
RC 21874 (98429) 3 November 2000 Computer Science

IBM Research Report

An Adaptive Issue Queue for Reduced
 Power at High Performance

Alper Buyuktosunoglu, Stanley Schuster, David Brooks, Pradip Bose, Peter Cook
IBM Research Division

Thomas J. Watson Research Center
P. O. Box 218

Yorktown Heights, NY 10598

David Albonesi
Dept. of Electrical and Computer Engineering

University of Rochester
Rochester, NY

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research
Center , P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1

An Adaptive Issue Queue for Reduced Power at High Performance

Alper Buyuktosunoglu*, 2, Stanley Schuster1, David Brooks1, Pradip Bose1, Peter Cook1, and David Albonesi2

1IBM. T. J. Watson Research Center, Yorktown Heights, NY
{schustr, dbrooks, pbose, pwcook}@us.ibm.com

2Department of Electrical and Computer Engineering, University of Rochester, NY
{buyuktos, albonesi}@ece.rochester.edu

* Alper Buyuktosunoglu is a graduate student at University of Rochester, NY. This work was done while the author was a
summer intern at IBM T.J. Watson Research Center.

Abstract

Increasing power dissipation has become a major
constraint for future performance gains in the design
of microprocessors. In this paper, we present the
circuit design of an issue queue for a superscalar
processor that leverages transmission gate insertion to
provide dynamic low-cost configurability of size and
speed. A novel circuit structure dynamically gathers
statistics of issue queue activity over intervals of
instruction execution. These statistics are then used
to change the size of an issue queue organization on-
the-fly to improve issue queue energy and
performance. When applied to a fixed, full-size issue
queue structure, the result is up to a 70% reduction in
energy dissipation. The complexity of the additional
circuitry to achieve this result is almost negligible.
Furthermore, self-timed techniques embedded in the
adaptive scheme can provide a 56% decrease in cycle
time of the issue queue when we change the adaptive
issue queue size from 32 entries (largest possible) to 8
entries (smallest possible in our design).

1 Introduction

The out-of-order issue queue structure is a major
contributor to the overall power consumption in a
modern superscalar processor, like the Alpha 21264
and Mips R10000 [1, 2]. It also requires the use of
complex control logic in determining and selecting
the ready instructions. Such complexity, besides
adding to the overall power consumption, also
complicates the verification task. Recent work by
Gonzalez et al. [3, 4] has addressed these problems,
by proposing design schemes that reduce either the
control logic complexity [3] or the power [4] without

significantly impacting the IPC performance. In [3],
the authors propose and evaluate two different
schemes. In the first approach, the complexity of the
issue logic is reduced by having a separate “ready
queue” which only holds instructions with operands
that are determined to be fully available at decode
time. Thus, instructions can be issued “in-order” from
this “ready queue” at reduced complexity, without any
associative lookup. A separate “first-use” table is used
to hold instructions, indexed by unavailable operand
register specifiers. Only those instructions that are the
first-time consumers of these pending operands are
stored in this table. Instructions which are deeper in
the dependence chain simply stall or are handled
separately through a separate issue queue. The
dependence link information connecting multiple
instances of the same instruction in the “first-use”
table is updated after each instruction execution is
completed. At the same time, if a given instruction is
deemed to be “ready” it is moved to the in-order ready
queue. Since none of the new structures require
associative lookups or run-time dependence analysis,
and yet, instructions are able to migrate to the ready
queue as soon as their operands become available,
this scheme significantly reduces the complexity of
the issue logic.
 The second approach relies on static scheduling;
here, the main issue queue only holds instructions
with pre-determined availability times of their source
operands. Since the queue entries are time-ordered
(due to known availabilities), the issue logic can use
simple, in-order semantics. Instructions with
operands which have unknown availability times are
held in a separate “wait queue” and get moved to the
main issue queue only when those times become
definite. In both approaches described in [3], the

2

emphasis is on reduction of the complexity of the
issue control logic. The added (or augmented) support
structures in these schemes may actually cause an
increase of power, in spite of the simplicity and
elegance of the control logic. In [4], the main focus is
on power reduction. The issue queue is designed to be
a circular queue structure, with head and tail pointers,
and the effective size is dynamically adapted to fit the
ILP content of the workload during different periods
of execution.
 The work in [4] leverages previous work [5, 6] in
dynamically sizing the issue queue. In both [3] and
[4], the authors show that the IPC loss is very small
with the suggested modifications to the issue queue
structure and logic. Also, in [4], the authors use a
trace-driven power-performance simulator (based on
the model by Cai [7]) to report substantial power
savings on dynamic queue sizing. However, a detailed
circuit-level design and simulation of the proposed
implementations are not reported in [3] or [4].
Without such analysis, it is difficult to gauge the
cycle-time impact or the extra power/complexity of
the augmented design.
 In our work, we propose a new adaptive issue
queue organization and we evaluate the power
savings and the logic overhead through actual circuit-
level implementations and their simulation. This
work was done as a part of a research project targeted
to explore power-saving opportunities in future, high-
end processor development within IBM. Our scheme
is simpler than that reported in [3, 4] in that it does
not introduce any new data storage or access structure
(like the first-use table or the wait queue in [3]).
Rather, it proposes to use an existing framework, like
the CAM/RAM structure commonly used in the
design of issue queues [8]. However, the effective size
of the issue queue is dynamically adapted to fit the
workload demands. This aspect of the design is
conceptually similar to the method proposed in [4]
but our control logic is quite different.

2 Power and Performance Characteristics
of a Conventional (Non-Adaptive) Issue
Queue

The purpose of the issue queue is to receive
instructions from the dispatch stage and forward
“ready instructions” to the execution units. An
instruction is ready to issue when the data needed by
its source operands and the functional unit are
available or will be available by the time the
instruction is ready to read the operands, prior to
execution.

 Many superscalar microprocessors, such as the
Alpha 21264 [1] and Mips R10000 [2] use a
distributed issue queue structure, which may include
separate queues for integer and floating point
operations. For instance in the Alpha 21264 [9], the
issue queue is implemented as flip-flop latch-based
FIFO queues with a “compaction” strategy, i.e., every
cycle, the instructions in the queue are shifted to fill
up any “holes” created due to prior-cycle issues. This
makes efficient use of the queue resource, while also
simplifying the wake-up and selection control logic.
However, compaction entails shifting instructions
around in the queue every cycle and depending on the
instruction word width may therefore be a source of
considerable power consumption. Studies have shown
that overall performance is largely independent of
what selection policy is used (oldest first, position
based, etc.)[10]. As such, the compaction strategy
may not be best suited for low power operation; nor is
it critical to achieving good performance. So, in this
research project, an initial decision was made to avoid
compaction. Even if this means that the select
arbitration must be performed over a window size of
the entire queue, this is still a small price to pay
compared to shifting multiple queue entries each
cycle.
 Due to the above considerations, a decision was
made to use a RAM/CAM based solution [8].
Intuitively, a RAM/CAM would be inherently lower
power due to its smaller area and because it naturally
supports a “non-compaction” strategy. The
RAM/CAM structure forms the core of our issue
queue design. The op-code, destination register
specifier, and other instruction fields (such as the
instruction tag) are stored in the RAM. The source
tags are stored in the CAM and are compared to the
result tags from the execution stage every cycle. Once
all source operands are available, the instruction is
ready to issue provided its functional unit is available.
The tag comparisons performed by the CAM and the
checks to verify that all operands are available
constitute the “wakeup” part of the issue unit
operation. While potentially consuming less power
than a flip-flop based solution, the decision of using a
RAM/CAM structure for the issue queue is not
without its drawbacks. CAM and RAM structures are
in fact inherently power hungry as they need to
precharge and discharge internal high capacitance
lines and nodes for every operation. The CAM needs
to perform tag matching operations every cycle. This
involves driving and clearing high capacitance tag-
lines, and also precharging and discharging high
capacitance matchline nodes every cycle. Similarly,
the RAM also needs to charge and discharge its

3

bitlines for every read operation. Our research on
low-power issue queue designs was focused on two
aspects: (a) Innovating new circuit structures, which
reduce power consumption in the basic CAM/RAM
structure; and (b) Dynamic adaptation of the effective
CAM/RAM structure by exploiting workload
variability. This paper describes the work done on the
second aspect. However, dynamic queue sizing can
degrade CPI performance as well. Part of the design
challenge faced in this work was to ensure that the
overall design choices do not impact performance
significantly, while ensuring a substantial power
reduction.
 Non-adaptive designs (like the R10000 and Alpha
21264) use fixed-size resources and a fixed
functionality across all program runs. The choices are
made to achieve best overall performance over a
range of applications. However, an individual
application whose requirements are not well matched
to this particular hardware organization may exhibit
poor performance. Even a single application run may
exhibit enough variability that causes uneven use of
the chip resources during different phases. Adaptive
design ideas (e.g., [5]) exploit the workload
variability to dynamically adapt the machine
resources to match the program characteristics. As
shown in [5], such ideas can be used to increase
overall performance by exploiting reduced access
latencies in dynamically resized resources.
 Non-adaptive designs are inherently power-
inefficient as well. A fixed queue will waste power
unnecessarily in the entries that are not in use. Figure
1 shows utilization data for one of the queue
resources within a high performance processor core
when simulating the SPECint95 benchmarks. From
this figure, we see that the upper 9 entries contribute
to 80% of the valid entry count. Dynamic queue
sizing clearly has the potential of achieving
significant power reduction as other research has
demonstrated as well [4, 6]. One option to save power
is to clock-gate each issue queue entry on a cycle by
cycle basis. However, clock gating alone does not
address some of the largest components of the issue
queue power such as the CAM taglines, the
RAM/CAM precharge logic, and RAM/CAM bitlines.
So a scheme which allows shutting down the queue in
“chunks” based on usage reductions to address these
other power components can produce significant
additional power savings over clock gating. This idea
forms the basis of the design described in this paper.

Fig. 1. Histogram of valid entries for an integer queue
averaged over SPECint95

3 Adaptive Issue Queue Design

In this section, we discuss the adaptive issue queue
design in detail. First, we describe the high-level
structure of the queue. Then, we present partitioning
of the CAM/RAM array and the self-timed sense
amplifier design. Finally, we discuss the shutdown
logic that is employed to configure the adaptive issue
queue at run-time.

3.1 High-Level Structure of Adaptive Issue Queue

Our approach to issue queue power savings is to
dynamically shut down and re-enable entire blocks of
the queue. Shutting down blocks rather than
individual entries achieves a more coarse-grained
precharge gating. A high-level mechanism monitors
the activity of the issue queue over a period of
execution called the cycle window and gathers
statistics using hardware counters (discussed in
section 3.3). At the end of the cycle window, the
decision logic enables the appropriate control signals
to disable and enable queue blocks. A very simple
mechanism for the decision logic in pseudocode is
listed below.

if (present_IPC< factor * last_IPC)
 revert_back_to_last_size;
else if (counter< threshold_1)
 decrease_size;
else if (counter < threshold_2)
 retain_ current_size;
else increase_size;

 At the end of the cycle window, there are four
possible actions. The issue queue size is reverted back
to its last size if the present IPC is a factor lower than
the last IPC during the last cycle window. This

Histogram of Valid Entries

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Entry #

4

guarding mechanism attempts to limit the
performance loss of adaptation. Otherwise, depending
on the comparison of counter values with certain
threshold values the decision logic may do the
following: i) increase issue queue size by enabling
higher order entries ii) retain the current size, or iii)
decrease the size by disabling the highest order
entries. Note that a simple NOR of all the active
instructions in a chunk ensures that all entries are
issued before the chunk is disabled.

3.2 Partitioning of the RAM/CAM Array and Self-
Timed Sense Amplifiers

The proposed adaptive CAM/RAM structure is
illustrated in Figure 2. The effective sizes of the
individual arrays can be changed at run-time by
adjusting the enable inputs that control the
transmission gates. For our circuit-level
implementation and simulation study, a 32-entry
issue queue is assumed which is partitioned into four
8-entry chunks. For the taglines, a separate scheme is
employed in order to avoid a cycle time impact. A
global tag-line is traversed through the CAM array
and its local tag-lines are enabled/disabled depending
on the control inputs. The sense amplifiers and
precharge logic are located at the bottom of both
arrays. Based on simulations, we determined that
transmission gates exhibit a better energy vs
performance tradeoff compared to other schemes that
may be employed for partitioning (e.g., tri-state
buffers). Another feature of the design is that these
CAM and RAM structures are implemented as self-
timed blocks. The timing of the structure is performed
via an extra dummy bitline within the datapath of
CAM/RAM structures, which has the same layout as
the real bitlines. A logic zero is stored in every
dummy cell. A reading operation of the selected cell
creates a logical one to zero transition on the dummy
bitline that controls the set input of the sense
amplifier. (Note that the dummy bitline is precharged
each cycle as with the other bitlines.) This work
assumes a latching sense amplifier that is able to
operate with inputs near Vdd. When the set input is
high, a small voltage difference from the memory cell
passes through the NMOS pass gates of the sense
amplifier. When the set signal goes low, the cross-
coupled devices amplify this difference to a full rail
signal as the pass gates turn off to avoid the cross-
coupled structure from bitlines load. When the issue
queue size is 8, a faster access time is achieved
because of the 24 disabled entries. The self-timed
sense amplifier structure takes advantage of this
feature by employing the dummy bitline to allow

faster operation, i.e., the dummy bitline enables the
sense amplifiers at the exact time the data becomes
available. Simulations show that one may achieve up
to a 56% decrease in the cycle time using this
method. Therefore, downsizing to a smaller number
of entries results in a faster issue queue cycle time
and saves energy, similar to prior work related to
adaptive cache designs [11, 12, 13]. However, in this
paper we do not explore options for exploiting the
variable cycle time nature of the design, but focus
only on its power-saving features.

3.3 Shutdown Logic

A primary goal in designing the shutdown logic is not
to add too much overhead to the conventional design
in terms of transistor count and energy dissipation.
Table 1 shows the complexity of the shutdown logic
in terms of transistor count. From this table it is clear
that the extra logic adds only a small amount of
complexity to the overall issue queue. AS/X [14]
simulations show that this extra circuitry dissipates
3% of the energy dissipated by the whole CAM/RAM
structure on average.
 Figure 3 illustrates the high-level operation of the
shutdown logic. It consists of bias logic at the first
stage followed by the statistics process&storage
stage. The activity information is first filtered by the
bias logic and then it is fed to the process&storage
stage where the information is fed to counters. At the
end of the cycle window, this data passes through the
decision logic to generate the corresponding control
inputs.
 The 32-entry issue queue is partitioned into 8-entry
chunks that are separately monitored for activity. The
bias logic block monitors the activity of the issue
queue in 4-entry chunks. This scheme is employed to
decrease the fan-in of the bias logic. The bias logic
simply gathers the activity information over four
entries and averages them over each cycle. The
activity state of each instruction may be inferred from
the “ready flag” of that particular queue entry. One
particular state of interest is when exactly half of the
entries in the monitored chunk are active. One
alternative is to statically choose either active or not
active in this particular case. Another approach is to
dynamically change this choice by making use of an
extra logic signal variable. (See Adaptive Bias Logic
in Figure 3.)
 The statistics process&storage stage, which is
shown in Figure 4, is comprised of two different
parts. The detection logic provides the value that will
be added to the final counter. It gathers the number of
active chunks from the bias logic outputs and then

5

Fig. 2. Adaptive CAM/RAM structure

Table 1. Complexity of shutdown logic in terms of transistor count

ISSUE QUEUE
OF ENTRIES

TRANSISTOR COUNTS
ISSUE QUEUE

TRANSISTOR COUNTS
SHUTDOWN LOGIC

COMPLEXITY OF
SHUTDOWN LOGIC

16 28643 802 2.8%
32 58556 1054 1.8%
64 115733 1736 1.5%
128 230001 2530 1.1%

generates a certain value (e.g., if there are two active
8-entry chunks, the detection logic will generate
binary two to add to the final counter). The second
part, which is the most power hungry, is the flip-flop
and adder pair (forming the counter). Each cycle,
this counter is incremented by the number of active
clusters (8 entry chunks). In this figure one can also
see the function of the detection logic. The zeros in
the inputs correspond to the non-active clusters and
the ones to active clusters. The result section shows,
which value in binary should be added. For 32
entries, two of these detection circuits and a small
three-bit adder are required to produce the counter
input. One of the detection logic units covers the
upper 16 entries and the other one covers the bottom
16 entries.

4 Simulation Based Results

In this section, we first present circuit-level data and
simulation results. Later, we discuss
microarchitecture-level simulation results that
demonstrate the workload variability in terms of
issue queue usage.

4.1 Circuit-level data

Figure 5 shows the energy savings (from AS/X
simulations) achieved with an adaptive RAM array.
(Note that in this figure only positive energy savings
numbers are presented.) There are several possible
energy/performance tradeoff points depending on the
transistor width of the transmission gates. A larger

dummy bitline

CAM RAM

CAM

transmission gate transmission gate

transmission gate transmission gate

transmission gate transmission gate

Precharge&SenseAmp

CAM

CAM

RAM

RAM

RAM

en1

en2

Precharge&SenseAmp

en3

en3

en1

bitline

tagline

en2

6

 Fig. 3. High-level structure of shutdown logic and logic table for bias logic

 Fig. 4. Statistics process and storage stage for shutdown logic

transistor width results in less cycle time impact,
although more energy is dissipated. The cycle time
impact of the additional circuitry did not affect the
overall target frequency of the processor across all
cases. (This was true also for the CAM structure.) By
going down to 0.39um transistor width, one can
obtain energy savings of up to 44%. These numbers
are inferred from the energy dissipation
corresponding to one read operation of a 32-entry

conventional RAM array and that of various
alternatives of the adaptive RAM array. (The size of
the queue is varied over the value points: 8, 16, 24
and 32.) An interesting feature of the adaptive
design is that it achieves energy savings even with
32 entries enabled. This is because the transmission
gates in the adaptive design reduce the signal swing
therefore resulting in less energy dissipation.

S t a t i s t ic s P r o c e s s & S t o r a g e

B ia s
L o g i c

D e te c t i o n
L o g i c

A d d e r

F l i p
F l o p

to d e c i s io n
lo g i c

(f o r # o f a c ti ve

c lu s t e r s)

N A

N A

N A

N A

N A

N A

A

N A

N A

A

A

A A A A

N A

A

A

A

N A : N o t A c ti v e A :A c t i v e

N A

C L U S T 1 C L U S T2 C L U S T3 C L U S T 4 R E S 1 R E S 2 R E S 3 (LS B)

0 0 0

0 0 1

0 1 0

0 1 1

0 01

N A

A

N A

N A

S t a t i s t i c s

P r o c e s s &

S t o r a g e

B ia s

L o g ic

D e c i s i o n

L o g i c
S h u t d o w n
S i g n a l

I S S U E Q U E U E

B I A S L O G I C

e n t 0 e n t 1 e n t 2 e n t 3 R e s u l t

N A

N A

N A

N A

N A

N A

A

N A

N A

A

A

A A A A

N A

A

A

A

N A

N A

A

A

A B ia s e d t o w a r d s
n o t t u r n i n g o f f

e n t 0 e n t 1 e n t 2 e n t 3 R e s u l t

N A

N A

N A

N A

N A

N A

A

N A

N A

A

A

A A A A

N A

A

A

A

N A

N A

A

A

A D A P T I V E B I A S L O G I C

?

N A : N o t A c t i v e A : A c t i v e

r e s u l t = A
e l s e
r e s u l t = N A

N A N A

i f (e x t = = 1)

7

 Fig. 5. Adaptive RAM array energy savings

 The adaptive CAM array energy and delay values
are presented in Figure 6 and Figure 7, respectively,
for various numbers of enabled entries and
transmission gate transistor widths. These values
account for the additional circuitry that generates the
final request signal for each entry (input to the
arbiter logic). With this structure, a 75% savings in
energy dissipation is achieved by downsizing from
32 entries to 8 entries. It should be noted that a 32
entry conventional CAM structure consumes roughly
the same amount of energy as the adaptive CAM
array with 32 entries. Furthermore, the cycle time of
the issue queue is reduced by 56%. Because the
CAM array dissipates ten times more energy than
the RAM array (using 2.34um transmission gate
transistor width) a 75% energy savings in the CAM
array corresponds to a 70% overall issue queue
energy savings (shutdown logic overhead is
included).

4.2 Microarchitecture-Level Simulation and
Results

The work reported thus far in this paper
demonstrates the potential power savings via
dynamic adaptation of the issue queue size. In other
words, we have designed a specific, circuit-level
solution that allows the possibility of such
adaptation; and, we have quantified, through
simulation, the energy savings potential when the
queue is sized downwards. In our simulations, we
have always factored in the overhead of the extra

 Fig. 6. Adaptive CAM array energy values

 Fig. 7. Adaptive CAM array delay values

transistors, which result from the run-time resizing
hardware.
 In this section, we begin to address the following
issues: (a) what are some of the alternate algorithms
one may use in implementing the “decision logic”
referred to earlier (see section 3.1)? That is, how
(and at what cycle windows) does one decide
whether to size up or down? (b) What are the
scenarios under which one scheme may win over
another? (c) How does a simple naive resizing
algorithm perform from a performance and energy
perspective, in the context of a given workload?
 The issue unit (in conjunction with the upstream
fetch/decode stages) can be thought of as a

Adaptive CAM Array

0

2

4

6

8

10

12

14

32ent 24ent 16ent 8ent

Enabled Entries

E
ne

rg
y(

jo
ul

e_
un

it)

3.9um

2.34um

0.78um

Adaptive CAM Array

0

20

40

60

80

100

120

32ent 24ent 16ent 8ent

Enabled Entries

C
A

M
 A

rr
ay

 R
ea

d
D

el
ay

(p
se

c)

3.9um

2.34um

0.78um

Adaptive RAM Array

0

10

20

30

40

50

0.
39

um

0.
78

um

1.
56

um

2.
34

um

3.
12

um
3.9

um

tranmission gate transistor width

E
ne

rg
y

S
av

in
gs

(%
)

8 entries
enabled

16 entries
enabled

24entries
enabled

32entries
enabled

8

“producer.” It feeds the subsequent execution unit(s)
which act as consumer(s). Assuming, for the
moment, a fixed (uninterrupted) fetch/decode
process (bandwidth), the issue queue will tend to fill
up when the issue logic is unable to sustain a
matching issue bandwidth. This could happen
because: (a) the program dependency characteristics
are such that the average number of “ready”
instructions detected each cycle is less than the fetch
bandwidth seen by the receiving end of the issue
queue; or, (b) the execution pipe backend (“the
consumer”) experiences frequent stall conditions
(unrelated to register data dependencies), causing
issue slot “holes.” This latter condition (b) could
happen due to exception conditions (e.g., data
normalization factors in floating point execution
pipes, or address conflicts of various flavors in
load/store processing, etc.). On the other hand, the
“issue-active” part of the queue will tend to be small
(around a value equal to the fetch bandwidth or less)
if the consuming issue-execute process is faster than
or equal to the producing process. Obviously, this
would happen during stretches of execution when the
execution pipe stalls are minimal and the issue
bandwidth is maximal, as plenty of “ready”
instructions are available for issue each cycle.
However, one may need a large issue queue window
just to ensure that enough “ready” instructions are
available to maximize the issue bandwidth. On the
other hand, if the stretch of execution involves a long
sequence of relatively independent operations, one
may not need a large issue queue. So, it should be
clear, that even for this trivial case, where we
assume an uninterrupted flow of valid instructions
into the issue queue, the decision to resize the queue
(and in the right direction: up or down) can be
complicated. This is true even if the consideration is
limited only to CPI performance i.e., if the objective
is to always have “just enough” issue queue size to
meet the execution needs and dependency
characteristics of the variable workload. If the
emphasis is more on power reduction, then one can
perhaps get by with a naive heuristic for size
adaptation, provided the simulations validate that the
average IPC loss across workloads of interest is
within acceptable limits.
 To illustrate the basic tradeoff issues, first, we
provide data that shows the variation of CPI with
integer issue queue size across several SPEC2000
integer benchmarks (see Figure 8). We used
SimpleScalar-3.0 [15] to simulate an aggressive 8-
way superscalar out-of-order processor. In the
simulator, separate issue queues are modeled as

integer and floating point queue. The simulation
parameters are summarized in Table 2.

 Table 2. Simplescalar simulator parameters

Branch Predictor Comb. of bimodal
and 2-level Gag

Fetch and Decode width 16 instructions
Issue Width 8
Integer ALU/Multiplier 4/4
Floating Point ALU/Multiplier 2/2
Memory Ports 4
L1 Icache, Dcache 64KB 2-way
L2 unified cache 2MB 4-way

 The data in Figure 8 shows that for most of the
benchmarks simulated, there is considerable
variation in CPI as integer issue queue size varies
between 8 and 32. In order to gain insight into the
potential of our adaptive issue queue, we
implemented the algorithm discussed in Section 3.1
in SimpleScalar. We chose a cycle window size of
8K cycles, as this provided the best energy
performance tradeoff compared with the other cycle
windows that we analyzed. We ran each benchmark
for the first 400 million instructions.
 Our dynamic algorithm picks the appropriate size
for the next cycle window by counting the ready
instructions in the last cycle window, and comparing
this value with certain threshold values. The
algorithm also compares the IPC of the last interval
with the present interval IPC. For this purpose, we
also analyzed the configurations with different
“factor” values. Threshold values are adjusted such
that, if the issue queue utilization for a certain size is
at the border value of its maximum size (e.g., for an
issue queue size of 8 entries, the border is 7 entries)
then the issue queue size is ramped up to the next
larger size. Figure 9 shows what percentage of the
time each queue size was used with the dynamic
algorithm with “factor” set to be 0.9. Table 3 shows
the energy savings and CPI degradation for each
benchmark as well as the overall average. To
estimate the energy savings, we assumed an energy
variation profile which is essentially linear in the
number of entries, based on the circuit-level
simulation data reported earlier in Figure 6. We also
take into account the shutdown logic overhead. CPI
degradation and energy savings are both relative to a
fixed 32-entry integer issue queue.
 The results from Figure 9 demonstrate the broad
range of workload variability. For mcf, the full 32
entry queue is used throughout its entire execution

9

 Table 3. Energy savings and CPI degradation for factor=0.9

bzip gcc mcf parser vortex vpr average
CPI degradation

%
0.0 10.2 0.2 2.9 11.4 0.6 4.3

Energy savings % 27.2 66.4 -3.0 31.0 68.3 20.0 35

Fig. 8. CPI sensitivity to issue queue size

Fig. 9. Percentage of utilization for each queue size
with the dynamic adaptation

whereas for vortex and gcc, only 8 entries are largely
used. For bzip, the algorithm almost equally chooses
issue queue sizes of 32, 24, and 16 entries. For

parser, the 24 entry issue queue configuration
dominates whereas for vpr, 32 or 16 entries are
largely used. On average, this very naive algorithm
provides a 35% decrease in the issue queue energy
with a CPI degradation of just over 4%.

5 Conclusion

We examine the power saving potential in the design
of an adaptive, out-of-order issue queue structure.
We propose an implementation that divides the issue
queue into separate chunks, connected via
transmission gates. These gates are controlled by
signals which determine whether a particular chunk
is to be disabled to reduce the effective queue size.
The queue size control signals are derived from
counters that keep track of the “active state” of each
queue entry on a cycle-by-cycle basis. After a
(programmable) cycle window, the decision to resize
the queue can be made based on the activity profile
monitored. The major contribution of this work is a
detailed, circuit-level implementation backed by
(AS/X) simulation-based analysis to quantify the net
power savings that can be achieved by various levels
of queue size reduction. We also simulated a
dynamic adaptation algorithm to illustrate the
scenarios where the resizing logic would size the
queue up or down, depending on the particular
priorities of performance and energy.
 Future work includes exploring alternate
hardware algorithms for queue-size adaptation,
pursuing improvements at the circuit level that
provide better configuration flexibility, and
investigating methods for exploiting the self-timed
issue queue capability.

6 Acknowledgements

We wish to thank John Wellman, Prabhakar Kudva,
Victor Zyuban and Hans Jacobson for many
interesting discussions and helpful hints.

0

10

20

30

40

50

60

70

80

90

100

bzip gcc mcf parser vortex vpr

benchmarks

%
 o

f u
til

iz
at

io
n 32

24

16

8

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

8 16 32

Integer Issue Queue Size

C
P

I

bzip

gcc

mcf

parser

vortex

vpr

10

REFERENCES

1. R. Kessler, “The Alpha 21264 microprocessor,”
IEEE Micro, 19(2): 24-36, March/April 1999.
2. K.Yeager, “The Mips R10000 superscalar
microprocessor,” IEEE Micro, 16(2): 28-41, April
1996.
3. R. Canal and A. Gonzalez, “A low-complexity
issue logic,” Proc. ACM Int’l. Conference on
Supercomputing (ICS), pp. 327-335, Santa Fe, N.M.,
June 2000.
4. D. Folegnani and A. Gonzalez, “Reducing the
power consumption of the issue logic,” Proc. ISCA
Workshop on Complexity-Effective Design, June
2000.
5. D. H. Albonesi, “Dynamic IPC/Clock Rate
Optimization,” Proc. ISCA-25, pp. 282-292,
June/July 1998.
6. D. H. Albonesi, “The Inherent Energy
Efficiency of Complexity-Adaptive Processors,”
Proc. ISCA Workshop on Power-Driven
Microarchitecture, June 1998.
7. G. Cai, “Architectural level power/performance
optimization and dynamic power estimation,” in
Proceedings of the Cool Chips Tutorial, in
conjunction with Micro-32, 1999.
8. S. Palacharla, N. P. Jouppi and J. E. Smith,
“Complexity-effective superscalar processors,” Proc.
ISCA-97, pp. 206-218, June 1997.
9. K. Wilcox and S. Manne, “Alpha Processors: A
history of power issues and a look to the future,” in
Proceedings of the Cool Chips Tutorial, in
conjunction with Micro-32, 1999.
10. M. Butler and Y.N Patt, “An investigation of the
performance of various dynamic scheduling
techniques,” Proc.ISCA-92, pp. 1-9.
11. R. Balasubramonian, D.H. Albonesi, A.
Buyuktosunoglu, and S. Dwarkadas, “Dynamic
Memory Hierarchy Performance Optimization,”
Proc. ISCA Workshop on Solving the Memory Wall
Problem, June 2000.
12. R. Balasubramonian, D.H. Albonesi, A.
Buyuktosunoglu, and S. Dwarkadas, “ Memory
Hierarchy Reconfiguration for Energy and
Performance in General-Purpose Processor
Architectures,” 33rd International Symposium on
Microarchitecture, December 2000.
13. M. D. Powell, S.H. Yang, B. Falsafi, K. Roy, T.
N. Vijaykumar, “Gated-Vdd: A Circuit Technique to
Reduce Leakage in Deep-Submicron Cache
Memories,” ACM/IEEE International Symposium
on Low Power Electronics and Design (ISLPED),
2000.

14. AS/X User’s Guide, IBM Corporation, New
York, 1996.
15. D. Burger and T. Austin, “The Simplescalar
toolset, version 2.0,” Technical Report TR-97-1342,
University of Wisconsin-Madison, June 1997.

