given by the global identi�er. It is the job of
the system to assign an available module of this type to the packet. The context mapper has to
keep track of the mapping tag ! module and translate instructions accordingly (thus, the name
\context mapper"). Instruction (c) is an example for a traditional memory load instruction of the
control module. Except for the additional tag, there are no di�erences to RISC. This can also be
seen in instruction (d) that is an add instruction from the general purpose computing module.

5.2 Registers, Immediates, and Addressing Modes

While instructions of modules can be formed arbitrarily, they have to agree on how to use the
registers that are shared with the other modules. For now, we assume that an 8 bit space is used
for one argument. To make the instruction set more exible and also to consider immediate values,
these 8 bits are split between register identi�ers and immediates. With the most signi�cant bit
set, the remaining 7 bit are interpreted as referring to a register, with the most signi�cant bit not
set, they are interpreted as an immediate value. In case larger immediates are required, they can
be explicitly loaded with LDIL and LDIH instructions.

For addresses, a 16 bit �eld is used. This �eld is logically divided into two 8 bit �elds that
represent two register/immediate values. The address is obtained by adding the values of the two
registers/immediates. With this general scheme, it is possible to do direct, displacement, register
deferred, and indexed addressing.

5.3 Instruction Set

A list of instructions for the system, control, general purpose processing, classi�cation and check-
sum modules is shown in Table 1. For each module, the individual instructions are shown, their

6

arguments, the size of all components in bits, and a description of the functionality.

6 Example

In this section, we present an example of a modular network processor and show the instruction
set in use. As system con�guration, we assume the network processor shown in Figure 2. We
assume that the system has received a packet from the I/O module and put it into memory. The
control modules then starts processing the packet with the code shown in Figure 4. We assume
that the packet is an Ethernet/IP/TCP packet.

The following processing steps are performed on the packet:

� check Ethernet CRC and extract LLC/SNAP value,

� check IP header correctness and checksum,

� extract IP source, destination, and layer 4 port numbers for classi�cation,

� forward (or drop) packet based on classi�cation table entry,

� adjust IP TTL �eld and recompute header checksum,

� generate Ethernet header and packet CRC,

� enqueue packet to be sent out on outgoing port.

One can see that the code is `linear' ad does not contain any loops. Additionally, one can
determine which portions of the code require which module just by looking at the instructions.
This can be used to determine how the this code can be parallelized and pipelined.

7 Performance Evaluation

The performance of the instruction set can be evaluated in multiple ways. We look at it under
two aspects. One is a comparison of a single processor system. The other is the comparison
of a multi-module system with a specialized components to a system with multiple RISC cores.
The results are based on the example shown in Figure 4. Since we do not have a compiler for
the network processor instruction set, we limit our comparison to this one example and try to
extrapolate results to be generally meaningful.

7.1 Single Processor

The eÆciency of the instruction set can be observed when the packet processing code is compared
to code for a traditional RISC processor. EÆciency can be expressed in terms of code size,
execution cycles, and number of memory references.

7.1.1 Code Size

Both NPIS and RISC are based on 32 bit instruction words. Also, there are many instructions
that have a one-to-one correspondence in the instruction sets. Thus, no signi�cant di�erences in
code size for these instructions can be expected. Minor di�erences are caused by a few instructions
that increase the NPIS code size compared to RISC code size:

� Module acquisition and release instructions. The MDEF and MUDEF instruction is used
to assign modules to a packet and release them after they had been used. Depending on the
packet data path, this is usually limited to a handful of modules.

7

Opcode Arguments Size in bits Description

System module:

DQUE 4+4 dequeue packet from queue

ENQUE R1 4+4+8 enqueue packet into queue R1

DROP 4+4 drop packet

MDEF M, n 4+4+4+20 acquire module of type n as M

MUDEF M 4+4+4 release module M

Control module:

LD R1, A 4+4+8+16 load

ST A, R1 4+4+16+8 store

LDIL R1, n 4+4+8+16 load immediate into lower half of word (clear rest)

LDIH R1, n 4+4+8+16 load immediate into higher half of word

RBITS R1, R2, n1, n2 4+2+8+8+5+5 read n1 bits into R2 from R1 starting at the n2nd bit

WBITS R1, R2, n1, n2 4+2+8+8+5+5 write n1 bits from R2 to R1 starting at the n2nd bit

CMP R1, R2 4+8+8+8 compare and set status bits

BR A 4+8+20 unconditional branch

BREQ A 4+8+20 branch if equal

BRL A 4+8+20 branch if less

BRLE A 4+8+20 branch if less or equal

NOP 4+8 no operation

General purpose module:

ADD R1, R2, R3 4+4+8+8+8 add

SUB R1, R2, R3 4+4+8+8+8 subtract

MULT R1, R2, R3 4+4+8+8+8 multiply

AND R1, R2, R3 4+4+8+8+8 logic and

OR R1, R2, R3 4+4+8+8+8 logic or

XOR R1, R2, R3 4+4+8+8+8 logic xor

NOT R1, R2 4+4+8+8 logic not

SHL R1, R2, n 4+4+8+8+8 shift left by n bit positions

INC R1 4+4+8 increment

DEC R1 4+4+8 decrement

Classi�cation module:

TABLE R1 4+4+8 choose table pointed to by R1

LOOKUP R1, n 4+4+8+8 classi�cation for n entries (return value in R1)

Checksum module:

CRC R1, R2, R3 4+4+8+8+8 CRC starting at R2 for R3 bytes (result in R1)

CSUM R1, R2, R3 4+4+8+8+8 checksum starting at R2 for R3 bytes (result in R1)

Table 1: Network Processor Instruction Set. Arguments to instructions can be registers (Rn), ad-

dresses (A), immediate values (n), or module identi�ers (M).

8

MDEF 0, 0x0000 # define control module
start:

DQUE R1 # get packet from queue
LD@0 R2, R1+4 # load packet length into R2
LD@0 R3, (R1) # load actual packet start into R3
MDEF 1, 0xcafe # define CRC/checksum module
CRC@1 R4, R3, R2 # compute CRC on packet

MUDEF 1 # release CRC/checksum module
CMP@0 R4, R0 # check if result is 0
BREQ@0 label1
BR@0 bad # else drop

label1:
LD@0 R4, R3+12 # load ethernet type word
RBITS@0 R5, R4, 0, 16 # extract actual 16 bit
MDEF 2, 0xbeef # acquire general purpose module
ADD@2 R9, R3, 16 # adjust beginning of packet pointer

by ethernet header size
SUB@2 R10, R2, 16 # adjust packet length
LDIL@0 R6, 0x0800 # IP identifier
CMP@0 R6, R5 # compare ethernet type with IP identifier
BREQ@0 ip_processing
LDIL@0 R6, 0x0806 # ARP identifier
CMP@0 R6, R5 # compare ethernet type with ARP identifier
BREQ@0 arp_processing

...
BR@0 bad

ip_procesing:
RBITS@0 R5, R9, 0, 4 # extract IP version
CMP@0 R5, 4 # compare IP version to 4
BREQ@0 label2
BR@0 bad # drop if not version 4

label2:
RBITS@0 R5, R9, 4, 4 # extract header length

SHL@2 R5, R5, 2 # convert length from words to bytes
CMP@0 R5, 20 # compare header length to minimum
BRL@0 bad # drop is header too short
MDEF 1, 0xcafe # define CRC/checksum module
CSUM@1 R7, R9, R5 # compute checksum over header
CMP@0 R7, R0 # check if result is 0
BREQ@0 label3
BR@0 bad # else drop

label3:

RBITS@0 R5, R9, 16, 16 # get packet length
CMP@0 R5, R10 # compare length field value with
BREQ@0 classification # actual packet size
BD@0 bad # drop if unequal

classification:
MDEF 3, 0xabba # acquire classification unit
LDIL@0 R11, IPTABLE # load address of IPTABLE used for

IP classification lookups

TABLE@3 R11 # set table to be used
RBITS@0 R18, R9, 8, 8 # extract TOS field
LD@0 R19, R9+3 # get word with protocol field
RBITS@0 R19, R19, 8, 8 # extract protocol field
LD@0 R16, R9+4 # load IP source address
LD@0 R17, R9+5 # load IP destination address
CMP@0 R19, 6 # check for TCP protocol type as layer 4
BREQ@0 tcpudp
CMP@0 R19, 17 # check for UDP protocol type as layer 4

BREQ@0 tcpudp
LOOKUP@3 R8, 4 # neither TCP nor UDP, do 4-tuple lookup
MUDEF 3 # release classification unit
BR@0 action

tcpudp:
ADD@2 R11, R9, R6 # adjust beginning of packet pointer

by IP header length
SUB@2 R12, R10, R6 # adjust packet length
RBITS@0 R20, R11, 0, 16 # extract layer 4 source port
RBITS@0 R21, R11, 16, 0 # extract layer 4 destination port
LOOKUP@3 R8, 6 # do 6-tuple lookup

MUDEF 3 # release classification unit
action:

LD@0 R11, R8+0 # get action field from table
CMP@0 R11, 1 # 1=forward
BREQ@0 forward
CMP@0 R11, 2 # 2=control
BREQ@0 control
BR@0 bad # 0=drop, unknown=drop

forward:

LD@0 R4, R9+3 # get TTL word
RBITS@0 R11, R4, 0, 8 # get TTL bits
DEC@2 R11 # decrease TTL
WBITS@0 R4, R11, 0, 8 # put TTL back
WBITS@0 R4, R0, 16, 16 # set checksum to 0
ST@0 R9+3, R4 # store new word
MDEF 1, 0xcafe # define CRC/checksum module
CSUM@1 R7, R9, R5 # compute checksum over header

MUDEF 1
OR@2 R4, R4, R7 # add checksum to word
ST@0 R9+3, R4 # store new word

etheroutput:
LD@0 R4, R9+8 # get first 32 bit of l2 addresses
ST@0 R3+0, R4 # store in packet
LD@0 R4, R9+12 # next 32 bit
ST@0 R3+4, R4
LD@0 R4, R9+16 # and final 32 bits

ST@0 R3+8, R4
SUB R4, R2, 4 # packet length without CRC
MDEF 1, 0xcafe # define CRC/checksum module
CRC@1 R5, R3, R4 # compute CRC on packet
MUDEF 1 # release CRC/checksum module
ADD@2 R4, R3, R4 # compute CRC address
ST@0 R4+0, R5 # store CRC

output:
LD@0 R5, R8+4 # get output queue

ENQUE R5, R3, R2 # enqueue packet
MUDEF 2 # release general purpose unit
BR@0 start # that'a all, next packet

control:
...

arp_processing:
...

bad:

DROP # drop packet and clear all state
MUDEF 2 # release general purpose unit
BR start # start over

Figure 4: Example NP IS code for IP packet forwarding.

9

� Loading of large immediate values. Due to the compactness of NPIS, the size of immediate
values is limited to typically 7 bit or 16 bit for the load instruction. Due to the high spatial
locality of network processing code, this should not have a negative e�ect on the code. If a
program uses many large immediate values, though, it can lead to an increase in code size,
because a RISC load has to be replaced by several NPIS instructions.

Since NPIS is adapted to the networking environment, it also contains several instructions
that reduce the code size, because they implement common functions that require multiple RISC
instructions. These instructions are:

� Bit read and write instruction. Due to the compactness of protocol headers, often several
parameters are packet in a 32 bit word. To process the protocol header, it is necessary to
extract the bits corresponding to a single value. The specialized RBITS instruction and the
corresponding writing instruction WBITS implement this functionality. To achieve the same
functionality in a RISC instruction set, typically two operations are needed (two shifts or a
load immediate and a logic AND) for RBITS and three to four instructions for WBITS. This
di�erence might have a noticeable e�ect on code size, since in the less than 100 instructions
of the example, RBITS was used 9 times and WBITS was used twice.

� System instructions. These basic packet operations, DQUE, ENQUE, and DROP, are im-
plemented in a single instruction in NPIS. RISC requires multiple instructions depending on
how the enqueue and dequeue operations are implemented. These instructions occur exactly
twice for each packet (DQUE and ENQUE or DQUE and DROP).

� Special module instructions. These instructions aggregate much functionality in a single
instruction. The reduction in code size can be signi�cant for those instructions. For example,
checksum computation is represented by a single CSUM instruction, whereas in a RISC
instruction set it has to be implemented with many basic instructions. In particular if loops
are unrolled for eÆciency, the NPIS representation is signi�cantly shorter.

7.1.2 Memory References

A component that signi�cantly a�ects the overall performance of a system, is the memory system.
O�-chip memory accesses due to cache misses are costly and cause processor stalls. It is diÆcult
to compare the e�ects of di�erent instruction sets on the memory system, since locality in access
patterns plays an important role. In general, though, the NPIS uses the same type of load and store
instructions as a RISC processor. Also, it accesses the same data (packet header, classi�cation
tables, ...) roughly in the same order. Thus, one can assume that the overall performance with
respect to the memory system is comparable to that of a traditional RISC.

7.2 Multiple Modules

The introduction of specialized modules require additional chip area. In general, a specialized
module pays o� when it increases the speedup or throughput of the chip with little additional
chip area. To quantify this property, we de�ne the following simple performance metric:

performance =
throughput

area
(1)

The performance is higher when higher throughput is achieved and it is lower if more chip area
is required. For the RISC processor, the throughput can be de�ned by the processor clock cRISC ,
the average number of instruction that are required for packet processing, nRISC , and the average
clocks per instruction, CPIRISC . The area of a RISC processor is aRISC . The area for memory
is not considered here, since it can be assumed to be the same for di�erent con�gurations. Using
basic evaluation techniques from [4], the performance of a RISC processor can be computed as

10

performanceRISC =
cRISC

nRISC �CPIRISC

aRISC
: (2)

If we look at a modular system that uses two modules A and B, one which does general
computations similar to a RISC and one that is a hardware accelerator for a certain function,
then we can describe the performance as

performanceNPIS =
cNPIS

nNPIS�CPINPIS

aA + aB
: (3)

The hardware accelerator replaces some of the RISC instructions, so in general on can assume
nNPIS < nRISC , but since it might do more complex processing in each instruction CPINPIS >

CPIRISC . This formula can of course be extended to more than two modules.
As an example, we look at a 200 MHz RISC processor which executed 150 instructions per

packet at a CPI of 1.2 and uses 3 mm2 or chip area. This is compared with a two-module system
that has one module that is similar to the RISC (control module) and a module that does a
hardware accelerated function (checksum module). Due to the accelerator, only 80 instructions
need to be executed, but the CPI of 1.5 is slightly higher. The clock is also 200 MHz, and the
modules require 2 mm2 each. Thus, the performance of the RISC system is

performanceRISC =
200�10

6

150�1:2

3
= 370370: (4)

The performance of the modular system is

performanceNPIS =
200�10

6

80�1:5

2 + 2
= 416666: (5)

For this example, the performance of the modular system is higher than the standard RISC
system. It is important to note that the performance metric cannot be used to determine the
speedup obtained by using one con�guration over another. To obtain speedup, other components,
like memory and I/O have to be included.

8 Related Work

There are a number of commercial network processors available or soon to be available. They
are typically single-chip solutions designed to process upward from OC-48 speeds (2.4 Gb/s).
The general architecture is a processing cluster of RISC-like processing units. In some cases
these processors are controlled by a central processor. Packets are processed in parallel by those
processors. The following list is a rough comparison of the network processors for which public
information is available:

� IBM IBM32NPR161EPXCAC133 (Rainier) [5]: 16 processing units, one control processor,
133 MHz clock rate, 1.6 GB/s DRAM bandwidth, 8 Gb/s line speed, 2 threads per processor.

� Intel IPX1200 [6]: 6 processing units, one control processor, 200 MHz clock rate, 0.8 GB/s
DRAM bandwidth, 2.6 Gb/s line speed, 4 threads per processor.

� Lexra NetVortex [8]: 16 processing units, 427 MHz clock rate, over 20 Gb/s line speed, 4
threads per processor.

� Lucent Fast Pattern Processor [9]: 3 VLIW processing units, one control processor, 133
MHz clock rate, 1.1 GB/s DRAM bandwidth, 5 Gb/s link rate, 64 threads per processor.

� MMC nP3400 [10]: 2 processing units, 220 MHz clock rate, 0.5 GB/s DRAM bandwidth, 5
Gb/s link speed, 8 threads per processor.

11

� Motorola C-5 [1]: 16 processing units, one control processor, 200 MHz clock rate, 1.6 GB/s
DRAM bandwidth, 5 Gb/s line speed, 4 threads per processor.

� Tsqware TS704 [14]: 4 processing units.

� Vitesse Prism IQ2000 [12]: 4 processing units, 200 MHz clock rate, 1.6 GB/s DRAM band-
width, 6.4 Gb/s line speed, 5 threads per processor.

Another approach is to use SIMD processors, which were mainly used for media applications,
and adapt them to the network environment. PixelFusion uses their Fuzion 150 [11] for this
purpose. It has 1,500 simple processing units clocked at 200 MHz with 24 MB on-chip memory and
6.4 Gb/s external bandwidth. It is not clear, though, that network processing can be parallelized
enough to make use of this large number of processors.

One commercial network processor that uses a specialized instruction set, is the Inter IPX1200 [6].
In addition to basic RISC ALU and branch instructions, the instruction set contains a set of
specialized read/write and load/store instructions that explicitly specify the memory that they
address (registers, SRAM, or SDRAM). It also contains two instructions that perform 48 and 64
bit hash functions.

9 Summary

Modularity in network processors provides the exibility to adapt one basic system architecture to
di�erent tasks and performance requirements. Modularity also supports the parallel and pipelined
processing of packets, which is the basis to achieving high throughput. The network processor
instruction set pushes the decoding of instructions into the individual modules. This gives the
instruction set the extensibility that is required for this environment. Instructions are tagged
with the identi�er of the module that they are meant for. A context mapping unit provides the
modules with the appropriate register set and data of the packet that they are processing. The
example code for processing an IP packet shows how the instruction set can be used. We also
de�ned a performance metric that can be used to compare modular system con�gurations.

References

[1] C-Port Corporation. C-5TM Digital Communications Processor, 1999.
http://www.cportcorp.com/solutions/docs/c5brief.pdf.

[2] A. T. Campbell, H. G. De Meer, M. E. Kounavis, K. Miki, J. B. Vincente, and D. Villela.
A survey of programmable networks. Computer Communication Review, 29(2):7{23, Apr.
1999.

[3] D. Decasper. A Software Architecture for Next Generation Routers. PhD thesis, ETH Zurich,
1999.

[4] J. L. Hennessy and D. A. Patterson. Computer Architecture { A Quantitative Approach.
Morgan Kaufmann Publishers, Inc., San Mateo, CA, second edition, 1995.

[5] IBM Corp. IBM Power Network Processors, 2000.
http://www.chips.ibm.com:80/products/wired/communications/network processors.html.

[6] Intel Corp. Intel IXP1200 Network Processor, 2000.
http://developer.intel.com/design/network/ixp1200.htm.

[7] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee. DSP Processor Fundamentals: Architectures

and Features. IEEE Press Series on Signal Processing, Jan. 1997.

[8] Lexra Inc. NetVortex Network Communications System Multiprocessor NPU, 2000.
http://www.lexra.com/products.html.

12

[9] Lucent Technologies Inc. PayloadPlusTM Fast Pattern Processor, Apr. 2000.
http://www.agere.com/support/non-nda/docs/FPPProductBrief.pdf.

[10] MMC Networks, Inc. nP3400, 2000. http://www.mmcnet.com/.

[11] PixelFusion, Ltd. Fuzion 150 Product Overview, 2000.
http://www.pixelfusion.com/products/FUZION150A4 Product Overview.pdf.

[12] Sitera Inc. Prism IQ2000 Network Processor Family, 2000.
http://www.sitera.com/products/prism.pdf.

[13] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Minden. A
survey of active network research. IEEE Communications Magazine, 35(1):80{86, Jan. 1997.

[14] T.sqware Inc. TS704 Edge Processor Product Brief, 1999. http://www.tsqware.com/.

13

