
RC 21922 (98572) 28 December 2000 Computer Science

IBM Research Report

XAS: A System for Accessing Componentized,
Virtual XML Documents

Ming-Ling Lo, Shyh-Kwei Chen,
Sriram Padmanabhan, Jen-Yao Chung

IBM Research Division
Thomas J. Watson Research Center

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

XAS: A System for Accessing Componentized,

Virtual XML Documents

Ming-Ling Lo, Shyh-Kwei Chen, Sriram Padmanabhan, Jen-Yao Chung

IBM Thomas. J. Watson Research Center

fmllo,skchen,srp,jychungg@us.ibm.com

Abstract

XML is emerging as an important format for describing the schema of documents and data

to facilitate integration of applications in a variety of industry domains. An important issue

that naturally arises is the requirement to generate, store and access XML documents.

It is important to reuse existing data management systems and repositories for this purpose.

In this paper, we describe the XML Access Server (XAS), a general purpose XML based storage

and retrieval system which provides the appearance of a large set of XML documents while

retaining the data in underlying federated data sources that could be relational, object-oriented,

or semi-structured. XAS automaticallymaps the underlying data into virtual XML components

when mappings between DTDs and underlying schemas are established. The components can

be presented as XML documents or assembled into larger components. XAS manages the

relationship between XML components and the mapping in the form of Document Composition

Logic. The versatility in its ways to generate XML documents enables XAS to serve a large

number of XML components and documents e�ciently and expediently.

Index terms: XML, database systems, reuse, heterogeneous data processing, component-based

applications, Web applications.

1 INTRODUCTION

The eXtensible Markup Language (XML) [3] has emerged as an important industrial standard

and received much attention from the research community. It is increasingly used in e-business,

e-commerce, application integration, and meta data management, to name a few applications.

In addition to being a good data representation and exchange format, one key advantage is

that its structure and de�nition are very conducive to software processing. This suggests a future

where the Internet carries a very large amount of XML tra�c, generated and consumed primarily

by software agents, and directed and monitored by human beings occasionally at the high level.

1

Given such a trend, the key issues include the sources of content of all the XML documents, and

the software methodology for managing them. Part of the content will be generated by the new

activities and stored in new types of data systems. But as a large amount of data already exists in

non-XML formats, schemas and systems, how to e�ciently reuse, convert and combine these data

into XML components or documents becomes an important challenge.

In this paper, we design a middleware software, called XML Access Server (XAS) that answers

this challenge. XAS maps distributed and heterogenous data to and from XML documents. It

is designed with two guiding principles: exibility and ease of use. Flexibility manifests in two

aspects. First, as many types of data sources as possible should be allowed to be used as sources

for XML components and documents. It requires XAS to handle both di�erent system platforms

and di�erent data models. Second, the underlying data should be allowed to map to arbitrary types

of XML documents based on di�erent Document Type De�nitions (DTDs) [3] in very exible ways.

Ease of use requires that the mapping logic between the underlying data and XML be speci�ed

only in high-level description, and that the associated software and data be very easy to deploy. In

addition, XAS presents the underlying data as virtual XML components or documents to high-level

applications, making them easier to reason about and process.

XAS supports three basic types of operations: retrieval, deposit, and query of virtual XML

documents, on top of which higher level functionalities can be built. As the underlying data

sources can be distributed and heterogeneous, upon a document retrieval request, XAS retrieves

data items from the various data sources and assembles them into XML document(s). Upon a

document deposit, XAS disassembles the document into pieces and stores them into appropriate

locations in the underlying data sources. Similarly, when an XML query is received, XAS translates

the query into a number of low-level queries to the underlying data sources and assembles the low-

level answers into the �nal answer.

The actual data in XAS remains in the underlying data sources in native formats without

explicitly converting or copying of data. Old applications written for the underlying data sources

continue to run as usual, while new applications built on top of XAS access virtual XML components

or documents that consist of logically related data from multiple data sources and are assembled

on demand. XAS uses a component-based approach with simple interfaces that interacts well with

other software modules to form solutions. Adding new data sources is a straightforward process

incurring minor programming e�orts and customization costs.

We have implemented a prototype of the XAS system using Java that retrieves and deposits

2

XML documents. Currently accepted underlying data sources include any JDBC [22] compliant

data sources, Lotus Notes databases, and the IBM IMS hierarchical database systems. A snapshot

of the prototype has been posted on the IBM alphaWorks Web site [13], and has received 9400

downloads in 8 months.

This paper is organized as follows. Section 2 analyzes the problem space of designing an XML

access and management system. Section 3 presents the overall architecture and system design.

The new XML component processing model and the detailed XAS functionalities are presented

in Section 4. Section 5 describes the XAS mapping framework and the two-stage approach for

overcoming the heterogeneity of hardware architectures. Section 6 discusses the related work, and

Section 7 concludes this paper.

2 PRELIMINARIES

Middleware systems that map between XML and underlying data sources can be designed in many

di�erent ways, based on the following parameters: (1) how they reuse the existing resources, (2)

the exibility of the mapping, and (3) the complexity of required programming e�ort.

2.1 Reuse of Underlying Resources

The underlying resources can be divided into system, schema and data level resources. One may

progressively reuse resources in one or more of these levels.

At the system level, one may reuse the robustness or performance features of the existing

systems, such as transaction, recovery, and storage management, and create new schema and data

to support XML. In addition, one may also reuse the schema and business logic in the existing

systems. For example, an XML document may be decomposed and stored into an existing table in

an underlying relational database system. Finally, one may also reuse existing data or application

output as the raw materials for generating XML documents.

Although resource reuse at more levels makes better economic sense, it actually puts more

constraints and requirements on design and renders it more di�cult. However, in many situations

reusing existing schema or data may be a user requirement. For instance, new data may continue

to be generated by existing programs in relational data format, but need to be presented in XML

format. Reusing at the schema and data level is essential for connecting old data and programs

to the new XML world. XAS supports reuse at all three levels, with emphasis at the schema and

data levels.

3

2.2 Flexibility of Mapping

Non-XML data can be mapped into XML documents or components in numerous ways. We cat-

egorize these solutions into four levels based on the exibility of the schemes. At the level 0, the

meta data of a data source is made available in XML format.

Level-1 solutions focus on one-to-one mapping. Every database or data source has some primi-

tive units of data organization. For example, tables and rows are such units in relational databases,

as classes and objects are in object-oriented databases. One may provide algorithms to map such

units to XML documents in a �xed way. On many occasions, the XML formats useful to applica-

tions may not correspond naturally to any underlying data organization unit. In this case, more

sophisticated mapping between underlying data and XML documents is necessary.

Level-2 mapping provides data in formats that are useful to the applications rather than being

constrained by the fashion data are organized in the underlying systems. The exibility of level-2

mapping can be achieved through a combination of one-to-many and many-to-one mappings. In a

one-to-many mapping, a piece of underlying data may be mapped to XML documents in multiple

ways. In many-to-one mapping, an XML document may consist of data from multiple underly-

ing data organization units. One-to-many mapping is essential for implementing personalization

and useful for application integration. Many-to-one mapping on the other hand helps in data

integration.

Level-3 mapping is similar to level-2 mapping, but with underlying data coming from distributed

and heterogeneous data sources, with di�erent data models. Mapping at this level is the most

di�cult, and is the focus of XAS.

It should be noted that the purpose of mapping is to perform operations such as retrieval,

deposit and query on the mapped XML documents. It is desirable that the mapping scheme be

declarative, so that the same mapping description supports both the retrieval and deposit directions

of the data ow.

2.3 Programming and Deployment Complexity

Another way to categorize the solutions is according to the complexity in the programming and

deployment tasks required by the user. Logically a user should perform three tasks in order to map

underlying data to XML documents.

First, as the same data might be mapped to XML in di�erent ways, the users must express their

intentions about how the underlying data should be mapped. We call this process the authoring

4

of the mapping logic. This process can be accomplished through programming, scripting, or, some

even simpler processes. If programming is used, there will be an additional compilation process,

adding to the complexity of deployment. Regardless of the types of authoring, the description of

the mapping logic can be either procedural or declarative in nature, with the latter being easier for

the user to manipulate.

Once the mapping logic is authored, it needs to be deployed in the mapping systems. For one

solution, each set of mapping logics is embedded in a dedicated set of objects. Therefore, as more

mapping logics are authored, more objects are generated, and need to be loaded and linked into

the systems making use of them. A di�erent approach is to have an interpretive engine that stores

various mapping logic descriptions simply as data. This approach is hard to design and implement

because of the complexity of the engine, but easy for end users as little or no deployment e�ort is

required.

Since ease of use is a guidance principle for the XAS design, we provide a high level and

declarative approach for the users to author the mapping logic. In fact, the user is only required to

annotate existing DTD or XML schema with very simple mapping constructs, since a large portion

of the mapping complexity is already captured by the DTD or XML schema.

For deployment of the mapping logic, an interpretive engine is designed. Thus there are no

deployment steps required by the users beyond authoring their intentions. XAS can be deployed

either as a standalone application, or as a service that can be nicely embedded in a web environment.

XAS also has a simpli�ed software interface for the users to add new data sources or to provide

their own access methods to currently supported data sources, with limited customization and

programming activities.

2.4 Other Schema Level Implications

Both DTD and XML schema are text-based speci�cations. A DTD or XML schema description

is easy to read, create or modify. This may have three implications. First, despite the e�orts to

standardize DTDs in various industrial sectors, the number of DTD descriptions will continue to

grow. Second, in systems that support XML mapping, the ratio between the numbers of XML

views and underlying data containers will be much larger than before. Third, users might modify

existing DTDs to produce their own versions, which means that a big portion of DTDs might di�er

with one another only partially. We thus aim at designing a system that supports a large number of

frequently evolving virtual XML documents (or XML views) e�ciently, with proper version control

5

 Access Manager

XML Request
Processor

Meta Data Manager

Meta Data
Input Manager

XML
queries

XML doc
deposit

XML doc
retrieval

DTD mappings and
other meta data input

Meta data Store

data sources

upper layer
(front-end)

lower layer
(back-end)

Figure 1: XAS architecture.

and practical sharing of components between XML documents.

3 SYSTEM DESIGN AND ARCHITECTURE

The XAS architecture (see Figure 1) consists of four main modules, a Meta Data Input Manager,

a Meta Data Manager and a Request Manager in the upper layer, and an Access Manager in the

lower layer. It accepts and interprets XML access requests, manages mapping related meta data,

and handles other XML speci�c tasks.

The Access Manager implements the lower access layer, which encapsulates the data source

heterogeneity and low level data access speci�cs. It implements the semantics of the various map-

ping functions so that the upper layer sees a much simpli�ed schema. The interactions with the

data sources on various communication, transaction, performance, reliability, and scalability is-

sues are based on the connector and wrapper technologies, distributed systems, and federated

databases[5, 18], including JDBC and ODBC for relational data sources [22, 16], CORBA for

object technologies [23], and Component Broker for accessing enterprise data sources [11].

The Meta Data Input Manager accepts and processes two types of meta data. The mapping

speci�c meta data describes how mapping can be accomplished between DTD and the underlying

schema. Data source speci�c meta data describes which data sources, containers and data can be

used, and various connection related information. The meta data input manager can interact with

tools to facilitate meta data creation and input.

6

The Meta Data Manager organizes and manages the input meta data. Besides data source

speci�c information, it maintains data structures representing the mapping logic, which can be

used by the request manager to e�ciently answer user requests.

The Request Manager processes the XML retrieval, deposit and query requests from users. It

is responsible for consulting the meta data manager and translating each XML request into a set

of level access requests for the access manager to process. It then assembles the results from the

access manage into the answer of the user request. It may also access the meta data to generate a

better processing strategy.

4 COMPONENT-BASED VIRTUAL XML DOCUMENTS

In general, reuse of the underlying schema design is the key to avoid explicit conversion of existing

data into XML format. It not only saves time and space, but also alleviates the potential data

consistency problem. There are four basic elements for managing virtual XML documents: the

XML schema or DTD of the documents, the underlying schema supporting the document, the

mapping logic between the two sets of schemas, and the data in underlying schema. The processes

to build a component-based virtual XML document system include (1) identifying or creating the

underlying and XML schemas, (2) creating the mapping logic, and (3) either reusing existing data

in the underlying schema or creating new data.

The methods described in the paper are well applicable to both DTD and XML schema, but

for the ease of discussion we refer to DTD only. We use the term established in the XAS system

to denote that a given DTD is associated with a particular set of underlying schemas, and has a

mapping logic constructed between them.

4.1 Identifying and Creating Schemas

In practical XML applications the DTDs are often given as requirements, either because of some

agreements with trading partners or the need to conform to industrial standards. If the underlying

data sources have been engaged in similar applications over time, most likely there would already

be a set of native schema that serves similar purpose. In the enterprise environment it is often

the case. For example, we may be given a DTD for invoices, while an accounting schema in an

underlying relational database may already contain a set of invoice related tables. We may build a

mapping logic between the given DTD and the underlying tables to reuse the schema and the data.

However, it is also possible that the XML applications have no counterpart in the non-XML

7

domains. In such cases, no underlying schemas are available for reuse and underlying schema

constructions are necessary. For example, when given a new DTD, we may be able to identify part

of an underlying schema for reuse, while creating some additional underlying schemas is required

for generating complete XML documents. The task is to build a set of underlying schemas that

can support XML access most e�ciently.

In some applications, we are given a set of schemas and data in certain underlying data sources

which we would like to expose as XML data. There is no restriction in terms of the DTDs through

which the underlying data can be exposed. Potentially a set of underlying schemas can be mapped to

DTDs in numerous ways. To enable the users to build DTDs that are suitable for their applications

is the main topic of data source publication.

Instead of working with underlying schemas directly, we may work with components of the

created mapping logics. That is, we can reuse existing mapping logics to construct new mapping

logics. Such method is called componentized XML construction. The mapping logic created during

data source publication may also be used in componentized XML construction.

4.2 Creating Mapping Logic

Mapping logic plays an important role in reusing existing underlying schema and data, and in build-

ing the virtual XML documents. Once a mapping logic is created for a DTD, in principle, retrieval,

deposit and query of XML documents are all performed using the same mapping description.

4.2.1 Mapping Logic and Virtual XML Components

Consider the two relational tables BOOK and PERSON in a relational database and the two corre-

sponding DTDs (see Figure 2). We can create a mapping from the TITLE and DESCRIPTION columns

of the BOOK table to the BOOK DTD, as shown by the four solid arrows. As soon as the mapping is

created, each row in the BOOK table is automatically available as a BOOK XML component. These

BOOK XML components are "virtual" because they are not stored in the system explicitly, but are

generated only on demand. Similarly we can create person XML components through the mapping

between the PERSON DTD and the PERSON table.

The key to the availability of these components is the ability to name or address them. The basic

mechanism for naming virtual XML documents in XAS is through key values or object identities.

When the mapping is established, one or a small number of elements are chosen as the keys of the

documents of the DTD. The chosen elements map to some primary key values in the underlying

8

BOOK table PERSON table

BOOK DTD
<!ELEMENT BOOK (TITLE, DESC)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT DESC (#PCDATA>

PERSON DTD
<!ELEMENT PERSON (NAME, INFO)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT INFO (#PCDATA>

DCL node

NAME JOB
person1 job1
person3 job3

TITLE DESCRIPTION AUTHOR
book1 good author1
book2 bad author2
book3 fine author3

Figure 2: Mapping between the BOOK and PERSON DTDs and the BOOK and PERSON tables.

data sources. The virtual components are then addressed by the key values. In the example, the

key of the BOOK DTD is TITLE, and we can ask for books with titles book1, and book2 etc.

Besides the basic key value naming, URLs or document names can also be assigned to documents

or components. XAS maintains the mapping between the high level names and the key values. The

key value mechanism is really a simpli�ed query mechanism that XAS can support for identifying

and accessing XML components and documents.

4.2.2 Document Composition Logic

The Document Composition Logic (DCL) is the logic that describes how the document is recursively

composed of its child components and how the child components relate to one another. Each XML

document or component in XAS can be viewed as a DCL de�nition recursively linking a set of child

components.

There are two types of DCL. Preexisting DCL is implied in the relationships between data that

has already existed in the underlying data sources, and is identi�ed or discovered in the schema

mapping process. In the previous example, the process of mapping the TITLE and DESCRIPTION

columns of the BOOK table to the BOOK DTD actually involved identifying the relationship between

the two columns as a preexisting DCL. Thus, the DCL that connects TITLE and DESCRIPTION with

each BOOK component is preexisting, as is the DCL that links NAME and JOB with PERSON.

Preexisting DCLs is often due to the structure of schema or the foreign key relationships in

the underlying data sources. For example, a preexisting DCL exists between two �elds of a same

relational row, or between two rows connected by a foreign key relationship. Preexisting DCLs may

also exist in less obvious forms such as semantically related attribute or meta data values between

9

the underlying data. Automatic identi�cation or discovery of preexisting DCLs may become a

useful research area in the future.

The other type of DCL is newly created DCL, which is supplied to XAS as part of the creation

process of virtual XML documents, and connects previously unrelated components to form new

logical entities. Consider the following book list DTD as an example:

<!ELEMENT BOOKLIST (PERSON, BOOKS)>

<!ELEMENT PERSON (NAME, INFO)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT INFO (#PCDATA)>

<!ELEMENT BOOKS (BOOK)+>

<!ELEMENT BOOK (TITLE, DESC?)>

<!ELEMENT TITLE (#PCDATA)>

<!ELEMENT DESC (#PCDATA)>

We want to generate a book list XML that consists of a person's information followed by a list

of books favored by the person. Although the information about people and books are stored in the

BOOK and PERSON tables, no information exists in the database or any other sources about people's

favorite book lists. To join these two tables, we need to create two new DCLs that represent the

BOOKLIST and BOOKS components. The whole book list document then consists recursively of newly

created and preexisting DCLs connecting various XML components together, with newly created

DCLs at the higher levels, and preexisting DCLs at the lower levels.

Physically DCL is represented in XAS by nodes. A DCL node is a schema level entity that

logically represents a set of XML components of certain type. It links to underlying schema or

other DCL nodes which represent the child components for its instances. The implementation of

preexisting DCL involves recording the corresponding linkages in the DCL node. The implementa-

tion of newly created DCL may require creation of new tables. These tables will contain the speci�c

data used by the DCL nodes to associate previously unrelated components. For convenience, we

call them DCL tables. Figure 3 describes the DCL nodes for the document type BOOKLIST. In this

example, we must create two new DCL tables, BOOKLIST and BOOKS, for the newly created DCLs.

4.2.3 Components and Documents Deposit

After the DCL nodes and the schema for newly created DCL are set up, there are two ways to

create new XML documents. The �rst is by inserting directly into the DCL tables. In the example,

we can create the book list document for person1 by inserting new rows into the BOOKLIST and

BOOKS tables (see Figure 3). In this �gure, preexisting tables and the DCL nodes for preexisting

DCLs are shaded in white, while the DCL tables and the DCL nodes for newly created DCL are

shaded in grey. As a result, previously unrelated person1, book1 and book2 are now connected as

a new book list documents. This method is a very e�cient way to create XML documents since we

need only specify the new DCLs and not repeat the detailed descriptions of the child components.

The newly created DCLs may later be reused as preexisting DCLs.

10

BOOK tablePERSON table

B_ID TITLE
001 book1
001 book2

NAME B_ID
person1 001

BOOKLIST table BOOKS table

newly created DCL

preexisting
 DCL

BOOKLIST
DCL

BOOKS
DCL

direct
insert

PERSON
DCL

BOOK
DCL

NAME JOB
person1 job1
person3 job3

TITLE DESCRIPTION AUTHOR
book1 good author1
book2 bad author2
book3 fine author3

Figure 3: DCL nodes and the underlying tables for new and preexisting DCL.

XML data can also be populated by simply depositing XML documents into XAS. Although

this scenario appears to be simple, there are several interesting issues. Consider again the previous

BOOKLIST DTD. Suppose a new BOOKLIST document arrives after the DTD is established:

<BOOKLIST>

<PERSON>

<NAME>person2</NAME>

<INFO>job2</INFO>

</PERSON>

<BOOKS>

<BOOK><TITLE>book4</TITLE></BOOK>

<BOOK><TITLE>book5</TITLE></BOOK>

</BOOKS>

</BOOKLIST>

XAS breaks up the document into the person2, book4 and book5 components, inserts them

into their respective tables, and records the DCL of the new document in the DCL tables. Now

suppose another document arrives:

<BOOKLIST>

<PERSON>

<NAME>person3</NAME>

<INFO>job3</INFO>

</PERSON>

<BOOKS>

<BOOK><TITLE>book2</TITLE><DESC>2nd</DESC>

</BOOK>

<BOOK><TITLE>book3</TITLE><DESC>3rd</DESC>

</BOOK>

</BOOKS>

</BOOKLIST>

11

After breaking up the document, XAS recognizes that person3, book2 and book3 already exist

in the PERSON and BOOK tables, and does not store the components redundantly. Its only action is

to record the new DCL in the DCL tables. The result of depositing this document is the same as

directly inserting into the DCL tables in the �rst place. If a new document contains both new and

old components, XAS stores only the components that do not exist in the underlying data sources.

The advantages of XAS's component-based approach go beyond simply saving storage space.

More importantly, business logic can be triggered as a result of component deposits. For instance,

we can increment a reference count when another copy of the same component arrives, which can

later be used for analysis. We can also check for consistency between copies of the same data

when a redundant component arrives, and may reject the deposit, resort to the master copy, or

request human intervention when inconsistency is detected. With this capability, all input XML

documents are in a sense integrated, and are no longer isolated, monolithic copies of data with

potential inconsistency. It is also much easier to perform analysis across documents by accessing

the document components directly. Documents deposited this way do not lose their identities.

They can later be retrieved as if each of them is kept in a separate �le.

4.3 Populating Data

At the data level, XAS supports both new and old, XML and non-XML data in its underlying data

source containers. The underlying data sources may also be XML-based systems. It requires the

ability to map from one set of DTDs to another. With this ability, the XAS can leverage the XML

data collected and managed by other XML systems, including another installation of XAS. The

overall design of XAS enables a great deal of exibility in data integration.

Virtual XML documents in XAS may come into existence in two ways. Existing underlying data

may become virtual documents when new mapping logics are created. New XML documents can

be entered into the system through the deposit process. When a mapping between a DTD and the

underlying schema is established, all data already stored in the underlying schema automatically

becomes virtual XML components in XAS.

4.4 Detailed Scenario

Consider the example in Figure 4. A DTD whose internal representation includes three DCL nodes,

parent, child1 and child2, has been established in XAS. There are three tables in the underlying

data source corresponding to the three DCL nodes. The parent DCL node and table contain the

high level DCL of this document. Two applications, app1 and app2, are directly accessing the

parent and child2 tables, respectively. The following steps occur in this �gure:

� Initially many data items have already existed in the tables before any XML documents are

deposited, as shown by the lettered square blocks in each table. A virtual XML document

was created as the result of mapping the underlying tables to the DTD. This document is

represented by the square blocks labeled a0, a and 0 in the three tables. The rest of the

12

parent

child1

child2

XAS

DTD

child2 tablechild1 tableparent table

data source

d1
d

1 b2
b

2

app1

a0 b a 2 0

app2

c3

doc1 doc2

3c

Figure 4: An example of the relationships between established DTD, underlying data containers,

input XML documents and existing applications.

blocks in the child1 and child2 tables do not constitute virtual documents as they lack

counterparts in the parent table.

� Two documents of the established DTD are about to be deposited into XAS. The input of

doc1 results in a brand new virtual XML document, with new data entering the underlying

parent, child1 and child2 tables. The input of doc2, on the other hand, only causes a

piece of newly created DCL b2 to be recorded in the parent table. This new DCL causes

two previously unrelated child components b and 2 to be connected in a virtual document.

� Application app1 enters a piece of newly created DCL c3 into the parent table, which results

in a new virtual XML document.

Figure 5 shows the status of the system and the tables after the two XML documents are

deposited and the input from app1 is completed. Note that there is no redundant storage for the

components of doc2. There are now four virtual XML documents in the system. doc0 came into

existence when the tables were mapped to the DTD. doc1 and doc2 are the results of the previous

document deposits. doc3 is the result of direct input from application app1. Regardless of how it

is generated, each document can be accessed in the same way.

5 XAS MAPPING FRAMEWORK

As the main goal of XAS is to map distributed and heterogenous data into XML, XAS needs to

deal with data not only coming from di�erent systems, but also belonging to di�erent types of data

models. For example, some underlying data may be relational, some may be object-oriented, while

yet some others might belong to new systems and data models.

13

parent

child1

child2

XAS

DTD

child2 tablechild1 tableparent table

data source

d1
d

1 b2
b

2

app1

b a 2 0

app2

doc1 doc2

3c 1db2 a0c3d1

a0
a

0

doc0

c3
c

3

doc3

Figure 5: The con�guration of XAS after the inputs in previous �gure are completed.

XAS Front-End
Mapping

XAS Back-End
Mapping

data
source 1

data
source 2

XML_doc fx()

DTDSA

new data
source 3

plug-in

list fx(..) scalar fx(..) opaque_obj fx(..)

Figure 6: XAS mapping architecture.

The center of our mapping framework is a declarative mapping mechanism DTD with Source

Annotation (DTDSA). The DTDSA contains mapping functions that can return scalar values,

opaque objects, and lists of either scalars or opaque objects. More precisely, it contains functions

that take as input, and return, only such scalars, objects, and lists. Opaque objects are named

because our framework need not care about its internal structure or semantics.

Our solution for overcoming the heterogeneity of hardware architectures includes a front-end

stage and a back-end stage that correspond to the upper layer and the lower layer respectively in

Figure 1. The front-end stage assumes a simple data model in which there are only lists, opaque

objects and scalars. The task at this stage is to map from these items to XML documents. The

back-end stage then focuses on the conceptually simpler task of mapping arbitrary data sources to

scalars, lists, and opaque objects, thus encapsulating all heterogeneity mapping.

Figure 6 illustrates the mapping framework.

14

5.1 DTD with Source Annotation

The proposed DTDSA framework serves as a mapping mechanism that connects XML documents

and underlying data sources. Given a DTD, we can obtain an XML document if all of the following

questions are answered:

Number of occurrence: For each repetition symbol in the DTD (*", \+" and \?"), the number

of times the quali�ed DTD construct repeats.

Choice: For every choice declaration (choice list, terminal choice list and enumeration type),

the chosen alternative.

Data content: For every value declaration (e.g., #PCDATA, CDATA, etc.), the assigned content.

We introduce two simple types of mapping constructs to express the missing information. Value

speci�cations answer the \data content" and \choice" questions, and binding speci�cations answer

the \number of occurrence" questions and bind values to the input parameters of other mapping

functions. The mapping construct must associate with, or annotate, a particular DTD construct.

A DTDSA can represent a set of XML documents when there are unde�ned parameters associ-

ated with some mapping functions. An easy way to understand DTDSA is to consider during the

retrieval process every annotated DTD construct as a function that takes zero or more arguments

as input, calls its child DTD constructs recursively as subroutines, and returns a string. The root

element of a DTDSA is also a DTD construct, and therefore is also a function, except that it takes

as input all of the unde�ned parameters, and returns a valid XML document.

5.1.1 Value Speci�cations

A value speci�cation annotates either a value or choice declaration. It assumes the syntax of a `:'

symbol followed by a scalar function, and appears in DTDSA as follows:

VCD :sf

where VCD is a value or choice declaration, and sf a scalar-valued mapping function, called the

value function.

If VCD is a value declaration, such as a #PCDATA or a CDATA, an invocation of VCD simply returns

the value of sf . If VCD is a choice declaration, the value returned is determined as follows. If the

value produced by sf is an integer i, with i between 1 and n, where n is the number of alternatives

in the choice declaration, the ith alternative will be returned. If the value produced by sf is a

string Cj, the alternative matching the string will be returned. Otherwise the returned value is

unde�ned.

5.1.2 Binding Speci�cations

One or more binding speci�cations can annotate any DTD construct that is not a value or choice

declaration. If a DTD construct contains an ending repetition symbol, i.e. `+', `*', or `?', annotation

by binding speci�cations is mandatory. When more than one binding speci�cations annotate the

same DTD construct, their order is signi�cant. The syntax of a binding speci�cation is a \::",

15

followed by a variable, a \:=", and a list-valued mapping function. It appears in DTDSA as

follows:

DC ::x1 := vf1 :: x2 := vf2 : : : :: xn := vfn

where DC is a DTD construct which is not a value or choice declaration, xi a variable and vfi a

binding function, for i = 1; : : : ; n. xi is called a binding variable, and vfi a binding function.

The basic semantics of a binding speci�cation is that the list of values returned by the binding

function is bound to the binding variable in turn. Binding speci�cations serve two purposes. When

a binding speci�cation is the closest mapping construct annotating a DTD construct with an ending

repetition symbol, it determines the number of times the DTD construct is instantiated.

Binding speci�cations also determine how values are passed to the arguments of various mapping

functions. Once a value is bound to a binding variable at certain DTD construct, the binding is

visible to all instances of the DTD constructs called by the �rst DTD construct, unless the binding

is overwritten by another binding with the same binding variable name.

Consider the following DTDSA:

<!ELEMENT A (B, C) ::x:=i1 ::y:=i2>

<!ELEMENT B (#PCDATA :y)>

<!ELEMENT C (D)* ::z:=intseq(x)>

<!ELEMENT D (#PCDATA :z)>

where the function intseq(x) produces a sequence of integers from 1 up to x. Assuming the

input (or unde�ned) arguments to this DTDSA are i1=3 and i2=5, y will be bound to value 5, x

to value 3, and z to 1, 2 and 3 in turn. The output virtual XML document is:

<A>

5

<C><D>1</D><D>2</D><D>3</D></C>

The detailed de�nition of the DTDSA is beyond the scope of this paper, and is described in

[14].

5.2 Front-end Stage

The front-end processes the user requests and interpretes the mapping logic from the mapping

functions in the DTDSA. This stage associates the lists, scalars, and opaque objects, returned after

evaluating the mapping functions in the back-end stage, with the DTD constructs. It determines

the evaluation sequence of the DTD constructs based on the results of calling mapping functions.

For example, in the retrieval process, XAS recursively instantiates the DTD constructs from

the root elements using the DCL graph and user provided input values to construct the XML

document. The results of mapping functions are bound to individual DCL constructs, and include

scalars, opaque objects and lists returned from the back-end stage.

There may be more than one ways to implement mapping functions on top of a given data

source. Instead of dictating the best way, XAS provides an option for the integrators of the data

16

source to design their own access methods. Once the mapping functions are implemented, the

front-end treats mapping functions with identical names and parameter types equally for all of

the data sources that implement the functions. Users are free to mix mapping functions based on

multiple data sources in a single DTDSA. Adding new data sources with new mapping functions

involve providing new back-end access method implementations, and including the new mapping

functions in the DTDSA.

5.3 Back-end Stage

The task at the back-end is to implement the mapping functions that map underlying data of

arbitrary data model into the lists, scalars and opaque objects and interact with the front-end.

The mapping functions can be simple arithmetic functions, as in the previous examples. However

the real power lies in the functions implemented based on data in the underlying data sources. The

motivation for using lists, scalars and opaque objects as the output of the mapping functions is to

make back-end mapping conceptually straightforward.

Theoretically any type of data sources can serve as an underlying data source for XAS, such as

relational, object-oriented, hierarchical, semi-structured databases, spreadsheets, at �les, or even

other XML documents. The same mapping functions for di�erent types of data sources di�er only

in back-end implementations, which e�ectively encapsulates the heterogeneity of the data sources.

As an example, consider a relational database. An SQL statement can be implemented as a

mapping function that returns a list of rows, each of which is considered an opaque object in DTDSA

to serve as binding functions. We can further provide a function that takes a row (an opaque object)

and a column name and returns the value of the column, to serve as a value function.

6 RELATED WORK

Many relational and object-oriented database vendors are providing support for storing and retriev-

ing XML documents [17, 12, 20]. The support tends to be monolithic (entire XML documents are

stored and retrieved) and does not enable discovery and reuse of existing data in the repositories.

Our work is related to earlier e�orts such as TSIMMIS [19, 8], Garlic [5, 21], DISCO [24] and

Infomaster [9], which are based on mediators and wrappers to access data from various sources.

Many of these projects are adapting to the use of XML schemas. The Virtual Database technology

approach foresaw the use of XML for representing document schemas and enabling standard query

mechanisms [10]. We believe that the distinction of XAS is its focus on XML schemas and XML

query mechanisms from the outset. We are reusing the past work in terms of access methods

and capabilities of underlying data sources. However, XAS addresses the challenging issues of

sub-schema reuse as well as component and schema relationship discoveries.

There have been a number of papers discussing semi-structured data models [4, 1, 2] for in-

tegration of data from multiple data sources. Graph data structures such as ODMG's OEM

have been proposed in the past for depicting and maintaining the schema of semi-structured data

17

sources [15, 19, 7]. In contrast, XML is a non-typed tree data model for representing data schemas

and hence provides more exibility in associating with the base data types. The exibility requires

to be managed carefully and it is one of the requirements on the DCL mechanisms of XAS. Also,

the DCL mechanism extends and tries to build larger schemas from the XML components when

possible.

Finally, several papers are investigating the problem of discovering schema of semistructured

data using data mining techniques [25, 6]. In [6], the authors present a technique that uses data

mining and generates an RDBMS schema mapping. XAS focuses on the complementary problem.

It requires the ability to understand existing schema and map it to new XML schemas as well as

to map components of XML schemas to common underlying schemas to facilitate reuse.

7 CONCLUSION

We presented the XML Access Server (XAS) in this paper. By serving componentized, virtual

XML documents, XAS provides to its applications the appear of a large set of XML data while

retaining the real data inside the underlying data sources. XAS maps the underlying data into

XML components, which can in turn be assembled into larger components. The mapping and

assembly can be performed in an in�nite number of ways. This component-based approach not

only facilitates the e�cient creation and access of XML documents but also enables the higher level

analysis and knowledge mining activities.

XAS generates virtual XML documents in a variety of ways: by establishing mappings, by

assembling previously unrelated XML components, and through regular document deposits. This

versatility is the key to XAS's ability to serve a large number of XML documents e�ciently and

expediently.

We have implemented the XAS prototype in Java. The current prototype uses relational

database systems as the underlying data sources and JDBC as the low level access technology.

It can connect to IBM Universal Database Servers on the Windows, UNIX, and System 390 plat-

forms and Microsoft Access on the Windows, and retrieve and deposit XML documents based on

the schemas and data in these systems. A snapshot of XAS is posted on the IBM alphaWorks

Web site under the name XML Lightweight Extractor (XLE) [13], which has been widely tested

and used.

Future works include enhancing the capabilities of XAS along three directions. The �rst is

to enable XAS to use more types of access technologies and data sources. In particular, we are

working toward better integration with data sources that exposes blocks or streams of XML data.

This capability would, among others, enable one XAS to serve as a data source of another and

allow XAS to take as data sources the numerous new applications that output XML data. We

also regard using non-relational enterprise data sources a high priority in supporting e-commerce

applications, given the high availability and reliability of these data sources and a very large amount

of data already stored in them. The second direction is XML queries. We believe that the internal

mechanisms for supporting XML queries are similar and focus on the mechanisms at the current

18

stage. As described earlier, the key value mechanism for addressing virtual XML components or

documents is in fact simpli�ed XML queries. A full query support will enable XAS with an even

more exible access capability. Internally, query support involves mapping incoming queries into

sub-queries for the data sources and optimizing the query execution plans in the XAS context. The

third direction is tool support for establishing DTDs in XAS, as described in Section 4.1, and for

other mapping and component management tasks.

References

[1] S. Abiteboul. Querying semi-structured data. In Proc. International Conference on Database

Theory, pages 1{18, 1997.

[2] C. Beeri and T. Milo. Schemas for integration and translation of structured and semi- struc-

tured data. In Proc. International Conference on Database Theory, pages 296{313, 1999.

[3] T. Bray et al. Extensible Markup Language (XML) 1.0. W3C Recommendation.

http://www.w3.org/TR.

[4] P. Buneman. Semistructured data. In Proc. 16th ACM SIGACT-SIGMOD-SIGART Sympo-

sium on Principles of Database Systems, pages 117{121, 1997.

[5] M. Carey et al. Towards Heterogeneous Multimedia Information Systems: The Garlic Ap-

proach. In Proc. the Fifth International Workshop on Research Issues in Data Engineering

(RIDE): Distributed Object Management, 1995.

[6] A. Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data with STORED. In

Proc. ACM SIGMOD International Conf. Management of Data, pages 431{442, 1999.

[7] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catching the boat with Strudel:

experience with a web-site management system. In Proc. ACM SIGMOD International Conf.

Management of Data, pages 414{425, 1998.

[8] H. Garcia-Molina et al. The TSIMMIS approach to Mediation: Data Models and Languages.

Journal of Intelligent Information Systems, 8(2):117{132, 1997.

[9] M. Genesereth, A. Keller, and O. Duschka. InfoMaster: An Information Integration System.

In Proc. of ACM SIGMOD Conference, pages 539{542, 1997.

[10] A. Gupta, V. Harinarayanan, and A. Rajaraman. Virtual Database Technology. SIGMOD

Record, 26(4):57{61, 1997.

[11] IBM Corp. Component Broker. http://www.software.ibm.com/ad/cb/.

[12] IBM Corp. DeveloperWorks: XML zone. http://www.ibm.com/developer/xml.

[13] IBM Corp. XML Lightweight Extractor (XLE). http://www.alphaworks.ibm.com.

19

[14] M.-L. Lo, S.-K. Chen, and S. Padmanabhan. Supporting XML views on distributed and

heterogeneous data sources. Tech. rep., IBM T. J. Watson Research Center, August 2000.

[15] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: a database manage-

ment system for semistructured data. In Proc. ACM SIGMOD International Conf. Manage-

ment of Data, pages 54{66, 1997.

[16] Microsoft Corp. Open Database Connectivity. http://www.microsoft.com/data/odbc/.

[17] Oracle Corp. Oracle8i. http: //www.oracle.com/database/oracle8i.

[18] M. Ozsu and P. Valduriez. The Computer Science and Engineering Handbook, chapter Dis-

tributed and Parallel Database Systems. CRC Press, 1997.

[19] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across heterogeneous

information sources. In Proc. International Conference on Data Engineering, pages 251{260,

1995.

[20] Poet Software Corp. http://www.poet.com/ products/cms/xml library.

[21] M. Roth et al. The Garlic project. In Proc. of ACM SIGMOD Conf., 1996.

[22] Sun Microsystems. JDBC Data Access API. http://www.javasoft.com/products /jdbc/.

[23] The Object Management Group. Corba. http://www.corba.org/.

[24] A. Tomasic, L. Raschid, and P. Valduriez. Scaling Heterogeneous Databases and the design of

Disco. In Proc. of Intl. Conf. on Distributed Computing Systems, pages 449{457, 1996.

[25] K. Wang and H. Liu. Discovering Typical Structures of Documents: A Road Map. In Proc.

of ACM SIGIR Conf. on R& D in IR, 1998.

20

