
RC 21971 (98748) 20FEB01 Computer Science/Mathematics

Research Report

The NINJA Project: Making Java Work
for High Performance Numerical Computing

José E. Moreira, Samuel P. Midkiff, Manish Gupta
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598-0218

Pedro V. Artigas
School of Computer Science, Carnegie Mellon University

Pittsburgh, PA 15213-3891

Peng Wu, George Almasi
Department of Computer Science, University of Illinois at Urbana-Champaign

Urbana, IL 61801

���
Research Division
Almaden - Austin - Beijing - Delhi - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted

if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer

of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and

specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g.,

payment of royalties). Copies may be requested from IBM T. J. Watson Research Center [Publications 16-220 ykt] P. O. Box 218,

Yorktown Heights, NY 10598. email: reports@us.ibm.com

Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

This page intentionally left blank.

The NINJA Project: Making Java Work
for High Performance Numerical Computing

José E. Moreira � Samuel P. Midkiff Manish Gupta
IBM Thomas J. Watson Research Center

Pedro V. Artigas
School of Computer Science, Carnegie Mellon University

Peng Wu George Almasi
Department of Computer Science, University of Illinois

1 Introduction

When Java(TM) was first introduced, there was a perception (properly founded at the time) that its many
benefits came at a significant performance cost. In few areas were the performance deficiencies of Java so
blatant as in numerical computing. Our own measurements, with second-generation Java virtual machines,
showed differences in performance of up to one hundred-fold relative to C or Fortran. The initial experiences
with such poor performance caused many developers of high performance numerical applications to reject
Java out-of-hand as a platform for their applications.

Despite the rapid progress that has been made in the past few years, the performance of commercially
available Java platforms is not yet on par with state-of-the-art Fortran and C compilers. Programs using com-
plex arithmetic exhibit particularly bad performance. Furthermore, current Java platforms are incapable of
automatically applying important optimizations for numerical code, such as loop transformations and auto-
matic parallelization [12]. Nevertheless, our thesis is that there are no technical barriers to high performance
computing in Java. To prove this thesis, we have developed a prototype Java environment, called Numer-
ically INtensive JAva (NINJA), which has demonstrated Fortran-like performance can be obtained by Java
on a variety of problems. We have successfully addressed issues such as dense and irregular matrix compu-
tations, calculations with complex numbers, automatic loop transformations, and automatic parallelization.
Moreover, our techniques are straightforward to implement, and allow reuse of existing optimization com-
ponents already deployed by software vendors for other languages [9], lowering the economic barriers to
Java’s acceptance.

The next challenge for numerically intensive computing in Java is convincing developers and managers
in this domain that Java’s benefits can be obtained with performance comparable with highly tuned Fortran
and C. This treatise contributes to overcoming that challenge. Once it is accepted that Java performance
is only an artifact of particular implementations of Java, and that there are no technical barriers to Java
achieving excellent numerical performance, our techniques will allow vendors and researchers to quickly
deliver high performance Java platforms to program developers.�

The corresponding author may be reached at jmoreira@us.ibm.com, or P.O. Box 218, Yorktown Heights, NY 10598.

1

2 Java Performance Difficulties

Among the many difficulties associated with optimizing numerical code in Java, we identify three charac-
teristics of the language that are, in a way, unique: (i) exception checks for null-pointer and out-of-bounds
array accesses, combined with a precise exception model, (ii) the lack of regular-shaped arrays, and (iii)
weak support of complex numbers and other arithmetic systems. We discuss each of these in more detail.

The Java exception model: Java requires all array accesses to be checked for dereferencing via null-
pointer and out-of-bounds indices. An exception must be thrown if either violation happens. Furthermore,
the precise exception model of Java states that when the execution of a piece of code throws an exception,
all the effects of those instructions prior to the exception must be visible, and no effect of instructions after
the exception should be visible [6]. This has a negative impact on performance in two ways: (i) checking
the validity of array references contributes to runtime overhead, and (ii) code reordering in general, and loop
iteration reordering in particular, is prohibited, thus preventing almost all optimizations for numerical codes.
The first of these problems can be alleviated by aggressive hardware support that masks the direct cost of
the tests. The second problem is more serious and requires compiler support.

Arrays in Java: Unlike Fortran and C, Java has no direct support for truly rectangular multidimensional
arrays. Java allows some simulation of multidimensional arrays through arrays of arrays, but that is not an
ideal solution. Arrays of arrays have two major problems.

First, arrays of arrays are not necessarily rectangular. Determining the shape of an array of arrays is,
in general, an expensive runtime operation. Even worse, the shape of an array of arrays can change during
computation. Figure 1(a) shows an array of arrays being used to simulate a rectangular two-dimensional
array. In this case, all rows have the same length. However, arrays of arrays can be used to construct far
more complicated structures, as shown in Figure 1(b). We note that such structures, even if unusual for
numerical codes, may be natural for other kinds of applications. When a compiler is processing a Java
program, it must assume the most general case for an array of arrays unless it can prove that a simpler
structure exists. Determining rectangularity of an array of arrays is a difficult compiler analysis problem,
bound to fail in many cases. One could advocate the use of pragmas to help identify rectangular arrays.
However, to maintain the overall safety of Java, a virtual machine must not rely on pragmas that it cannot
independently verify, and we are back to the compiler analysis problem. It would be much simpler to
have data structures that make this property explicit, such as the rectangular two-dimensional arrays of
Figure 1(c).

Knowing the shape of a multidimensional array is necessary to enable some key optimizations that we
discuss below. As can be seen in Figure 1(b), the only way to determine the minimum length of a row is to
examine all rows. In contrast, determining the size of a true rectangular array, as shown in Figure 1(c), only
requires looking at a single length.

� ��
�	

�X

� ��
�	

 �

�X

� ��
�	�

�
��

�Y

Z
T

(a) (b) (c)

Figure 1: Examples of (a) array of arrays simulating a two-dimensional array, (b) array of arrays in a more
irregular structure, and (c) rectangular two-dimensional array.

2

Second, arrays of arrays may have complicated aliasing patterns, with both intra- and inter-array aliasing.
Again, alias disambiguation – that is, determining when storage locations are not aliased – is a key enabler
of various optimization techniques, such as loop transformations and loop parallelization, which are so
important for numerical codes. The aliasing problem is illustrated in Figure 1. For the arrays of arrays
shown in Figure 1(b), two different arrays can share rows, leading to inter-array aliasing. In particular, row
4 of array X and row 3 of array Y refer to the same storage, but with two different names. Furthermore,
intra-array aliasing is possible, as demonstrated by rows 0 and 1 of array X. For the true multidimensional
arrays shown in Figure 1(c) (Z and T), alias analysis is easier. There can be no intra-array aliasing for true
multidimensional arrays, and inter-array aliasing can be determined with simpler tests [12].

Complex numbers in Java: From a numerical perspective, Java only has direct support for real numbers.
Fortran has direct support for complex numbers. Both Fortran and C++ provide a means for efficiently
supporting other arithmetic systems. Support for complex numbers in Fortran and C++ comes from the
ability to represent low-cost data structures that can be efficiently allocated on the stack or in registers.
Java, in contrast, represents any non-primitive data type as a full fledged object. Complex numbers are
typically implemented as objects of a class Complex, and every time an arithmetic operation generates
a new complex value, a new Complex object has to be allocated. That is true even if the value is just
a temporary, intermediate result. An array of � complex numbers requires the creation of � objects of
type Complex. We have observed the largest differences in performance between Java and Fortran when
executing code that manipulates arrays of complex numbers. Because Complex objects are created at
each arithmetic operation, almost all of the execution time of an application with complex numbers is spent
creating and garbage collecting Complex objects used to hold intermediate values.

The three difficulties described above are at the core of the performance deficiencies of Java. They
prevent the application of mature compiler optimization technology to Java and, thus, prevent it from being
truly competitive with more established languages such as Fortran and C. We next describe our approach to
eliminating these difficulties, and we will show that, with the proper technology, the performance of Java
numerical code can be as good as with any other language.

3 Java Performance Solutions

Our research showed that the performance difficulties of Java could be solved by a careful combination
of language and compiler techniques. We developed new class libraries that “enrich” the language with
some important constructs for numerical computing. Our compiler techniques take advantage of these new
constructs to perform automatic optimizations. Above all, we were able to overcome the Java performance
problems mentioned earlier while maintaining full portability of Java across all virtual machines.

The Array package and semantic expansion: To attack the absence of truly multidimensional arrays in
Java, we have defined an Array package with multidimensional arrays (denoted in this text as Arrays, with
a capital A) of various types and rank (e.g., doubleArray2D, ComplexArray3D, ObjectArray1D).
See the sidebar The Array package for Java for further discussion. Element accessor methods, sectioning
operations, gather and scatter operations, and basic linear algebra subroutines (BLAS) are some of the
operations defined for the Array data types. The Arrays have an immutable rectangular and dense shape,
which simplifies testing for aliases and facilitates the optimization of runtime checks. The Array classes are
written in fully compliant Java code, and can be run on any JVM. This ensures that programs written using
the Array package are portable.

3

When Array elements are accessed via the get and set element operations, each element access will be
encumbered by the overhead of a method invocation, which is unacceptable for high performance comput-
ing. This problem is avoided by a compiler technique known as semantic expansion. In semantic expansion,
the compiler looks for specific method calls, and substitutes efficient code for the call. In the case of the
Array get and set operations, code identical to that generated for C or Fortran subscripting operations is
substituted for the call to the get or set accessor. This allows programs using the Array package to have high
performance when executed on JVM’s that recognize the Array package methods.

The Complex class and semantic expansion: A complex number class is also defined as part of the Array
package, along with methods implementing arithmetic operations on complex numbers. Again, semantic
expansion is used to convert calls to these methods into code that uses a value-object version of Complex
objects (containing only the primitive values, not the object headers). Any computation involving methods
that can be semantically expanded in this manner can now use complex values, with conversion to Complex
objects done in a lazy manner upon encountering a method or primitive operation that truly requires object-
oriented functionality. Thus, the programmer continues to treat complex numbers as objects (maintaining
the clean semantics of the original language), while our compiler transparently transforms them into value-
objects for efficiency.

Versioning for safe and alias-free regions: For Java programs written with the Array package, the com-
piler can perform simple transformations that eliminate the performance problems caused by Java’s precise
exception model. The idea is to create regions of code that are guaranteed to be free of exceptions. Once
these exception-free (also called safe) regions have been created, the compiler can apply traditional core-
reordering optimizations, constrained only by data and control dependences [12]. The safe regions are
created by versioning of loop nests. For each optimized loop nest, the compiler creates two versions – safe
and unsafe – guarded by a runtime test. This runtime test establishes whether all Arrays in the loop nest are
valid (not null), and whether all the indexing operations inside the loop will generate in-bound accesses.
If the tests passes, the safe version of the loop is executed. If not, the unsafe version is executed. Since the
safe version cannot throw an exception, explicit runtime checks can be omitted from the code.

We take the versioning approach a step further. Application of automatic loop transformation (and
parallelization) techniques by a compiler requires, in general, alias disambiguation among the various arrays
referenced in a loop nest. We rely on a key property of Java that two object references (the only kinds of
pointers allowed in Java) must either point to identical or completely non-overlapping objects. Use of the
Array package facilitates checking for aliasing by representing a multidimensional array as a single object.
Therefore, we can further specialize the safe version of a loop nest into two variants: (i) one in which
all multidimensional arrays are guaranteed to be distinct (no aliasing), and (ii) one in which there may be
aliasing between arrays. The safe and alias-free version is the perfect target for compiler optimizations. The
mature loop optimization techniques, including loop parallelization, that have been developed for Fortran
and C programs can be easily applied to the safe and alias-free region.

An example of the versioning transformations to create safe and alias-free regions is shown in Figure 2.
Figure 2(a) illustrates the original code, explicitly showing all null pointer and array bounds runtime
checks that are performed. Figure 2(b) illustrates the versioned code. A simple test for the values of the �
and � pointers and a comparison between loop bounds and array extents can determine if the loop will be
free of exceptions or not. If the test passes, then the safe region is executed. Note that the array references
in the safe region do not need any explicit checks. The array references in the unsafe region, executed if
the test fails, still need all the runtime checks. One more comparison is used to disambiguate between the
storage areas for arrays � and � . A successful disambiguation will cause execution of the alias-free version.
Otherwise, the version with potential aliases must be executed. At first, there seems to be no difference

4

between the alias-free version and the version with potential aliases. However, the compiler internally
annotates the symbols in the alias-free region as not being aliased with each other. This information is later
used to enable the various loop transformations.

for ����������������� � ++ !#"
/* code for $&% �(')�+*,�.-/% ��0213'�! with explicit checks */
chknull ��$4!5% chkbounds ���6!7'8�*,� chknull �.-9! % chkbounds ���:021;!<'�!=

if �>��$@?� null !#AB�.-C?� null ! A���ED�1F�>$9G length !HAI���B�J-KG length ! !#"
/* This region is free of exceptions */
if ��$@?�J-9!�"

/* This region is free of aliases */
for ��������� �L����� � ++ !#"M$&% �(')�+*B�.-K% ��0+13'�! ==
else "
/* This region may have aliases */
for ��������� �L����� � ++ !#"M$&% �(')�+*B�.-K% ��0+13'�! ===

else "
/* This region may have exceptions and aliases */
for ���#�J�N�O�L�>���3� ++ !#"

chknull ��$4!5% chkbounds ���.!P')�*B� chknull �.-9!6% chkbounds ���Q0�1R!<'S!==
(a) original code (b) code after safe and alias-free region creation

Figure 2: Creation of safe and alias-free regions.

Libraries for numerical computing: Optimized libraries are an important vehicle for achieving high-
performance in numerical applications. In particular, libraries provide the means for delivering parallelism
transparently to the application programmer.

There are two main trends in the development of high-performance numerical libraries for Java. In
one approach, existing native libraries are made available to Java programmers through the Java Native
Interface (JNI) [3]. In the other approach, new libraries are developed entirely in Java [2]. Both approaches
have their merits, with the right choice depending on the specific goals and constraints of an application.
For further information on a particular library for numerical computing in Java, see the sidebar Numerical
linear algebra in Java.

4 Implementation and Results

We have implemented our ideas in the NINJA prototype Java system based on the IBM xl family of compil-
ers. Figure 3 shows the high-level organization of these compilers. The front-ends for different languages
transform programs to a common intermediate representation called W-Code. The Toronto Portable Opti-
mizer (TPO) is a W-Code to W-Code transformer which performs classical optimizations, like constant prop-
agation and dead code elimination, and also high level loop transformations based on aggressive dataflow
analysis. Finally, the transformed W-Code is converted into optimized machine code by an architecture-
specific back-end. Semantic expansion of the Array package methods [1] is implemented within the IBM
High Performance Compiler for Java [11] (HPCJ). Safe region creation and alias versioning have been
implemented in the TPO.

We note that the use of a static compiler – HPCJ – represents a particular implementation choice. In
principle, nothing prevents the techniques described in this article from being used in a dynamic compiler.
Moreover, by using the quasi-static dynamic compilation model [10], the more expensive optimization and

5

analysis techniques employed by TPO can be done off-line, sharply reducing the impact of compilation
overhead.

HPCJ TOBEY

TPO

Other

Front End Portable Optimizations Back End

Language

W-Code W-Code

POWER/PowerPC

Code

Machine

Code

BytecodeJava Source

Source

javac

Backend

Other

Frontend

Figure 3: Architecture of the IBM xl compilers.

We used a suite of eight real and five complex arithmetic benchmarks to evaluate the performance
impact of our techniques. We also applied our techniques to a production data mining application. These
benchmarks and the data mining application are described further in [1] and [8]. The effectiveness of our
techniques was assessed by comparing the performance produced by the NINJA compiler with that of the
IBM Development Kit for Java version 1.1.6 and the IBM xlf Fortran compiler on a variety of platforms.

Sequential execution results: Results for the eight real arithmetic benchmarks, when running in strictly
sequential (single-threaded) mode, are summarized in Figure 4(a). The height of each bar is proportional to
the best Fortran performance achieved in the corresponding benchmark. The numbers at the top of the bars
indicate actual Mflops. For the Java 1.1.6 version, arrays are implemented as double[][]. The NINJA
version uses doubleArray2D Arrays from the Array package and semantic expansion. For six of the
benchmarks (matmul, microdc, lu, cholesky, bsom, and shallow) the performance of the Java version (with
the Array package and our compiler) is 80% or more of the performance of the Fortran version. This high
performance is due to well-known loop transformations, enabled by our techniques, which enhance data
locality. The Java version of tomcatv performs poorly because one of the outer loops in the program is not
covered by a safe region. Therefore, no further loop transformations can be applied to this particular loop.
The performance of fft is significantly lower than its Fortran counterpart because our Java implementation
does not use interprocedural analysis.

Results for complex arithmetic benchmarks: Results for the five complex arithmetic benchmarks (fft,
matmul, lu, cfd, and microac) are summarized in Figure 4(b). Again, the height of each bar is propor-
tional to the best Fortran performance achieved in the corresponding benchmark, and the numbers at the
top of the bars indicate actual Mflops. For the Java 1.1.6 version, complex arrays are represented using a
Complex[][] array of Complex objects. No semantic expansion was applied. The NINJA version uses
ComplexArray2D Arrays from the Array package and semantic expansion. In all cases we observe sig-
nificant performance improvements between the Java 1.1.6 and NINJA versions. Improvements range from
a factor of 35 (1.7 to 60.5 Mflops for cfd) to a factor of 75 (1.2 to 89.5 Mflops for matmul). We achieve Java
performance that ranges from 55% (microac) to 85% (fft and cfd) of fully optimized Fortran code.

Parallel execution results: Loop parallelization is another important transformation enabled by safe re-
gion creation and alias versioning. We report speedup results from applying loop parallelization to our

6

 matmul microdc lu cholesky bsom shallow tomcatv fft
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 7

340

403

 53

210
205

 45

154

165

 5

167
172

 47

175

216

 45

156

188

 50

 74

188

101104

191

Benchmarks

F
ra

ct
io

n
of

 b
es

t F
or

tr
an

 p
er

fo
rm

an
ce

Performance of real arithmetic benchmarks on RS/6000 260 (Mflops)

Java 1.1.6 NINJA Fortran 90

matmul microac lu fft cfd
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 2

 90

112

 1

 76

140

 2

 63

102

 2

 60

 72

 2

 60

 72

Benchmarks

F
ra

ct
io

n
of

 b
es

t F
or

tr
an

 p
er

fo
rm

an
ce

Performance of complex arithmetic benchmarks on RS/6000 590 (Mflops)

Java 1.1.6 NINJA Fortran 90

(a) real arithmetic benchmarks (b) complex arithmetic benchmarks

 matmul microdc lu cholesky shallow bsom tomcatv fft
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Benchmarks

S
pe

ed
up

Speedup from automatic parallelization on 4−processor POWER3

1 processor

2 processors

3 processors

4 processors

 Java Array x 1 Fortran Array x 2 Array x 3 Array x 4
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

25.8

109.2
120.0

185.5

247.3

292.4

Code version

S
pe

ed
up

 o
ve

r
be

st
 s

eq
ue

nt
ia

l J
av

a

Performance of data mining code on RS/6000 F50 (Mflops)

(c) speedup from automatic parallelization (d) applying the Array package to data mining

Figure 4: Performance results of applying our Java optimization techniques to various cases.

eight real arithmetic Java benchmarks. All experiments were conducted using the Array package version
of the benchmarks, compiled with our prototype compiler with automatic parallelization enabled. Speedup
results, relative to the single processor performance of the parallel code optimized with NINJA, are shown
in Figure 4(c). The compiler was able to parallelize some loops in each of the eight benchmarks. Significant
speedups were obtained (better than 50% efficiency on 4 processors) in six of those benchmarks (matmul,
microdc, lu, shallow, bsom, and fft).

Results for parallel libraries: We further demonstrate the effectiveness of our solutions by applying
NINJA to a production data mining code. In this case, we use a parallel version of the Array package which
uses multithreading to exploit parallelism within the Array operations. We note that the user application is
a strictly sequential code, and that all parallelism is exploited transparently to the application programmer.
Results are shown in Figure 4(d). The conventional (Java arrays) version of the application achieves only
26 Mflops, compared to 120 Mflops for the Fortran version. The single-processor Java version with the
Array package (bar Array x 1) achieves 109 Mflops. Furthermore, when run on a multiprocessor, the
performance of the Array package version scales with the number of processors (bars Array x 2, Array x

7

3, and Array x 4 for execution on 2, 3, and 4 processors, respectively), achieving almost 300 Mflops on 4
processors.

5 Conclusions

Our results show that there are no serious technical impediments to the adoption of Java as a major language
for numerically intensive computing. The techniques we have presented are simple to implement and allow
existing compiler optimizers to be exploited. Moreover, Java has many features like simpler pointers and
flexibility in choosing object layouts, which facilitate the optimization techniques we have developed. The
impediments instead are economic and social – an unwillingness on the part of vendors of Java compilers
to commit the resources to develop product-quality compilers for technical computing; the reluctance of
application developers to make the transition to new languages for developing new codes; and finally, the
widespread belief that Java is simply not suited for technical computing. The consequences of this situation
are severe: a large pool of programmers is being underutilized, and millions of lines of code are being
developed using programming languages that are inherently more difficult and less safe to use than Java.
The maintenance of these programs will be a burden on scientists and application developers for decades. It
is our hope that the concepts and results presented in this paper will help overcome these impediments, and
accelerate the acceptance of Java to the benefit of the technical computing community.

References

[1] P. V. Artigas, M. Gupta, S. P. Midkiff, and J. E. Moreira. High performance numerical computing
in Java: Language and compiler issues. In J. Ferrante et al., editors, 12th International Workshop
on Languages and Compilers for Parallel Computing, volume 1863 of Lecture Notes in Computer
Science, pages 1–17. Springer Verlag, August 1999. IBM Research Report RC21482.

[2] R. F. Boisvert, J. J. Dongarra, R. Pozo, K. A. Remington, and G. W. Stewart. Developing numer-
ical libraries in Java. Concurrency, Pract. Exp. (UK), 10(11-13):1117–29, September-November
1998. ACM 1998 Workshop on Java for High-Performance Network Computing. URL: http://
www.cs.ucsb.edu/conferences/java98.

[3] H. Casanova, J. Dongarra, and D. M. Doolin. Java access to numerical libraries. Concurrency, Pract.
Exp. (UK), 9(11):1279–91, November 1997. Java for Computational Science and Engineering - Sim-
ulation and Modeling II Las Vegas, NV, USA 21 June 1997.

[4] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi. Nonlinear array layouts for hi-
erarchical memory systems. In Proceedings of the 1999 International Conference on Supercomputing,
pages 444–453, Rhodes, Greece, 1999.

[5] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Solving Linear Systems on Vector
and Shared Memory Computers. Society for Industrial and Applied Mathematics, 1991.

[6] James Gosling, Bill Joy, and Guy Steele. The Java(TM) Language Specification. Addison-Wesley, 1996.

[7] F. G. Gustavson. Recursion leads to automatic variable blocking for dense linear algebra algorithms.
IBM Journal of Research and Development, 41(6):737–755, November 1997.

[8] J. E. Moreira, S. P. Midkiff, M. Gupta, P. V. Artigas, M. Snir, and R. D. Lawrence. Java programming
for high performance numerical computing. IBM Systems Journal, 39(1):21–56, 2000. IBM Research
Report RC21481.

8

[9] V. Sarkar. Automatic selection of high-order transformations in the IBM XL Fortran compilers. IBM
Journal of Research and Development, 41(3):233–264, May 1997.

[10] Mauricio J. Serrano, Rajesh Bordawekar, Samuel P. Midkiff, and Manish Gupta. Quicksilver: a quasi-
static compiler for Java. In Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’00), pages 66 – 82, Minneapolis, MN, USA, Oct. 2000.

[11] V. Seshadri. IBM high performance compiler for Java. AIXpert Magazine, September 1997. URL:
http://www.developer.ibm.com/library/aixpert.

[12] M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley, 2000.

A Sidebar: The Array package for Java

The Array package for Java (provisionally named com.ibm.math.array) provides the functionality
and performance associated with true multidimensional arrays. The difference between arrays of arrays,
directly supported by the Java Programming Language and Java Virtual Machine, and true multidimensional
arrays is illustrated in Figure 1. Multidimensional arrays (Arrays) are rectangular collections of elements
characterized by three immutable properties: type, rank, and shape. The type of an Array is the type of its
elements (e.g., int, double, or Complex). The rank (or dimensionality) of an Array is its number of
axes. For example, the Arrays in Figure 1 are two-dimensional. The shape of an Array is determined by the
extent of its axes. The dense and rectangular shape of Arrays facilitate the application of automatic compiler
optimizations.

Figure 5 illustrates the class hierarchy for the Array package. The root of the hierarchy is an Array
abstract class (not to be confused with the Array package). From the Array class we derive type-specific
abstract classes. The leaves of the hierarchy correspond to final concrete classes, each implementing an
Array of specific type and rank. For example, doubleArray2D is a two-dimensional Array of double
precision floating-point numbers. The shape of an Array is defined at object creation time. For example,

intArray3D A = new intArray3D(m,n,p);

creates an TVUXWYU�Z three-dimensional Array of integer numbers. Defining a specific concrete final class
for each Array type and rank effectively binds the semantics to the syntax of a program, enabling the use of
mature compiler technology that has been developed for languages like Fortran and C.

Arrays can be manipulated element-wise or as aggregates. For instance, if one wants to compute a two-
dimensional Array [of shape T\U]W in which each element is the sum of the corresponding elements of
Arrays ^ and _ , also of shape T`UJW , then one can write either

for (int i=0; i<m; i++)
for (int j=0; j<n; j++)

C.set(i,j,A.get(i,j)+B.get(i,j));

or

C = A.plus(B);

There are subtle differences between the two forms. The latter (aggregate) form has Array semantics: all
elements of ^ and _ are first read, the addition is performed, and only then are the resulting values written
to the elements of [. The first (element-wise) version computes one element of [at a time. If [happens
to share storage with ^ and/or _ , the resulting values of elements of [may differ from the aggregate form.

9

Array

a�aNadoubleArray

doubleArray3D

doubleArray2D

doubleArray1D

ComplexArray

ComplexArray3D

ComplexArray2D

ComplexArray1D

other Array types

Figure 5: Simplified partial class hierarchy chart for the Array package.

Both element-wise and aggregate forms have their merits, and the Array package is designed so that the two
forms can be aggressively optimized as with state-of-the-art Fortran compilers.

The code snipets above also show that syntactic support for the multidimensional arrays in the Array
package would increase their usability. For example, it would be clearer to write

C[i,j] = A[i,j] + B[i,j];

for the body of the loop and

C = A + B;

for the aggregate form. These issues are orthogonal to the usefulness of the library for enabling compiler
optimizations, but will increase programmers acceptance of the package.

The Array package for Java is currently going through a standardization process through the Java Com-
munity Process (JSR 083 - http://java.sun.com/aboutJava/communityprocess/jsr/jsr 083 multiarray.html).
The standardization is an important step in making Java practical for numerical computing. We note that
the current naming conventions for the Array package do not follow recommended Java practice (e.g., some
classes start with lower case letters). We expect this will change with the standardization process.

B Sidebar: Numerical linear algebra in Java

Numerical linear algebra operations are important building blocks for scientific and engineering applica-
tions. Many problems in those domains can be expressed as a system of linear equations. Much work has
been done, by industry, academia, and government, to develop libraries of routines that manipulate and solve
these diverse systems of equations using numerical linear algebra. The Basic Linear Algebra Subprograms
(BLAS) and the Linear Algebra Package (LAPACK) are two popular examples of such libraries available to
Fortran and C programmers [5]. Part of our work in optimizing Java performance for numerically intensive
computing involved the development of a linear algebra library for Java. This library is part of the Array
package for Java. We call it Java BLAS.

10

We chose to develop this library entirely in Java, with no native code components. We took advantage
of Java’s object oriented features to arrive at a design that is easy to maintain, portable, and achieves high
performance. In fact, the implementation of our linear algebra library in Java allowed us to pursue new
optimization techniques.

Linear algebra algorithms (e.g., solving for vector b in the equation cdbfehg) are expressed in terms of
vector and matrix operations. For that reason, we defined two interfaces, BlasVector and BlasMatrix
that define the behavior of vectors and matrices, respectively. For example, any implementation of the
BlasMatrix interface must provide methods gemm (for matrix multiplication), trsm (for solution of
triangular systems), and syrk (for update of symmetric matrices). Linear algebra algorithms are then
expressed strictly in terms of the methods defined by the BlasVector and BlasMatrix interfaces.
This approach is particularly appropriate for the implementation of linear algebra algorithms in recursive
form [7].

The one- and two-dimensional floating-point Arrays in the Array package (namely floatArray1D ,
floatArray2D, doubleArray1D , doubleArray2D, ComplexArray1D, ComplexArray2D)
implement the BlasVector and BlasMatrix interfaces, respectively. Therefore, a single instance of a
linear algebra algorithm works for single precision, double precision, and complex floating-point numbers.
This results in our linear algebra library being much smaller than equivalent implementations in C and For-
tran. We have been able to achieve very respectable performance with our all-Java implementation. Figure 6
compares the performance of our Java BLAS library and the highly tuned ESSL product when performing
the SGEMM BLAS operation (i.e., computing ijelkmiXnpomcCqsr for single precision floating-point matricesc , r , and i). We observe that the Java BLAS version achieves 80% of ESSL performance and 75% of the
machine peak performance (800 Mflops).

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

Problem size

M
flo

ps

ESSL and Java BLAS performance for SGEMM on RS/6000 260

ESSL PWR3
Java BLAS PWR3

Figure 6: Performance results for ESSL and Java BLAS for SGEMM operation.

The area where Java allowed us to pursue new optimization techniques is in the exploitation of memory
hierarchies, the multilevel cache structure of most current machines. It has been known for a while that
neither the column major format of Fortran nor the row major format of C for storing multidimensional
arrays is optimal for linear algebra algorithms. Java in general, and the Array package in particular, hide
the specific memory layout of an array. Therefore, we are free to organize arrays in any form that we find
convenient, totally transparent to the application programmer. In particular, we have experimented with a
block recursive storage format [4]. The idea behind block recursive formats is illustrated in Figure 7. We
start by dividing the array into two blocks and laying each block contiguous in memory. We repeat the
partitioning for each block until we arrive at some convenient block size (e.g., that fits into level 1 data

11

cache). Our experiments with a block recursive storage format have shown performance improvements of
approximately 10% above and beyond what is achieved by already highly optimized code.

1 2

1

2

3

4

1 2

3 4

5 6

7 8

1

2

5

6

3

4

7

8

9

10

13

14

11

12

15

16

Figure 7: Illustration of the recursive block format.

12

