
RC 21968 (98739) 20 February 2001 Computer Science

IBM Research Report

Turandot Users's Guide
(Microarchitecture Exploration Toolset)

Jaime H. Moreno, Mayan Moudgill

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Microarchitecture Exploration Toolset

Turandot’s User’s Guide
The Microarchitecture Exploration Toolset (The MET)

Jaime H. Moreno, Mayan Moudgill
IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598
<jhmoreno@us.ibm.com, mayan@watson.ibm.com>

Abstract

Turandot is a Power-PC based highly parameterized superscalar processor model suitable for
exploring limits and potentials of alternative features in microprocessors. The model supports
trace-driven simulation with static and dynamically generated traces, is capable of taking into
account the effects of instructions executed speculatively, and allows exploring many features such
as instruction-level parallelism, issuing policy, issue width, number and size of the resources, cache
sizes, and many more. The model is characterized by its speed (in excess of 100 million simulated
processor cycles per hour), and its flexibility within the domain of superscalar processor organiza-
tions considered.

This User’s Guide provides basic information on models built using Turandot which are already
available, how to execute these models, how to interpret the results generated by the models, and
how to build new models with different microarchitecture features.

Microarchitecture Exploration Toolset

Table of Contents

1. Introduction. .1

2. Overview of the simulation environment . 2

3. Source code and prebuilt Turandot models . 4

4. Running a static-trace modeling experiment . 5

5. Running a dynamic-trace modeling experiment .7

6. Interpreting the results . 9

7. Building new models. 12

8. References . 14

Appendix A:Parameters in Turandot (in alphabetical order) 23

Appendix B:Arguments to the predecoding step. 31

Microarchitecture Exploration Toolset

1

1. Introduction
Contemporary microprocessors are classified as superscalar engines because of their ability to process
more than one instruction at a time. Many such processors issue instructions out-of-order, support specu-
lative execution, reorder load and store operations, rely on branch prediction, and so on. Such processor
features make processor microarchitectures increasingly complex, and these are only some options from a
large design space. The associated design complexity raises questions regarding the potential performance
benefits obtained from the features. Since the interaction among microarchitecture features is often coun-
terintuitive, early, accurate, and timely modeling are required to ensure proper design trade-offs. In other
words, the benefits of various microarchitecture features should be quantified properly so that those lead-
ing to effective and efficient implementations can be identified. Moreover, the benefits of such features dif-
fer among the various areas of application; for example, the characteristics of commercial applications
differ dramatically from those of numeric-intensive, CPU-intensive or embedded applications, making it
necessary to understand the effects of all such workloads on processor performance.

This report is a Users’ Guide for Turandot, a highly parameterized PowerPC-based superscalar processor
model suitable for exploring a range of microarchitecture features. Turandot is a member of The MET, a set
of tools for supporting fast simulation of microprocessor configurations. These tools permit throughput in
excess of 100 million simulated processor cycles per hour (on a contemporary workstation circa 2000). We
first provide an overview of the simulation environment, then directions to find the source code and preb-
uilt processor models, how to execute the prebuilt models, how to interpret the results generated by the
models, and finally how to build new models with different features and/or microarchitectures.

Turandot is a tool for developing an understanding of the limits and potentials of PowerPC-based super-
scalar processors. Consequently, Turandot does not attempt to accurately model any specific processor
implementation; instead, it attempts to model a generalized (perhaps idealized) processor suitable to
explore some of the many variables involved. The results provided by Turandot should be used to determine
trends in performance values as features are changed, not as precise performance predictions of a specific
configuration. Models may approximate the features of existing PowerPC processors, but the degree of
approximation is dependent on how closely the features of those processors can be mapped to Turandot’s
capabilities and parameters. Users of the models should be aware of these limitations, and exercise caution
when comparing the results generated by Turandot with those obtained from measurements in actual
hardware. Turandot has been validated in detail for some specific processors, in particular a pre-silicon
model of Power4.

Turandot supports the exploration of microarchitecture features through extensive parameterization.
Parameters include changing the size of the various resources, the number and latency of functional units,
the number of pipeline stages, enabling/disabling features, and so on. All the parameters available in
Turandot are listed in Appendices A and B.1

Results obtained from using The MET and models based on Turandot have been reported in [1-3]. Fur-
ther details on the microarchitecture characteristics implemented by Turandot are described in [4].

The instructions given in this guide for building and running models to be used with Aria (dynamic
trace generation) assume that the compilation process is performed under AIX 4.3 but using the Aria meth-
odlogy for AIX 4.1. The resulting models can be executed under AIX 4.3, though. Achieving this behavior
requires the installation of Aria invoking the make41 script found in the Aria installation directory (after
execution the script configure).

1. Although many combinations of parameters in Turandot have been exercised, not all possible combinations have been fully tested.
As a result, it is conceivable that some combinations of parameters may fail to operate properly at simulation time. Users beware.

Microarchitecture Exploration Toolset

2

2. Overview of the simulation environment
Turandot can be used in two possible modeling scenarios:

Static-tracing, wherein the processor model is fed an existing instruction execution trace, instructions
and associated addresses, in FF52 format. This trace only contains the instructions actually
executed to completion by the program (e.g., only instructions in the taken path of the
program).

The static-trace modeling scenario uses the following components:

• a Turandot-based processor model;

• a FF52 instruction execution trace to be fed to the processor model;

• a pseudo-xcoff file generated from the FF52 trace, which corresponds to a “binary
image” of the program that generated the trace; and

• a file with predecoded information obtained from the pseudo-xcoff file.

Dynamic-tracing, wherein the processor model is fed an execution trace generated on-the-fly, under
control of the processor model. This trace may include the execution of predicted paths,
even if those paths are not actually taken by the program, so the effects of mispredicted
instructions can be taken into account by the processor model controlling the generation
of the trace.

The dynamic-trace modeling scenario uses the following components:

• Aria, the dynamic trace generator;

• a Turandot-based processor model;

• the object (xcoff) file of the program to be used in the modeling session, with its
corresponding inputs; and

• a file with predecoded information obtained from the xcoff file of the program to be
used.

Both modeling scenarios collect summary data regarding the utilization of processor resources, and gen-
erate periodic reports indicating the number of instructions processed up to that point. Moreover, both
scenarios can also generate a cycle-by-cycle description of the state of the processor and the flow of
instructions through the pipeline.

Aria is the component of The MET which dynamically generates the execution trace analyzed by the
Turandot-based processor model. Aria dynamically instruments the instructions which are about to be exe-
cuted by the input program, on a basic-block by basic-block basis. The instrumented code generates the
execution trace representing the effects of the original instructions. Translated blocks are saved, so they are
not translated repeatedly. Additional information about Aria is given in [5] as well as in Aria’s documenta-
tion in the software distribution.

Predecoding step

The file with predecoded information mentioned above, both for static and dynamic trace modeling, is
used for reducing the instruction decoding overhead during simulation. The file includes the type of each
instruction in the program (e.g., in the xcoff or pseudo-xcoff file), its latency, the resources required by the
instruction, and so on. In addition, the file contains predecoded information regarding the placement of
the instructions within their corresponding instruction cache line, which is used to reduce the overhead in
simulating the fetching of instructions. More specifically, the predecoded information addresses the fol-
lowing features of the processor model:

Microarchitecture Exploration Toolset

3

Latency of operations: Number of cycles required by the execution of an operation. For the case of
non-pipelined operations, such as divide and square-root, this is also the occupancy of the
corresponding functional unit.

Availability: Number of cycles required prior to use the result from an operation as input to another
one. This feature captures the behavior of long bypasses, wherein the result from one
operation cannot be fed as input to another operation in the same cycle.

Extra availability: Number of additional cycles required by some operations to allow using its results
as input to another operation. This feature captures the behavior of some operations that
deviate from the normal operation of a similar base instruction (such as a sign-extended
load with respect to a zero-extended load instruction). The value specified corresponds to
the extra cycles beyond the normal availability.

Functional unit: Assignment of an operation to a specific functional unit. This feature captures the
ability to execute the various classes of operations either in dedicated or general-purpose
functional units.

I-cache: Organization of instruction cache: line size, alignment and size of fetch block.

I-expansion: Expansion (decomposition) of specific instructions into simpler instructions.

Predication: Features for evaluating predicated execution in PowerPC.

Note that some of the predecoded information depends only on the instruction set architecture, whereas
other depends on the implementation of the processor. In general, the file with predecoded information is
specific to the processor configuration being modeled, thus it should be generated individually for each
processor model.

The description of all the arguments to the predecoding step, and the functionality of these arguments,
is given in Appendix B. Some of the arguments need to be consistent with compilation parameters given
when building models; the processor model checks for proper consistency at run time, whenever needed.

Predecoded information cannot be generated for dynamically linked libraries (DLLs) that may be
invoked during the execution of a program under the dynamic tracing scenario. In such a case, the prede-
coded information is generated the first time that a given DLL is encountered.

Microarchitecture Exploration Toolset

4

3. Source code and prebuilt Turandot models
The source code necessary for creating new models using Turandot, as well as a few prebuilt models and a
collection of support tools, are available at the MET root directory. This directory is location-dependent. At
IBM T.J. Watson Research Center, this directory is found at

$METROOT = /.../watson.ibm.com/fs/projects/MET/ExtDist

The directory structure at this place contains the following subdirectories:

/Source source code for Aria, Turandot, and other related tools.

/Source/bin
executable files for various support tools used in conjunction with Turandot.

/Models prebuilt versions of Turandot for some generic processor configurations.

/Scripts sample scripts used to build and run models, in either one of the modelings scenarios.

/Docs PDF and text files describing some features of the toolset. Detailed documentation on Aria
is available in Source/aria/Docs.

3.1 Prebuilt models

The Models subdirectory contains prebuilt models of some generic processor configurations. In particular,
this subdirectory contains the following models:

io4 generic in-order four-issue superscalar processor;
io4infcache same as io4 but with infinite size caches and infinite size TLBs;
oo4 generic out-of-order four issue superscalar processor;
oo4infcache same as oo4 but with infinite size caches and infinite size TLBs.

There are several possible executable files for these models, whose name differ by a prefix, as follows:

no prefix model to be used with Aria, in a dynamic-trace modeling session;

tr model to be used with Aria, in a dynamic-trace modeling session, but generating
detailed information at every processor cycle regarding the status of the processor
and the flow of instructions through the entire pipeline;

pp model to be used with Aria, in a dynamic-trace modeling session, but generating a
timeline of the flow of each instruction through the pipeline, indicating when each
instruction enters the major pipeline stages;

ff model to be used with existing instruction execution traces in FF52 format, in a static-
trace modeling session;

fftr model to be used with existing instruction execution traces in FF52 format, in a static-
trace modeling session, but generating detailed information at every processor cycle
regarding the status of the processor and the flow of instructions through the entire
pipeline;

ffpp model to be used with existing instruction execution traces in FF52 format, in a static-
trace modeling session, but generating a timeline of the flow of each instruction
through the pipeline, indicating when each instruction enters the major pipeline
stages.

Microarchitecture Exploration Toolset

5

4. Running a static-trace modeling experiment
Using a processor model with an execution trace in FF52 format implies the following steps (see Figure 1;
the contents in this figure are available in the file /Scripts/Run_ff in the MET distribution):

1. Create a pseudo-xcoff file from the FF52 trace, using the tool ff2pseudo available in the $METROOT/
bin subdirectory. The corresponding command line is

ff2pseudo [-dm] [-ds] [-h] [-t] [-o <pseudo-file>] [--] <FF52-trace>

wherein the optional arguments have the following function:

-dm show progress message every 1M words processed from the trace file
-ds print statistics regarding the entire trace
-h display help message
-t trace processing of the FF52 trace
-o specify the name of the pseudo-xcoff file created

The ff2pseudo command needs to be invoked only once on a given trace; the resulting file is usable
in any modeling session.

2. Create the file with predecoded information, using the pseudo-xcoff file generated in (1) as input. The
corresponding command line is

ffdep_prep [-h] [-predecoded-arguments] [-o <dep-file>] <pseudo-file>

wherein the optional arguments have the following function:

-h display help message, including a description of all optional arguments
-o specify the name of the predecoded file created

The predecoded-arguments is a list indicating the value of parameters to be used in the generation of
the predecoded file. These include the type of each instruction, its latency, the resources required by
the instruction, the placement of instructions with respect to the instruction cache line, and so on. The
complete list of these arguments is given in Appendix B.

3. Initiate the simulation. The corresponding command line is

<model-name> -dep <dep-file> [-help] [-cutoff cutoff-value]
[-skip skip-value] [-sample skip-value sample-period]
< <FF52-trace> |& tee <log-file>

The processor model receives the input FF52 trace through redirection of standard input (the < opera-
tor). The arguments have the following function:

-h|-help display help message, including a description of all optional arguments
-d|-dep <dep-file>

specify the name of the file with predecoded information
-c|-cutoff cutoff-value

specify the number of processor cycles to be simulated
-s|-skip skip-value

specify a number of instructions to skip before performing simulation
-m|-sample skip-value sample-period

specify a sampling period composed of number of instructions to skip followed by the
number of instructions in the sampling period

<log file>
specify a file where to save the results that are produced to standard output (using the
“tee” operator).

Microarchitecture Exploration Toolset

6

Since the input FF52 trace is provided to the model through standard input, a compressed trace can be
decompressed and provided through a pipe to the model, for example as follows:

zcat <FF52-trace> | <model-name> -d <dep-file> [-help]
[-c cutoff-value] [-s skip-value]
[-m skip-value sample-period] |& tee <log-file>

#!/bin/csh -xef
Steps for using Turandot in static-trace modeling with model ffoo4
Processor model from distribution directory
#
Distribution directory

setenv METROOT /.../watson.ibm.com/fs/projects/MET/ExtDist

setenv METBIN $METROOT/Source/bin
setenv MODELDIR $METROOT/Models
#
Input trace to be analyzed

setenv FFTRACE trace_path_name # FF52 trace file path name

setenv FFNAME trace_name # FF52 trace file name

#
Processor model

setenv MODEL ffoo4 # model name

#
Intermediate files
setenv PXFILE $FFNAME.px # pseudo-xcoff file name
setenv DEPFILE $FFNAME.dep # predecoded file name
setenv LOG logfile_name # name of log file for results
setenv CUTOFF cutoff_value # max. number of cycles to simulate
#
This is the entire preparation and simulation process
#
Create the pseudo-xcoff file from the trace

#$METBIN/ff2pseudo -o $PXFILE $FFTRACE

or, in the case of a compressed trace
zcat $FFTRACE | $METBIN/ff2pseudo -o $PXFILE
#
Create $DEPFILE, the preprocessed file for input trace
Optional arguments added as needed (see Appendix B)
$METBIN/ffdep_prep -o $DEPFILE $PXFILE
#
Start Turandot; input from trace file
#$MODELDIR/$MODEL -dep $DEPFILE -cutoff $CUTOFF < $FFTRACE |& tee $LOG
or, in the case of a compressed trace
zcat $FFTRACE | $MODELDIR/$MODEL -dep $DEPFILE -cutoff $CUTOFF |& tee $LOG

Figure 1: Summary of static-trace modeling session with prebuilt model ffoo4

Microarchitecture Exploration Toolset

7

5. Running a dynamic-trace modeling experiment
Using a processor model with an execution trace generated dynamically by the companion tool Aria
implies the following steps (see Figure 2; the contents in this figure are available in the file /Scripts/
Run_aria in the MET distribution):

1. Create the file with predecoded information from the xcoff file of the program to be used in the simula-
tion. The corresponding command line is

dep_prep [-h] [-predecoded-arguments] [-o <dep-file>] <xcoff-file>

wherein the optional arguments have the following function:

-h display help message, including a description of all optional arguments
-o specify the name of the predecoded file created

The predecoded-arguments is a list indicating the value of parameters to be used in the generation of
the predecoded file. These include the type of each instruction, its latency, the resources required by
the instruction, the placement of instructions with respect to the instruction cache line, and so on. The
complete list of these arguments is given in Appendix B.

2. Set the read/write permissions of the xcoff file and the processor model executable file so they are read-
able/writable only by owner and group (not accessible by others).

3. Set the environment variable LIBPATH to point to the directory containing the Aria library
libaria41.a (this library is available in the /aria/lib directory in the MET repository).

4. Initiate the simulation. The corresponding command line is

aria41 --MODEL <model-name> -dep <dep-file> [-help] [-cutoff cutoff-value]
[-skip skip-value] [-sample skip-value sample-period]

--PROGRAM <xcoff-file> [prog-args] |& tee <log-file>

wherein the optional arguments have the following function:

-h|-help display help message, including a description of all optional arguments
-d|-dep <dep-file>

specify the name of the file with predecoded information
-c|-cutoff cutoff-value

specify the number of processor cycles to be simulated
-s|-skip skip-value

specify a number of instructions to skip before performing simulation
-m|-sample skip-value sample-period

specify a sampling period composed of number of instructions to skip followed by the
number of instructions in the sampling period

prog-args
arguments used as input to the program being used to generate the trace

<log file>
specify a file where to save the results that are produced to standard output (using the
“tee” operator).

The <model-name> is the full path to the corresponding executable file containing the model. For simu-
lation purposes, this file cannot be globally readable; consequently, the user carrying out the simulation
must at least be in the same group as the owner of the file with the model.

Microarchitecture Exploration Toolset

8

#!/bin/csh -xef
Steps for using Turandot in dynamic-trace modeling with model oo4
Processor model from distribution directory
#
Distribution directory

setenv METROOT /.../watson.ibm.com/fs/projects/MET/ExtDist

setenv METBIN $METROOT/Source/bin
setenv ARIABIN $METROOT/Source/aria/bin
setenv LIBPATH $METROOT/Source/aria/lib
setenv MODELDIR $METROOT/Models
#
Input program to be analyzed and its inputs

setenv PROGPATH prog_path_name # xcoff file path name

setenv PROGNAME prog_name # xcoff file name

setenv PROGINPS prog_inputs # program inputs

#
Processor model

setenv MODEL oo4 # proc. model name from distribution dir.

#
Intermediate files
setenv DEPFILE $PROGNAME.dep # predecoded file name
setenv LOG logfile_name # name of log file for results
setenv CUTOFF cutoff_value # max. number of cycles to simulate
#
This is the entire preparation and simulation process
#
Create $DEPFILE, the preprocessed file for input program
Optional arguments added as needed (see Appendix B)
$METBIN/dep_prep -o $DEPFILE $PROGPATH
#
Start Aria+Turandot, with program and its inputs
$ARIABIN/aria41 --MODEL $MODELDIR/$MODEL -dep $DEPFILE -cutoff $CUTOFF \

--PROGRAM $PROGPATH $PROGINPS \& tee $LOG

Figure 2: Summary of dynamic-trace modeling session with prebuilt model oo4

Microarchitecture Exploration Toolset

9

6. Interpreting the results
Turandot produces various results during its execution, as well as extensive summaries upon completion of
execution. These results are in a simple text format, so they are amenable for input to post-processing
scripts for further analysis and summarization, as described next.

6.1 Periodic results

Periodically, Turandot produces lines containing the current value for the measures listed below, in the fol-
lowing format (wherein the two @@ symbols in each line are used to distinguish an output line generated
by the model from output lines generated by the program that is being traced, when applicable):

cycle fetch total retir mispr ldstc dline [hd tl]
@@ nnnnnn nnnnnn nnnnnn nnnnnn nnnnnn nnnnnn nnnnnn nn nn

The specific measures are current values for:

cycle number of cycles executed;
fetch number of PowerPC instructions fetched;
total number of primitive operations executed (after decode/expansion);
retir number of primitive operations retired;
mispr number of mispredicted branches;
ldstc number of load/store reorder conflicts; and
dline number of data cache lines transferred.

(The rightmost two columns contain number associated to internal structures of the model.)

6.2 Results at end of execution

At the end of execution, Turandot displays the following information:

• Values of all the parameters used during simulation (see Appendix A and B)

• Summary results (see Table 1)

• Histograms regarding utilization of queues and pipeline resources (see Table 2), consisting of
entries with the following format:

resource name
size:cycles n

The tuple size:cycles corresponds to the number of cycles that the corresponding resource had
the associated size (length). The number n is the percentage of total cycles at that size.

• Frequency of reasons for failing to retire instructions (traumas, see Table 3). These data list the num-
ber of cycles when fewer than the maximum possible number of operations were retired, classified
by the reason attributed to that condition.

6.3 Scripts to summarize and analyze the results

The results generated by Turandot at the end of execution are given in a simple text format that is amena-
ble for post-processing by scripts for summarizing and analysis, as well as for transformation into other
formats suitable for inputs to other tools such as a spreadsheet. The MET subdirectory /Scripts contains
various scripts (in Perl) that summarize and display relevant statistics and information from a simulation
run. In most cases, the script is simply invoked followed with the name of the file containing the output
generated by the processor model (the log file), as follows:

script_name log_file

The available scripts are prefixed with “met”. Some scripts accept multiple log file names in the invoca-
tion, displaying the results for each file specified. Available scripts perform the following functions:

Microarchitecture Exploration Toolset

10

metcpi Display the cycles per instruction (CPI) and instructions per cycle (IPC).

metcfg Display the configuration of the processor modeled.

metsum Display a one-page summary of relevant performance and resource usage statistics.

metpars Displays all the parameters used in the simulation.

6.4 Detailed results at every cycle

Turandot can be used to build models which provide a detailed description of the flow of instructions
through the pipeline at every processor cycle. (Models such as these are named with the prefix “tr” in the
subdirectory /Models in the MET repository.) The information generated at every cycle includes:

• state of the memory subsystem;

• current sizes of various queues;

• register rename status;

• detailed information about instructions currently executing, including pipeline stage, rename,
mispredicted status, etc.

A lot of information is generated at every cycle; the main purpose of such detailed results is for debug-
ging a processor model. To facilitate the process, this mode of operation of the models accepts two addi-
tional optional parameters after the predecoded file name in the command line. For the case of a static-
trace modeling session, the command line is as follows:

<model-name> -dep <dep-file> [start-trace] [stop-trace] < <FF52-trace>
|& tee <log-file>

This invocation of the model will simulate until start-trace cycles without reporting the detailed
information, and then will report detailed information until stop-trace cycles, at which point the simu-
lation will be terminated. The command line format is similar for the case of a dynamic-trace modeling
session.

The description of all the information reported every cycle is given in Table 4.

Microarchitecture Exploration Toolset

11

6.5 Pipeline timeline display

Turandot can be used to build models which provide a graphical description (in text format) of the flow of
each instruction through the pipeline, as a timeline chart. (Models such as these are named with the prefix
“pp” in the subdirectory /Models in the MET repository.) The format of each output line in this case is as
follows:

000000002 [.F.DE.di0.f.....c............] 000000016 fff00100 00000000 addi r1,r0,1000
000000003 [.F.DE.d..i3.h.f.c............] 000000016 fff00104 000007d0 lwzux r2,r1,r1
000000003 [...DE.d..i1.f...c............] 000000016 fff00104 000007d4 + lwzux r2,r1,r1

Using the first line as example, the meaning of the data in the timeline is as follows:

000000002 instruction sequence number (this number does not start at 1 for arbitrary reasons)
[.F.DE.di0.f.....c............]

this is the actual timeline displaying the flow of the instruction through the pipeline,
wherein the symbols correspond to the various pipeline stages:

F fetch;
D decode;
E decode (stage 2), if applicable;
d dispatch;
i issue for execution;
execute in unit number #;
f finish execution, if applicable;
c complete (retire);
h hit in cache;
!
s

00000016 cycle when instruction completed execution;

fff00100 instruction address;

000007d0 data address (when applicable, otherwise set to all zeroes);

+ indicator that original PowerPC instruction has been decomposed into multiple internal
operations (eg., “cracked”);

addi r1,r0,1000
instruction in assembly language representation;

Note that the timeline is a "modulo window" into the execution trace; that is, this window rolls around
from the rightmost end to the lefmost end every N cycles, where N is the number of characters in the time-
line.

Microarchitecture Exploration Toolset

12

7. Building new models
Building a new model using Turandot requires compiling the source code. The parameters are specified as
compile time options, using the -D flag to the compiler. This process is illustrated in Figure 3, for the case
of dynamic-tracing and static-tracing (prefix “ff”) modeling scenarios. The figure shows a Makefile con-
taining a set of microarchitecture parameters in the variable CFGFLAGS, which are passed in the com-
mand line invoking the compiler. The contents of this figure are available in the file /Scripts/
make_models in the MET distribution.

All the parameters available in Turandot are listed in Appendix A; all of them have a default value, listed
in the appendix, which is used whenever no -D flag is given at compile time. In other words, the -D com-
pile time flag overrides the default value listed in the appendix.

Figure 3: Sample Makefile for building processor models based on Turandot

This Makefile is an example for building Turandot-based models
Variations in the model (with respect to the default parameters)
can be specified in the variable CFGFLAGS below
#
The model is built by invoking
make turandot - build a model for use with Aria
make ffturandot - build a model that reads a ff52 trace
#
The name of the model built is specified in the variable TARGET;
the ff52 version name is automatically prefixed with "ff"
#
For faster compilation time, use -O in STD_CFLAGS; for faster execution, use -O2
Source directories
METROOT = /.../watson.ibm.com/fs/projects/MET/ExtDist
ARIADIR = $(METROOT)/Source/aria
OPCDIR = $(ARIADIR)/opcode
OPCLIBDIR = $(ARIADIR)/lib
TRANSDIR = $(ARIADIR)/translate
TRANSLIBDIR = $(ARIADIR)/lib
TURANDIR = $(METROOT)/Source/turandot
SRCDIR = $(TURANDIR)/src
Name of model to be created
TARGET = infcache
Parameters defining the processor model that differ from the default values
CFGFLAGS = -DINFINITE_CACHE=TRUE
#Compilation flags
ARIAINCDIRS = -I$(OPCDIR) -I$(OPCDIR)/include \

-I$(TRANSDIR) -I$(TRANSDIR)/include \
-I$(TURANDIR)/reader -I$(TURANDIR)/aria_reader \
-I$(TURANDIR)/deps

FFINCDIRS = -I$(OPCDIR) -I$(OPCDIR)/include \
-I$(TURANDIR)/ffreader -I$(TURANDIR)/deps

LIBDIRS = -L$(OPCLIBDIR) -L$(TRANSLIBDIR)
LIBS = -lopc41
CC = xlc
STD_CFLAGS = -O -qspill=1024 -qmaxmem=4000 -DNDEBUG=1
DEBUG_CFLAGS= -O -qspill=1024 -qmaxmem=4000
TRACE_CFLAGS= -O -DNDEBUG=TRUE -DTRACE=TRUE

LDFLAGS =

Microarchitecture Exploration Toolset

13

Figure 3 (cont.): Sample Makefile for building processor models based on Turandot (cont.)

LINKER = $(CC)

FFAUX_SRCS = $(TURANDIR)/deps/ffdep_prep_info.c \
$(TURANDIR)/deps/ffdep_prep_info_table.c

XAUX_SRCS = $(TURANDIR)/reader/reader_prep_info.c \
$(TURANDIR)/deps/dep_prep_info.c

SRCS = $(AUX_SRCS) turandot.c

FF52AUX_OBJS= $(FFAUX_SRCS:.c=.o) $(TURANDIR)/ffreader/trace_ff52reader.o
ARIAAUX_OBJS= $(XAUX_SRCS:.c=.o) $(TURANDIR)/aria_reader/aria_reader.o

turandot: turandot.o $(ARIAAUX_OBJS) $(TRANSLIBDIR)/libaria41.a
$(LINKER) -o $(TARGET) $(LDFLAGS) $(LIBDIRS) turandot.o \
$(ARIAAUX_OBJS) $(LIBS) -laria
chmod 750 $(TARGET)
rm turandot.o

ffturandot:ffturandot.o $(FF52AUX_OBJS)
$(LINKER) -o ff$(TARGET) $(LDFLAGS) $(LIBDIRS) ffturandot.o \
$(FF52AUX_OBJS) $(LIBS)
rm ffturandot.o

turandot.o:sources
$(CC) -o $@ $(STD_CFLAGS) $(ARIAINCDIRS) $(CFGFLAGS) \
-DUSING_SPECULATION=1 -DUSING_ARIA=1 \
-c $(SRCDIR)/turandot.c

ffturandot.o:sources
$(CC) -o $@ $(STD_CFLAGS) $(FFINCDIRS) $(CFGFLAGS) \
-DUSING_FF52_SEGS=1 -DUSING_FF=1 \
-c $(SRCDIR)/turandot.c

sources: \
$(SRCDIR)/turandot.c \
...
...

Microarchitecture Exploration Toolset

14

8. References
[1] M. Moudgill, J-D. Wellman, J.H. Moreno, "Environment for PowerPC microarchitecture exploration,"

IEEE Micro, Vol. 19, No. 3 , pp. 15-25, May/June 1999.
[2] M. Moudgill, P. Bose, J.H. Moreno, "Validation of Turandot, a Fast Processor Model for Microarchitec-

ture Exploration," IEEE International Performance, Computing and Communications Conference (IPCCC),
February 1999.

[3] J.H. Moreno, M. Moudgill, J-D. Wellman, P. Bose, L. Trevillyan, "Trace-driven performance explora-
tion of a PowerPC 601 OLTP workload on wide superscalar processors," IBM Research Report
RC20962, 1997.

[4] M. Moudgill, J.H. Moreno, “Turandot, a PowerPC-based wide-issue superscalar processor model for
microarchitecture exploration,” in preparation.

[5] J.D. Wellman, “Aria, an execution-simulation environment for microarchitectural analysis tools,” in
preparation.

Microarchitecture Exploration Toolset

15

Table 1: Summary results reported at end of simulation

Line Line contents Description
Totals cycles=

insns=
memops=
retired=
totalret=
totalexecd=
totaldispd=

cycles measured
instructions executed during those cycles (after expansion)
memory operations completed
instructions retired (excludes expansion)
operations retired (includes expansion)
operations executed (includes expansion)
operations dispatched (includes expansion)

I-cache probes=
l1miss=
prehit=
l15 miss=
l2miss=
tlb1 =
tlb2 =

I-cache accesses
I-cache misses
prefetch buffer hits
I-cache misses that were also L1.5 misses
I-cache misses that were also L2 misses
first level TLB misses generated by instruction fetch
second level TLB misses generated by instruction fetch

D-cache probes=
l1lines_started=
l1lines_fetched=
l2lines=
l1miss_all=
l1miss_taken=
l2miss_all=
l2miss_taken=
trail =
cast =

D-cache accesses
D-cache lines accesses started
D-cache lines transferred into L1 (actual cache misses)
D-cache lines transferred into L2 (actual cache misses)
D-cache “misses”: total (includes misses resolved by earlier misses)
D-cache “misses”: taken path only
D-cache “misses “that were also L2 misses: total
D-cache “misses “that were also L2 misses: taken path
D-cache probes to lines being brought in (trailing-edge effect)
D-cache lines cast out

D-TLB tlb1_all=
tlb1_taken=
tlb2_all=
tlb2_taken=

first level TLB misses generated by data accesses: total
first level TLB misses generated by data accesses: taken path
second level TLB misses generated by data accesses: total
second level TLB misses generated by data accesses: taken path

Interleave
conflicts=
samebank=

(These results are applicable only for the case of 2 load/store units)
simultaneous accesses to the same data cache bank but to different cache lines
simultaneous accesses to the same data cache bank and same cache line

I-fetch0
(no instruc-
tions were
fetched in a
cycle)

tlb=
cache=
nfa=
mispredict=
ibuf=
fchblk=
sync=
max_pred=
partial=
inflight=
end=

TLB miss
I-cache miss
NFA mispredict
no instructions in trace (only for static trace simulation)
instruction buffer full
maximum number of fetch blocks exceeded
sync instruction
maximum number of predicted branches exceeded
decomposed complex instruction does not fit in instruction buffer
maximum number of instructions in-flight exceeded
end of trace

Decode0
(no instruc-
tions were
decoded)

empty=
stall=
multi=
string=

instruction buffer empty

completing decoding of complex operation
completing decoding of string operation

Dispatch0
(no instruc-
tions were
dispatched)

groups= maximum number of groups exceeded

Prefetch
buffer

hits=
total=

prefetch buffer hits
total lines prefetched

Expansion insns=
total=

instructions that were expanded
operations after expansion

Microarchitecture Exploration Toolset

16

String
operations

insns=
total=
stalls=

load/store string instructions processed
primitive operations produced from the load/store string instructions
stall cycles due to string instructions not being decoded because the length field
in XER was not yet available

NFA link=
nfa=
mis=
mispred =

NFA predictions based on Link Register stack
NFA predictions based on BTAC
NFA predictions which do not match branch prediction
NFA mispredictions on taken path

Branch
(all paths,
in branch
predictor)

total =
stalls=
full=
cond_mis=
cond_tot=
link_mis=
link_tot=
ctr_mis=
ctr_tot=

branch instructions (includes unconditional)
cycles fetching from incorrect path
cycles with no instructions fetched from incorrect path
mispredicts in conditional branch instructions
conditional branch instructions
mispredicts in branch through link register instructions
branch through link register instructions
mispredicts in branch through counter register instructions
branch through counter register instructions

Actual
branch
(taken path
only, in
branch pre-
dictor)

total =
stalls=
full=
cond_mis=
cond_tot=
link_mis=
link_tot=
ctr_mis=
ctr_tot=

branch instructions (includes unconditional)
cycles fetching from incorrect path
cycles with no instructions fetched from incorrect path
mispredicts in conditional branch instructions
conditional branch instructions
mispredicts in branch through link register instructions
branch through link register instructions
mispredicts in branch through counter register instructions
branch through counter register instructions

Branches
executed
(in branch
unit)

total =
stalls=
full=
cond_mis=
cond_tot=
link_mis=
link_tot=
ctr_mis=
ctr_tot=

branch instructions (includes unconditional)
cycles fetching from incorrect path
cycles with no instructions fetched from incorrect path
mispredicts in conditional branch instructions
conditional branch instructions
nmispredicts in branch through link register instructions
branch through link register instructions
mispredicts in branch through counter register instructions
branch through counter register instructions

Prediction early =
mispredict=
total =

mispredicted branches that were evaluated early
mispredicted branches
predicted branches (i.e. all but unconditional branches)

Others flushes=
groups=

pipeline flushes (due to any reason)
groups dispatched

Stalls ibuf=
inflight=
dmissq=
cast=
storeq=
reorderq=
resv=
rename=

fetch stall cycles due to I-buffer full
fetch stall cycles due to in-flight limit
memory unit stall cycles due to full miss queue
memory unit stall cycles due to full castout queue
memory unit stall cycles due to full store queue
memory unit stall cycles due to full reorder queue
dispatch stall cycles due to full issue queues
rename stall cycles due to lack of instructions

Store
queue

total=
forward=
partial=
data_wait=

insertions into store queue
data forwarded to load instructions (load instructions hitting store queue)
partial matches in queue (byte/halfword/word)
load operations waiting for data to be forwarded

Reorder
buffer

total =
conflicts=

number of insertions into reorder buffer
number of conflicts detected

Table 1: Summary results reported at end of simulation

Line Line contents Description

Microarchitecture Exploration Toolset

17

mtsr total=
ipurge=
dpurge=

mtsr instructions executed
I-TLB invalidates arising from mtsr instructions
D-TLB invalidates arising from mtsr instructions

nops dispd=
retd=

no-op instructions (ori Rx,Ry,0) dispatched
no-op instructions (ori Rx,Ry,0) retired

Table 1: Summary results reported at end of simulation

Line Line contents Description

Microarchitecture Exploration Toolset

18

Table 2: Histograms of resource utilization (reported at end of simulation)

Name Description
ibuf Instruction buffer utilization
fchblk Size of blocks fetched
retireq Retirement queue
fix_rsv Integer issue queue (single or first cluster)
fix1_rsv Integer issue queue (second cluster, if present)
fpu_rsv Floating-point issue queue (single or first cluster)
fp1_rsv Floating-point issue queue (second cluster, if present)
mem_rsv Memory issue queue (single or first cluster)
mem1_rsv Memory issue queue (second cluster, if present)
br_rsv Branch unit issue queue
log_rsv Logical unit issue queue
cmplx_rsv Complex unit issue queue
tot_rsv Total across all issue queues
gpr Free physical general-purpose registers
fpr Free physical floating point registers
spr Free physical special-purpose registers
ccr Free physical condition-code field registers
storeq Store queue
reorderq Reorder queue
dmissq Data cache miss queue
lines Data cache lines transferred
l2dmissq L2 D-cache miss queue
l2lines L2 D-cache lines transferred
dcast Data cache castout queue
st_commit Store operations committed (removed from store buffer, after

retirement)
retired Operations retired
st_retd Store operations retired
fix_exd Integer operations executed (single or first cluster)
fix1_exd Integer operations executed (second cluster, if present)
fpu_exd Floating-point operations executed (single or first cluster)
fp1_exd Floating-point operations executed (second cluster, if present)
mem_exd Memory operations executed (single or first cluster)
mem1_exd Memory operations executed (second cluster, if present)
br_exd Branch operations executed
log_exd Logical operations executed
cmplx_exd Complex operations executed
tot_exd Total operations executed (across all units)
dispchd Total operations dispatched (added to all issue queues)
fix_dsp Integer operations dispatched (added to integer issue queue);

single or first cluster
fix1_dsp Integer operations dispatched (added to integer issue queue);

second cluster, if present
fpu_dsp Integer operations dispatched (added to integer issue queue);

single or first cluster
fpu1_dsp Integer operations dispatched (added to integer issue queue);

second cluster, if present

Microarchitecture Exploration Toolset

19

mem_dsp Memory operations dispatched (added to memory issue queue);
single or first cluster

mem1_dsp Memory operations dispatched (added to memory issue queue);
second cluster, if present

br_dsp Branch operations dispatched (added to branch unit issue
queue)

renamed Operations renamed
fetched Instructions fetched from I-cache
inflight Operations in-flight
groups Size of groups

Table 2: Histograms of resource utilization (reported at end of simulation)

Name Description

Microarchitecture Exploration Toolset

20

Table 3: Histograms of traumas (reported at end of simulation)

Name Description
normal No specific reason (normal execution)
if_nfa Instruction fetch, next fetch address misspredict
if_tlb1 Instruction fetch, first level TLB miss
if_tlb2 Instruction fetch, second level TLB miss
if_l2 Instruction fetch, L2 instruction cache miss
if_l15 Instruction fetch, L1.5 instruction cache miss
if_l1 Instruction fetch, L1 instruction cache miss
if_pref Instruction fetch, prefetch buffer miss
if_pred Instruction fetch, branch misprediction
if_full Instruction fetch, instruction buffer full
if_flit Instruction fetch, number of instructions in flight exceeded
if_brch Instruction fetch,
if_ldst Instruction fetch, load/store
decode Decode reason
rename Rename reason
diq_fix Integer unit issue queue empty
diq_fpu Floating-point unit issue queue empty
diq_mem Memory unit issue queue empty
dir_br Branch unit issue queue empty
diq_log Logical unit issue queue empty
diq_cmplx Complex unit issue queue empty
ful_fix Integer unit issue queue full
ful_fpu Floating-point unit issue queue full
ful_mem Memory unit issue queue full
ful_br Branch unit issue queue full
ful_log Logical unit issue queue full
ful_cmplx Complex unit issue queue full
mm_stqf Store queue full
mm_stqc Store queue conflict
mm_roqf Reorder queue full
mm_dmqf Miss queue full
mm_dcqf Castout queue full
mm_stnd Store whose data is not available
mm_tlb1 First level D-TLB miss
mm_tlb2 Second level D-TLB miss
mm_dl2 L2 D-cache miss
mm_dl1 L1 D-cache miss
rg_fix Register dependency in integer instruction
rg_fpu Register dependency in floating-point instruction
rg_mem Register dependency in memory instruction
rg_br Register dependency in branch instruction
st_data Load dependency on store queue, data not available
ret_st Store retirement
cpi
totals
insns

Microarchitecture Exploration Toolset

21

Table 4: Detailed results reported every cycle (for “tr” models)

Line Line label Description
1 CYCLE

[NONE]

i=

m=
d=
p=
b=
d=
it=
dt=

Current cycle number
Current i-fetch trauma (if any). Instruction fetch waiting on:

if_nfa: next fetch address incorrect
if_tlb1: i-side level 1 tlb miss
if_tlb2: i-side level 2 tlb miss
if_l2: i-side level 2 cache miss
if_l15: i-side level 1.5 cache miss
if_l1: i-side level 1 cache miss
if_pref:
if_pred:
if_full:
if_flit:
if_brch:
if_ldst:
normal:

Memory status. No memory operations being executed because
MemDmiss: miss queue full
MemCast: cast-out queue full
DTLB: d-side level-2 tlb miss
D2TLB: d-side level-1 tlb miss

I-fetch stalled until reported cycle. If reported cycle is close to 2^32-1
(=4294967295), then i-fetch is stalled waiting for some event, as follows:

...295: trace/program end reached

...294: unresolved mispredicted branch

...293: cache mispredict resolution

...292: mispredicted branch limit exceeded

...291: synchronizing instruction
memory units busy till cycle
earliest cycle d-miss can return
number of d-cache ports used
number of unresolved branch predictions
number of unresolved branches in mispredicted path
cycle i-tlb miss will be resolved
cycle d-tlb miss will be resolved

2 ib=
fb=
gr=

number of instructions in i-buffer
number of fetch blocks in i-buffer
number of instruction groups in flight

3 fx=
fp=
mm=
br=
lg=
cx=
dm=
l2=
st=
ro=
co=

number of operations in fix-point issue queue
number of operations in floating-point issue queue
number of operations in memory issue queue
number of operations in branch issue queue
number of operations in logical issue queue
number of operations in complex issue queue
number of d-cache misses active
number of L2 d-cache misses active
number of operations in store queue
number of operations in load reorder queue
number of lines being cast out

4 n=
l2n=
l=
l2l=

number of d-cache misses active
number of L2 d-cache misses acvtive
number of d-cache missed lines active
number of L2 d-cache missed lines active

Microarchitecture Exploration Toolset

22

5 rq=
hd=
tl=
ren=
dis=
gp=
fp=
cc=
sp=

number of retire queue slots left
instruction queue head
instruction queue tail
instruction queue rename pointer
instruction queue dispatch pointer
number of general purpose registers in use
number of floating point registers in use
number of condition code registers in use
number of special purpose registers in use

6 hd=
dec=
ren=
dis=
retire=
tl=
ro=
[none]
#
sq
[none]
#

iq head
iq decode index
iq rename index
iq dispatch index
iq retire index
iq tail
reorder queue low position
reorder queue high position
reorder queue slots left
store queue low
store queue high
store queue left

7 the architected general purpose registers
8 the physical registers they are mapped to at retire
9 the physical registers they are mapped to at rename
10 the free physical general purpose registers

Instruction
queue
entries

8-hex:
[2-hex]
2-hex
8-hex
@8-hex
<8-hex>
8-hex:
string
[8-hex]
chars

string
2-dec
2-hex
string
string
<- string

instruction number (replicated for the case of decomposed instructions)
iq index
group id
instruction word
instruction address
data address
(internal) address of entry
status of instruction
cycle at which execution will complete
various status markers

! busy
? mispredicted path
- mispredicted branch
+ second or later operation of cracked instruction
B branch
C conditional branch
_ end of group
| end of fetch block
? predicated operation

trauma name
trauma id
slot in reorder/store queue
the disassembled instruction
renamed destination registers
renamed source registers

Table 4: Detailed results reported every cycle (for “tr” models)

Line Line label Description

Microarchitecture Exploration Toolset

23

Appendix A: Parameters in Turandot (in alphabetical order)

Parameter Resource Description Default Min. Max.

ARCH_MAX Rename Maximum number of architected registers
per class of registers

32 127

BLOCK_ATHEAD_OPS Load/Store If TRUE, allow certain operations to issue
only if they are next to retire

TRUE

BP_COND_BIMODAL Branch prediction If TRUE, use bimodal branch prediction
algorithm

FALSE

BP_COND_BITS Branch prediction Number of bits per entry in branch pre-
diction table(s)

2 1 2

BP_COND_GSHARE Branch prediction If TRUE, use G-share branch prediction
algorithm

FALSE

BP_COND_LG2SIZE Branch prediction Number of entries in branch prediction
table(s)

13

BP_COND_SELECT Branch prediction If TRUE, use Alpha-style branch predic-
tion algorithm

TRUE

BP_COUNTER_ASSOC Branch prediction Associativity of counter branch target
table

4 4 4

BP_COUNTER_LG2SIZE Branch prediction Size of counter branch target table 5

BP_HISTORY_SHIFT Branch prediction Number of bits history is shifted left
before being XOR’ed with address in G-
share

3

BP_LINK_SIZE Branch prediction Size of return-addresses stack 32

BRANCH_MAX_PRED Branch prediction Maximum number of predicted condi-
tional branches

12

BR_NUM Execution units Number of branch units 2

BR_RESV Dispatch Length of branch issue queue 12

BR_UNIT Execution units Identification of unit for branch opera-
tions

3

CCR_ARCH Rename Number of architected CR fields 8

CCR_PHYS Rename Number of physical CR fields 32 16 128

CLUSTER Execution units If TRUE, the processor has two clusters of
integer/load-store units

TRUE

CLUSTER_FPU Execution units If TRUE, the processor has two clusters of
floating-point units

TRUE

CMPLX_NUM Execution units Number of complex integer execution
units

0

CMPLX_RESV Execution units Length of complex integer issue queue 16

CMPLX_UNIT Execution units Identification of unit for complex integer
operations

5

COMBINE_FIX_MEM Execution units If TRUE, integer operations are executed
in load/store execution unit

FALSE

COMBINE_FIX_NUM Execution units Maximum number of integer operations
that can be issued per cycle from com-
bined integer-load/store issue queue

0

COMBINE_MEM_NUM Execution units Maximum number of memory operations
that can be issued per cycle from com-
bined integer-load/store issue queue

0

Microarchitecture Exploration Toolset

24

COMMIT_STORES_DELAY Store queue Delay between writing store operation
into the cache (after retirement) and
removing the corresponding entry from
the store queue

4

COMMIT_STORES_LATE Store queue If TRUE, store operations are removed
from the retirement queue before the cor-
responding entry in the store queue is
removed

FALSE

DCACHE_ASSOC L1-D cache Associativity of L1 data cache 1 1 4

DCACHE_INTERLEAVE_BANKS L1-D cache Number of banks in interleaved L1 data
cache

8

DCACHE_INTERLEAVE_LG2SIZE L1-D cache Log2 of number of entries per bank in
interleaved L1 data cache

6

DCACHE_INTERLEAVE_PENALTY L1-D cache If bank conflict detected, cycles before
operation can be retried in interleaved L1
data cache

5

DCACHE_IS_INTERLEAVED L1-D cache If TRUE, L1 data cache is interleaved FALSE

DCACHE_LG2ENTRIES L1-D cache Log2 of number of lines in L1 data cache 9

DCACHE_LG2SECTOR L1-D cache Log2 of sector size in L1 data cache 6

DCACHE_LG2SIZE L1-D cache Log2 of line size in L1 data cache 7

DCACHE_PORTS L1-D cache Number of L1 data cache ports 2

DCACHE_SECTORS L1-D cache Number of sectors in L1 data cache line 2

DCACHE_WRITE_PORTS L1-D cache Number of write ports in L1 data cache;
e.g., maximum number of stores that can
be completed per cycle

1

DCASTOUT_MAX Miss queue Maximum number of dirty lines waiting
to be written back (total number of dirty
lines is actually DCASTOUT_MAX +
number of memory units - 1)

7

DCASTOUT_OVERHEAD Miss queue Number of cycles the L1-L2 bus is occu-
pied by a transaction

5

DEBUG Debugging support If TRUE, generate debugging information FALSE

DECODE_ALL_CRACK Decode If TRUE, all operations from a decom-
posed (cracked) instruction are placed in
same decode group

TRUE

DECODE_EXTRA_BRANCH Decode If TRUE, allow a branch operation into a
decode group, even if it exceeds
DECODE0_MAX

FALSE

DECODE_MAX Decode Maximum number of operations that can
be decoded per cycle

4

DECODE_MAX_INSNS Decode Maximum number of instructions that can
be decoded per cycle

4

DECODE_MODEL_REISSUE Decode If TRUE, decode into groups of a single
operation on restart after certain pipeline
flushes

TRUE

DECODE_MULTI_PENALTY Decode Number of extra cycles for decoding com-
plex instructions

0

DECODE_MULTI_SPECIAL Decode If TRUE, decode complex instructions
with DECODE_MULTI_PENALTY

FALSE

DECODE_ONE_BRANCH Decode If TRUE, allow at most one branch per
decode group

FALSE

Parameter Resource Description Default Min. Max.

Microarchitecture Exploration Toolset

25

DECODE_SLOT0 Decode If TRUE, force certain operations to be the
first operation in a decode group

FALSE

DECODE0_MAX Decode Maximum number of non-branch opera-
tions that can be decoded per cycle

4

DISPATCH_GROUPS Retire If TRUE, dispatch and retire together all
the operations of a decode group

TRUE

DISPATCH_MAX Dispatch Maximum number of instructions dis-
patched

4

DMEM_LATENCY Memory Load-use latency for data cache miss
resolved in main memory

40

DMISS_COUNT_LINES Results If TRUE, keep track of the number of lines
in the load miss queue

TRUE

DMISS_MAX Miss queue Maximum number of outstanding misses
(total number of misses is actually
DMISS_MAX + #memory units - 1)

7

DRAIN_ON_SYNC I-fetch Stop fetching instructions after sync
instruction is fetched and until sync
instruction is retired

FALSE

DTLB_ASSOC D-TLB1 Associativity of D-TLB 1 1 1 2

DTLB_LATENCY D-TLB1 Latency of D-TLB1 miss (miss latency) 4

DTLB_LG2ENTRIES D-TLB1 Log2 of the number of entries in D-TLB1 7

DTLB_LG2SIZE D-TLB1 Log2 of the page size in D-TLB1 12

D2CACHE_LATENCY L2-D cache Load-use latency of L1 data cache miss
that hits in the L2 cache

7

D2TLB_ASSOC D-TLB2 Associativity of D-TLB2 4 1 4

D2TLB_LATENCY D-TLB2 Latency of D-TLB2 miss (miss latency) 40

D2TLB_LG2ENTRIES D-TLB2 Log2 of the number of entries in D-TLB2 10

D2TLB_LG2SIZE D-TLB2 Log2 of the page size in D-TLB2 12

EVALUATE_MISPREDICTED_BRANCHES Branch prediction If TRUE, branches are checked according
to parameter
EVALUATE_MISPREDICTED_RENAME

TRUE

EVALUATE_MISPREDICTED_RENAME Branch prediction If TRUE, branches are checked for mispre-
diction at rename/dispatch stage

TRUE

EXEC_INORDER In-order execution If TRUE, do not reorder instructions for
execution

FALSE

EXPAND_INSNS Decode If TRUE, complex instructions are decom-
posed into simpler ones (e.g., cracking)

TRUE

EXPAND_STRINGS_DYNAMIC Decode If TRUE, expand string instructions based
on the number of bytes actually trans-
ferred

TRUE

EXPAND_STRINGS_PENALTY
(for load/store string indexed instructions)

Latency from setting the length field in
XER to using the value to determine the
expansion of string instructions

2

FIX_NUM Execution units Number of fixed-point units 3

FIX_RESV Dispatch Length of fixed point issue queue 20

FIX_UNIT Execution units Identification of unit for integer opera-
tions

0

FPU_NUM Execution units Number of floating-point units 2

FPU_RESV Dispatch Length of floating point issue queue 20

FPU_UNIT Execution units Identification of unit for floating-point
operations

1

Parameter Resource Description Default Min. Max.

Microarchitecture Exploration Toolset

26

FPR_ARCH Rename Number of architected floating-point reg-
isters

32

FPR_PHYS Rename Number of physical floating-point regis-
ters

64 36 128

GETCPI Results If TRUE, collect traumas information and
print related histograms

TRUE

GETCPI_REMAINING Results If TRUE, collect traumas information
about operations behind the operation
that could not be retired

TRUE

GPR_ARCH Rename Number of architected general-purpose
registers

32

GPR_PHYS Rename Number of physical general-purpose reg-
isters

64 36 128

GROUPS_MAX Dispatch Maximum number of decode groups that
can be in flight

16 32

HANDLE_NOPS Dispatch If TRUE, nop operations are not placed in
any issue queue

FALSE

IBUF_MAX I-Buffer Maximum number of fetched instructions
which have not yet been decoded
(RETIREQ_MAX+IBUF_MAX must be
less than 257)

24 255

ICACHE_ASSOC L1-I cache Associativity of L1 instruction cache 1 1 4

ICACHE_LG2ENTRIES L1-I cache Log2 of number of lines in L1 instruction
cache

9

ICACHE_LG2SIZE L1-I cache Log2 of the size of each line in L1 instruc-
tion cache

7

IFETCH_MAX I-Fetch Maximum number of instructions to fetch 4

IFETCH_MULTIPLE_FALLTHRU I-Fetch If FALSE, fetching stops after the first
branch is fetched

TRUE

IGNORE_SPEC_DMISSES L1-D cache If TRUE, ignore speculative L1 data cache
misses

FALSE

IMEM_LATENCY L1-I cache Latency for instruction cache miss
resolved in main memory

40

INFINITE_CACHE Cache If TRUE, always hit in all components of
the cache hierarchy (caches and TLBs)

FALSE

INFINITE_DCACHE L1-D cache If TRUE, always hit in L1 data cache FALSE

INFINITE_DTLB D-TLB1 If TRUE, always hit in D-TLB1 FALSE

INFINITE_D2TLB D-TLB2 If TRUE, always hit in D-TLB2 FALSE

INFINITE_ICACHE L1-I cache If TRUE, always hits in L1 instruction
cache

FALSE

INFINITE_I15CACHE L1.5-I cache If TRUE, always hit in L1.5 instruction
cache

FALSE

INFINITE_ITLB I-TLB1 If TRUE, always hit in I-TLB1 FALSE

INFINITE_I2TLB I-TLB2 If TRUE, always hit in I-TLB2 FALSE

INFINITE_L2CACHE L2 cache If TRUE, always hit in L2 cache FALSE

INFLIGHT_MAX In-flight Maximum number of instructions in flight 160 255

INORDER_BRANCHES Execution units If TRUE, no instruction can be issued out-
of-order with respect to branch instruc-
tions, and branch instructions cannot be
issued out-of-order with respect to other
instructions

FALSE

Parameter Resource Description Default Min. Max.

Microarchitecture Exploration Toolset

27

IPREFETCH_ENTRIES I-Prefetch Number of entries in instruction prefetch
buffer

4

IPREFETCH_LATENCY I-Prefetch Number of cycles to transfer from instruc-
tion prefetch buffer to processor and L1
instruction cache

1

IQ_SIZE Internal data struc-
ture

Maximum number of inflight operations 256 256

ITLB_ASSOC I-TLB1 Associativity of I-TLB1 1 1 2

ITLB_LG2ENTRIES I-TLB1 Log2 of number of entries in I-TLB1 7

ITLB_LG2SIZE I-TLB1 Log2 of the page size in I-TLB1 12

ITLB_LATENCY I-TLB1 Latency of I-TLB1 miss (miss latency) 4

I15CACHE_ASSOC L1.5-I cache L1.5 I-cache associativity 1 1 4

I15CACHE_LATENCY L1.5-I cache Latency for instruction cache miss
resolved in L1.5 instruction cache

4

I15CACHE_LG2ENTRIES L1.5-I cache Log2 of number of entries in L1.5 instruc-
tion cache

12

I15CACHE_LG2SIZE L1.5-I cache Log2 of line size in L1.5 instruction cache 7

I15PREFETCH_HIT_LATENCY L1.5-I cache Number of cycles to transfer first line
from L1.5 to instruction prefetch butter

5

I15PREFETCH_NEXT_LATENCY L1.5-I cache Number of cycles to transfer next line
(after hit) from L1.5 to instruction prefetch
buffer

3

I2CACHE_LATENCY L2-I cache Latency for instruction cache miss
resolved in L2 cache

7

I2PREFETCH_HIT_LATENCY L2-I cache Number of cycles to transfer first line
from L2 to instruction prefetch butter

8

I2PREFETCH_NEXT_LATENCY L2-I cache Number of cycles to transfer next line
(after hit) from L2 to instruction prefetch
buffer

4

I2TLB_ASSOC I-TLB2 Associativity of I-TLB2 4 1 4

I2TLB_LATENCY I-TLB2 Latency of I-TLB2 miss (miss latency) 40

I2TLB_LG2ENTRIES I-TLB2 Log2 of the number of entries in I-TLB2 10

I2TLB_LG2SIZE I-TLB2 Log2 of the page size in I-TLB2 12

L2CACHE_ASSOC L2 cache Associativity of L2 cache 4 1 4

L2CACHE_LG2ENTRIES L2 cache Log2 of the number of lines in L2 14

L2CACHE_LG2SIZE L2 cache Log2 of the size of each line in L2 7

LOG_NUM Execution units Number of CR logical units 1

LOG_RESV Execution units Length of CR logical issue queue 12

LOG_UNIT Execution units Identification of unit for CR logical opera-
tions

4

MEM_NUM Execution units Number of memory units 2

MEM_RESV Dispatch Length of memory issue queue 20

MEM_UNIT Execution units Identification of unit for memory opera-
tions

2

MEMQ_FLUSHES_IMMEDIATELY Execution units If TRUE, flush the instruction queue on
certain kinds of load/store conflicts

TRUE

MISPREDICT_RECOVERY_CYCLES Branch prediction Number of cycles required to recover
from a mispredicted branch

0

MTSR_PURGE_TLB Execution units If TRUE, MTSR instructions invalidate all
entries in DTLB-1

TRUE

Parameter Resource Description Default Min. Max.

Microarchitecture Exploration Toolset

28

MULTI_DECODE_STAGE Decode Number of additional stages in decode 2 0 2

NDEBUG Debugging support If TRUE, do not generate debugging
information

TRUE

NFA_ASSOC Next fetch address Associativity of NFA table 4 1 4

NFA_LATENCY Next fetch address Number of cycles to recover from NFA
misprediction. NFA prediction different
from branch prediction (misprediction
latency).

2

NFA_LG2ENTRIES Next fetch address Log2 of the number of entries in BTAC 12

NFA_NEXT_SEQ Next fetch address If TRUE, fetch next sequential address;
if FALSE, use NFA table

FALSE

NO_DECODE_STAGE Decode If TRUE, decode stage is merged with
other stage

FALSE

NO_PARTIAL_IFETCH I-fetch If TRUE, do not fetch instruction if all cor-
responding decomposed operations can-
not be placed in instruction queue or
instruction fetch buffer

TRUE

PERFECT_BRANCH_PREDICTION Branch prediction If TRUE, assume perfect prediction of all
branches

FALSE

PERFECT_COND_BRANCHES Branch prediction If TRUE, assumes perfect prediction of
Branch Conditional (bc) instructions

FALSE

PERFECT_CTR_BRANCHES Branch prediction If TRUE, assumes perfect prediction of
Branch Conditional to Count Register
instructions

FALSE

PERFECT_LINK_BRANCHES Branch prediction If TRUE, assumes perfect prediction of
Branch Conditional to Link Register
instructions

FALSE

PERFECT_LOAD_REORDER Load/store reorder
buffer

If TRUE, reorder only load operations
which are guaranteed not to conflict with
any store operation

FALSE

PERFECT_NFA_PREDICTION Next fetch address If TRUE, always fetch from predicted
address

FALSE

PHYS_MAX Rename Maximum number of physical registers
for any class

128

PREFETCH_NEXT_SEQ Prefetch If TRUE, prefetch next line after miss TRUE

PREFETCH_USING_NFA Prefetch If TRUE, prefetch next line based on NFA
table

FALSE

RECOVER_AT_EVALUATION Branch prediction If TRUE, branch misprediction forces
pipeline flush when branch is resolved
(instead of at branch retirement)

TRUE

RENAME_MAX Rename Maximum number of instructions
renamed

4

RENAME_MULTIPLE_BRANCHES Rename If TRUE, more than one branch instruc-
tion can be renamed per cycle

TRUE

REORDER_ALL_LOADS Load/store reorder
buffer

If TRUE, place all load operations in reor-
der buffer regardless of whether they
have been reordered or not

TRUE

REORDERQ_AT_DISPATCH Load/store reorder
buffer

If TRUE, allocate reorder buffer entry at
dispatch time;
if FALSE, allocate reorder buffer entry at
issue time

TRUE

Parameter Resource Description Default Min. Max.

Microarchitecture Exploration Toolset

29

REORDERQ_HIWATER Load/store reorder
buffer

Number of entries in the reorder buffer
for the case of entries allocated at issue
time

30

REORDERQ_IGNORE_CONFLICT Load/store reorder
buffer

If TRUE, do not generate exceptions for
conflicts encountered in reorder buffer

FALSE

REORDERQ_IGNORE_ID Load/store reorder
buffer

If TRUE, ignore age in reorder buffer
entries (that is, generate exception even
for conflicts with more recent -younger-
operations)

FALSE

REORDERQ_LENGTH Load/store reorder
buffer

Number of entries in the load/store reor-
der buffer

31 31

RETIRE_DELAY Retire Number of cycles between write-back and
retirement

1

RETIRE_GROUPS Retire If TRUE, retire only whole decode groups
of instructions

TRUE

RETIRE_MAX Retire Maximum number of instructions retired 8

RETIREQ_MAX Retire Length of the retirement queue
(RETIREQ_MAX+IBUF_MAX must be
less than 257)

128 255

RF_DELAY Read Number of cycles for register read stage 1

SPR_ARCH Rename Number of architected special-purpose
registers (SPRs)

32

SPR_PHYS Rename Number of physical special-purpose reg-
isters (SPRs)

64 36 128

STATS Results If TRUE, collect data during simulation
and print related histograms

TRUE

STORE_RETIRE_NOLOAD Retire If TRUE, write store to cache only if no
load operation was executed in that cycle

TRUE

STORE_RETIRE_PORTS Retire If TRUE, write store to cache if all ports
were not used by load operations

FALSE

STORE_RETIRE_SEPARATE Retire If TRUE, write store to cache using sepa-
rate store ports

FALSE

STOREQ_AT_DISPATCH Store queue If TRUE, allocate store queue entry at dis-
patch time;
if FALSE, allocate store queue entry at
issue time

TRUE

STOREQ_FWD_AVAIL Store queue Number of extra cycles to forward data to
pending load operation after data
becomes available in store queue

0

STOREQ_FWD_DELAY Store queue Number of extra cycles to forward data to
load operation from store queue on store
queue hit

2

STOREQ_HIWATER Store queue Number of entries in the store queue for
the case of entries allocated at issue time

30

STOREQ_IGNORE_CONFLICT Store queue If TRUE, ignore load hitting store entry in
store queue

FALSE

STOREQ_IGNORE_ID Store queue If TRUE, ignore age in store queue entries
(that is, generate exception even for con-
flicts with more recent -younger- opera-
tions)

FALSE

STOREQ_IGNORE_PARTIAL Store queue If TRUE, ignore partial overlaps in store
queue

TRUE

Parameter Resource Description Default Min. Max.

Microarchitecture Exploration Toolset

30

STOREQ_IGNORE_RETIRED Store queue If TRUE, do not try to match with retired
stores that are in store queue

FALSE

STOREQ_INORDER_CUTTOFF Store queue Number of entries reserved for in-order
store operations

4

STOREQ_LENGTH Store queue Number of entries in the store queue 31

STOREQ_SAME_CYCLE_ABORT Store queue If TRUE, flush pipe if overlapping load
and store operations issue in the same
cycle

FALSE

TIMELINE Results If TRUE, generate pipeline timeline FALSE

UNIFIED_2TLB I-TLB2 If TRUE, use second level D-TLB for
instructions

TRUE

USE_BITS_MEMQ Store queue If 0, use all address bits to detect whether
load overlaps with store. Otherwise, use
lower USE_BITS_MEMQ number of bits
to determine overlap.

0

USE_BLOCK_NFA Next fetch address If TRUE, use fetch block addresses in NFA
table, instead of individual instruction
addresses

FALSE

USE_IPREFETCH I-Prefetch If TRUE, perform instruction prefetch TRUE

USE_I15CACHE L1.5 I-cache If TRUE, use L1.5 instruction cache FALSE

USE_NONPIPE_FIX_OPS Execution units If TRUE, treat certain fix-point operations
as non-pipelineable

FALSE

USE_NONPIPE_FPU_OPS Execution units If TRUE, treat certain floating-point oper-
ations as non-pipelineable

FALSE

USE_PREDICATION I-fetch If TRUE, support predicated operations FALSE

USE_PREDICATION_MODE1 I-fetch If TRUE, support predicated operations
where the predicated ops are cracked dif-
ferently based on whether the predicate is
true or false

TRUE

USE_STOREQ_NODATA_CIRCULATE Execution units If TRUE, recirculate a load operation
when the load hits in the store queue but
data is not available

FALSE

USING_ARIA Simulation If TRUE, use instruction trace generated
dynamically by Aria

USING_CMPLX_UNIT Execution units If TRUE, support complex instruction
unit

FALSE

USING_FF Simulation If TRUE, use fF52 trace

USING_LOG_UNIT Execution units If TRUE, support CR logic operation unit FALSE

USING_SPECULATION Simulation If TRUE, simulate effects of mispredicted
instructions

VERIFY Debug FALSE

WIDE_ARCH_REG Rename If TRUE, support more than 64 archi-
tected registers per class

FALSE

Parameter Resource Description Default Min. Max.

Microarchitecture Exploration Toolset

31

Appendix B: Arguments to the predecoding step

The arguments to the predecoding step implemented by the tools dep_prep and ffdep_prep address
the following features of the processor model:

Latency: Number of cycles required by the execution of an operation. For the case of non-pipelined
operations, such as integer divide, this is also the occupancy of the corresponding func-
tional unit.

Availability: Number of cycles required before being able to use as input the result from an operation.
This argument is intended to capture the behavior of long bypasses, wherein the result
from an operation cannot be fed as input to another operation in the same cycle when the
result is produced.

Extra availability:Number of additional cycles required by some operations to allow using its results
as input to another operation. This argument is intended to capture the behavior of some
operations that deviate from the normal operation of a base instruction (such as a sign-
extended load with respect to a zero-extended load instruction). The value specified corre-
sponds to the extra cycles beyond the normal availability.

Functional unit: Assignment of operations to specific functional units. This is intended to capture the
ability to execute the various classes of operations either in dedicated or general-purpose
functional units.

I-cache: Organization of instruction cache: line size, alignment and size of fetch block.

I-expansion: Expansion (decomposition) of specific instructions into simpler instructions (also known
as “cracking” in the GP processor).

Predication: Features for evaluating predicated execution.

Table 5 lists all the arguments to dep_prep and ffdep_prep, which are passed as command-line flags (-x
arguments) using a keyword followed by a number when applicable. The value for each parameter used in
a simulation session is reported as part of the simulation output; each parameter is reported with an
explicit name instead of the keyword used as input to dep_prep. For each parameter, Table 5 gives the key-
word (shortname) and the longname. Note that there are some parameters reported at simulation time
which do not have an equivalent shortname; these parameters are inferred from the value of other param-
eters specified as input to dep_prep.

Microarchitecture Exploration Toolset

32

Table 5: Arguments to predecoding step (in long-name alphabetical order)

Shortname
(command-

line
keyword)

Longname
(reported in simulation

output)
Description Default

value

-h display summary of options
-aa N arithmetic_load_avail additional cycles for data from arithmetic load operation to

be available, beyond those of a regular (zero-extended) load
operation

0

-la N arithmetic_load_latency additional cycles for latency of arithmetic load operation,
beyond those of a regular (zero-extended) load operation

0

(internal use) arithmetic_subword_load_avail additional cycles for data from arithmetic subword load
operation to be available, beyond those of a regular (word-
long) arithmetic load operation (the value of this parameter
is the maximum among arithmetic_load_avail and
subword_load_avail)

0

(internal use) arithmetic_subword_load_latency additional cycles for latency of arithmetic subword integer
load operation, beyond those of a regular (word-long) arith-
metic load operation (the value of this parameter is the max-
imum among arithmetic_load_latency and
subword_load_latency)

0

-ab N branch_avail number of cycles for result from branch operation to be
available

1

-lb N branch_latency latency of branch operation 1
-ub k branch_unit unit where branch operations are performed 3
-dc N cache_size size of cache line (in words)

(reported as cache_align in dep-prep output)
32

(internal use) cache_mask (internal use only) 31
-ac N cmp_avail number of cycles for result from compare operation to be

available
1

-lc N cmp_latency latency of compare operation 1
-aL N crl_avail number of cycles for result from CR logical operation to be

available
1

-lL N crl_latency latency of CR logical operations 1
-uL k crl_unit unit where CR logical operations are performed 3
-aD N fdiv_avail number of cycles for result from floating-point divide oper-

ation to be available
21

-lD N fdiv_latency latency of floating-point divide operation 21
-da N fetch_align alignment at which start fetching blocks from a cache line

(in words)
4

(internal use) fetch_align_mask (internal use only) 3
-df N fetch_max maximum size of fetch block (in words) 4
-ax N fix_avail number of cycles for result from integer (fixed-point) opera-

tion to be available (other than multiply and divide)
1

-lx N fix_latency latency of fixed-point instruction 1
-ux k fix_unit unit where fixed-point (integer) operations are performed 0
-sall flag_all_split do not expand any operations expand
-scrl flag_crl_split do not expand CR logical operations expand
-sfpldu flag_fpldu_split do not expand floating-point load with update instructions expand
-sfpst flag_fpst_split do not expand floating-point store instructions expand
-sfpstu flag_fpstu_split do not expand floating-point store with update instructions expand
(internal use) flag_fxlda_split do not expand arithmetic load instructions expand

(fixed)
(internal use) flag_fxldau_split do not expand arithmetic load with update instructions expand

(fixed)
-sfxldu flag_fxldu_split do not expand fixed-point load with update instructions expand

Microarchitecture Exploration Toolset

33

-sfxst flag_fxst_split do not expand fixed-point store instructions expand
-sfxstu flag_fxstu_split do not expand fixed-point store with update instructions expand
(internal use) flag_fxstux_split do not expand store with update instructions expand

(fixed)
-a N flag_lg2arch_max log2 of the number of architected registers 5
-smult flag_mult_split do not expand any multi-source/target operations expand
-sshow flag_show_split show the result of all expansions no show
-pshow flag_show_pred enable display of predication disabled
-sspr flag_spr_split do not expand SPR operations expand
-sstring flag_string_split do not expand string operations expand
-sstu2 flag_stu3_split when expanding store with update operations, expand into

2 instead of 3 operations
expand
into 3

-g [2|3] flag_use_group enable alternative mechanisms for grouping instructions 1
(internal use) flag_wide_arch_reg (internal use) disabled
-aF N float_load_avail additional cycles for data from floating-point load operation

to be available, beyond those of an integer load operation
0

-lF N float_load_latency additional cycles for latency of floating-point load opera-
tions

0

-af N fpu_avail number of cycles for result from floating-point operation to
be available (other than divide, square-root)

3

-lf N fpu_latency latency of floating-point instructions (other than divide,
square-root,...)

3

-uf k fpu_unit unit where floating-point operations are performed 1
-ad N idiv_avail number of cycles for result from integer divide operation to

be available
8

-ld N idiv_latency latency of integer divide instructions 8
-uX k cmplx_unit unit where complex operations are performed 0
(internal use) idiv_unit unit where integer divide operations are performed; the

value of this parameter is inferred from icomplex_unit
0

-am N imul_avail number of cycles for result from integer multiply operation
to be available

5

-lm N imul_latency latency of integer multiply instruction 5
(internal use) imul_unit unit where integer multiply operations are performed; the

value of this parameter is inferred from icomplex_unit
0

-al N load_avail number of cycles for result from integer load operation to be
available

3

-ll N load_latency latency of load instruction 3
-ul k load_unit unit where load operations are performed 2
-o foo output_file name of output file
-p pred_do enable predicated execution disabled
-pdist k pred_dist predication distance 1
-pmode predication mode 0
-as N store_avail number of cycles for result from store operation to be avail-

able
3

-ls N store_latency latency of store instruction 3
-ae N subword_load_avail additional cycles for data from subword load operation to

be available, beyond those of a regular (word-long) load
operation

0

-le N subword_load_latency additional cycles for latency of subword integer load opera-
tions

0

-us k store_unit unit where store operations are performed 2

Table 5: Arguments to predecoding step (in long-name alphabetical order)

Shortname
(command-

line
keyword)

Longname
(reported in simulation

output)
Description Default

value

