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Abstract

In recent years, there has been a significant surge in the use of biometrics for user au-
thentication applications because biometrics-based authentication offers several advan-
tages over knowledge and possession-based methods such as password/PIN-based sys-
tems. However, it isimportant that such biometrics-based authentication systems are de-
signed to withstand different sources of attacks on the system when employed in security-
critical applications, and more so in unattended remote applications such as e-commerce
applications. In this paper we outline the inherent strengths of a biometrics-bared authen-
tication scheme and then discuss the security holes in these systems. Finally, we present
new solutions for overcoming some of the remaining weak Zinks in such systems.

1 Introduction

Reliable user authentication is becoming an increasingly important task in the web-enabled
world. The consequences of an insecure authentication method in a corporate or enterprise
environment can be catastrophic, often leading to loss of confidential information, service de-
nials, and issues with integrity of data and information contents. The value of a reliable user
authentication is not limited to just computer access. Many other applicationsin everyday life
also require user authentication, e.g., banking, immigration, and physical access control, and
could benefit from enhanced security.

The prevailing techniques of user authentication that involve passwords and user ids, or
identification cards with PINs, suffer from several limitations. One of the main problems with
such approaches is that the authentication subsystem can be fooled relatively easily. Pass-
words and PINs can beillicitly acquired relatively easily by direct covert observation. Once
an intruder has the password, he has total access to the associated resources. The other major
problem is that there is no way to positively link the usage of the system or service to the actua
user, i.e., theissue of “repudiation”. For example, a user id and password can easily be shared



Method Examples Properties
What you know Userid Shared
Password Many passwords are easy to guess
PIN Forgotten
What you have Cards Shared
Badges Can be duplicated
Keys Lost or stolen
What you know and ATM card + PIN Shared
what you have PIN is a weak link
(Writing the PIN on the card)
Something unique Fingerprint Not possible to share
about the user Face Repudiation unlikely
Iris Forging is difficult
Voice print Can’t be lost or stolen

Table 1: Existing user authentication techniques.

with a colleague or a secretary. When this happens there is no way for the system to know who
is actually logged in. Similarly, the critical information about the transaction such as the credit
card number and the amount are sent over the web using secure encryption methods. However,
the present practice is not capable of assuring that the transaction was initiated by the right-
ful owner of the credit card. To summarize, in the modern networked system environment,
an authentication policy based on a simple combination of user id and password has become
inadequate.

Fortunately automated biometrics technology in general, and fingerprints in particular, can
provide a much more accurate and reliable user authentication method. Biometrics is a rapidly
advancing field that is concerned with identifying a person based on their physiological or
behavioral characteristics. Examples of automated biometrics include fingerprints, faces, iris
and speech. User identification and authentication methods can be broadly classified into three
categories {12] as shown in Table 1. Because a biometric is an intrinsic property of some
individual, they are difficult to surreptitiously duplicate and nearly impossible to share.

A big advantage of biometrics signals are that they are much longer in size than a password
or pass phrase. They range from several hundred bytes to over a megabyte. Typically, the
information content of such signals is correspondingly higher as well. Simply extending the
length of passwords to get equivalent bit strength presents significant usability problems. It is
nearly impossible to remember a 2K phrase and it would take an annoyingly long time to type
such a phrase in (especially without errors). Fortunately, automated biometrics can provide
the security advantages of long passwords while retaining the speed and simplicity of short
passwords.

While automated biometrics can help to alleviate the problems associated with the existing
methods of user authentication, hackers will still find the weak points in the system and attack
it at those points. Password systems are prone to brute-force dictionary attacks. Biometrics
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systems, on the other hand, require substantially more effort to attack in a brute-force manner.
Although standard encryption techniques are useful in many ways to prevent a breach of secu-
rity, there are several new types of attacks possible in the biometrics domain. If biometrics is
used as a supervised authentication tool, this may not be a concern. But in remote unattended
application, such as web-based e-commerce applications, hackers may have the opportunity
and enough time to make several attempts before being noticed or even physically violate the
remote client.

Another new problem with biometric authentication systems concerns the re-issuance of
identity tokens. Once the user authentication systems start using private details of users, there
is always a privacy concern about how that information can be misused. For authentication
systems based on physical possessions, like keys and badges, a previous token can be easily
canceled and the user can be reassigned a new identification object. Similarly, logical enti-
ties, such as user id and passwords, can be changed as often as required. Yet, the user only
has limited number of biometrics such as one face, ten fingers, and two eyes. If these are
compromised, the user may quickly run out of biometrics for authentication.

In this paper, we will discuss in more detail the problems unique to biometric authentica-
tion systems and propose solutions to several of the problems. Though our analysis is very
general and can be extended to other biometrics, we will focus on fingerprint recognition as an
example throughout this paper. In Section 2, we detail the stages of fingerprint authentication
and machine representations of fingerprint. This forms the basis for the following discussions.
In Section 3, we use a pattern recognition model of a generic biometrics system to help iden-
tify the possible attack points. Section 4 analyzes the power of a minutia-based fingerprint
system in terms of probability of a brute force attack being successful. Section 5 proposes
several techniques to alleviate some of the other threats described in Section 3. Section 6 intro-
duces the concept of “cancelable biometrics” and discusses their application. Finalty, Section 7
recapitulates the issues discussed and summarizes the new approaches suggested

2 Fingerprint recognition

A brief introduction to fingerprint authentication is provided as background to the material
presented in subsequent sections. Readers familiar with fingerprint recognition systems can
skip to the next section.

Fingerprints are unique to a person and remain invariant over the lifetime of a subject. As
the first step in the process, a fingerprint impression is acquired, typically using an inkless
scanner. Several such scanning technologies are available [15]. Figure 1 (a) shows a scanned
fingerprint obtained using an optical sensor. A typical scanner digitizes the fingerprint impres-
sion at 500 dpi with 256 gray levels per pixel. The digital image of the fingerprint consists of
several unique features in terms of ridge bifurcations and ridge endings collectively referred to
as minutiae.

The next step is to locate these minutiae features in the fingerprint image, as shown in
Figure 1(b), using an automatic feature extraction algorithm. Minutiae features are commonly
represented by their location (X, Y') and the ridge direction at the location of the minutiae (#).
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(b)

Figure 1: Fingerprint recognition. (a) input image; (b) features.

However, due to sensor noise and other variability in the imaging process, the feature extraction
stage may miss some minutiae and may generate spurious minutiae. Due to the elasticity of
the human skin, the minutiae may be randomly distorted of the finger impression.

In the final stage, the matcher subsystem attempts to arrive at a degree of similarity between
two sets of features after compensating for the rotation, translation and scale. This similarity is
ofter expressed as a score. Based on this score, a final decision of match or no-match is made.
Often the score is simply a count of the number of the minutiae that are in correspondence. In a
number of countries, 15 to 17 correspondences (performed by a human expert) are considered
legally binding evidence of identity.

The operational issues in an automated fingerprint identification system (AFIS) are some-
what different from those in a more traditional password based system. First, there is a system
performance issue known as the “fail to enroll” rate to be considered. For instance, some people
have very faint fingerprints (or no fingers at all) which makes the system unusable for them.
This has no analog in a password system. Then there is the fact that in a biometrics-based
system the matching decision is not clear-cut. A password system always provides a correct
response — if the passwords match, it grants access but otherwise refuses access. However, in
a biometrics system, the overall accuracy depends on the quality of input and enroll data along
with the basic characteristics of the underlying feature extraction and matching algorithm.

For fingerprints and biometrics in general, there are two basic types of errors, namely false
accept (FAR), and false reject (FRR). If a non-matching pair of fingerprints is accepted as a
match, it is called a false accept. On the other hand, if a mated pair of fingerprints is rejected
by the system, it is called a false reject. The error rates are a function of the threshold as shown
in the Figure 2. Often the interplay of the two errors is presented by plotting FAR against
FRR with the decision threshold as the free variable. This plot is called as the ROC (Receiver
Operator Curve). The two errors are complimentary in the sense that if one makes an effort to
lower one of the errors by varying the threshold, the other error rate automatically increases.

4



Tireshukd

Match score
Faigs Rejact Fulne Accapt

Figure 2: Error tradeoff in a biometrics system.

In a biometrics-based system, the relative false accept and false reject rates can be set
by choosing a particular operating point (i.e., matching threshold). To provide high security,
biometrics systems are usually operated at a low FAR (vs. an equal error rate). Typical error
rates for a fingerprint system are in the range of 10~° for false accept and 10~* for false reject
[14]. Thus, the probability that the fingerprint signal is supplied by a genuine person given
a good matching score is significantly high. This confidence generally provides better non-
repudiation support than passwords do.

3 Pattern recognition based threat model

A generic biometrics system can be cast in the framework of a pattern recognition system.
The stages of such a generic system are shown in Figure 3. Excellent introductions to such
automated biometrics systems can be found in [12, 13].

In general, the first stage involves biometrics signal acquisition from the user (e.g., the
inkless fingerprint scan). The acquired signal typically varies significantly from presentation
to presentation; hence, pure pixel-based matching techniques do not work reliably. For this
reason, the second signal processing stage attempts to construct a more invariant representation
of this basic input signal (e.g., in terms of fingerprint minutiae). The invariant representation is
often a spatial domain characteristic or a transform domain (frequency) domain characteristic,
depending on the particular biometric.

During enrollment of a subject in a biometrics authentication system, an invariant template
is stored in a database in order to represent the particular individual. To authenticate the user
against a given ID, the corresponding template is retrieved from the database and matched
against a new template derived from a newly acquired input signal. The matcher arrives at a
decision based on the closeness of these two templates while taking into account geometric,
lighting and other signal acquisition variables.

Note that password-based authentication systems can also be put in this framework. The
keyboard becomes the input device. The password encryptor can be viewed as the feature ex-
tractor and the comparator as the matcher. The template database is equivalent to the encrypted
password database.
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Figure 3: Possible attack points in a generic biometrics-based system.

As described in the following, such systems can be attacked at eight sources. In addition,
Schneier describes many other types of abuses of biometrics in [3].

1.

Presenting fake biometrics at the sensor: In this mode of attack, a possible reproduction
of the biometrics is presented as input to the system. Examples include a fake finger, a
copy of a signature, a face mask.

. Resubmitting of old digitally stored biometrics signals: In this mode of attack, a recorded

signal is replayed to the system bypassing the sensor. Examples include presentation of
an old copy of fingerprint image or recorded audio signal of a speaker.

Overriding the feature extraction process: The feature extractor could be attacked with a
Trojan horse so that it would produce feature sets preselected by the intruder.

Tampering with the biometrics feature representation: After the features have been ex-
tracted from the input signal, these could be replaced with a different synthesized feature
set (assuming the representation is known). Often the two stages of feature extraction
and matcher are inseparable and this mode of attack is extremely difficult. However, if
minutiae are transmitted to a remote matcher (say, over the Internet), this threat is very
real. One could snoop on the TCP/IP stack inside the computer and alter certain packets.

Overriding the matcher output: The matcher is attacked so that it always directly pro-
duces artificially high or low match scores.

Tampering with stored templates: The database of enrolied templates is available locally
or remotely. This database might also be distributed over several servers. The stored
template attacker could try to modify one or more templates in the database, which could
result in authorization of a fraudulent individual or, at least, denial of service for the
person associated with the corrupted template.

Attacking the channel between the stored templates and the matcher: The templates
from the stored database are sent to the matcher through a channel. This channel could
6



be attacked to change the contents of the templates before these are received by the
matcher,

8. Overriding the matcher: If the final match decision can be overridden with the choice
of result from the hacker, this could become quite dangerous. Even if the actual pat-
tern recognition system has excellent perfortmance characteristics, it has been rendered
useless by the simple exercise of overriding the match result.

There exist several security techniques to thwart attacks at these various points. For in-
stance, finger conductivity or fingerprint pulse at the sensor can stop simple attacks of point 1.
Encrypted communication channels [2] can eliminate at least remote attacks at point 4. How-
ever, even if the hacker cannot penetrate the feature extraction machine, the system is still
vulnerable. The simplest way to stop attacks at points 5, 6 and 7 is to have the matcher and
database reside at a secure location. Of course, even this cannot prevent attacks in which there
is collusion. Cryptography again brings a solution to point 8.

We observe that the threats outlined in Figure 3 are quite similar to the threats to password-
based authentication systems. For instance, all the channel attacks remain the same. One
difference is that there is no “fake password” input detector equivalent to the fake biometrics
detection processes to counter threat 1 (although, perhaps if the password was in some standard
dictionary it could be deemed “fake™). Furthermore, in a password or token-based authentica-
tion system, no attempt is made thwart replay attacks (since there is no variation of the “signal”
from one presentation to another). However, in an automated biometrics-based authentication
system, one can go the extent of checking liveliness of the input signal.

4 Brute force strength analysis

In this section we attempt to analyze the probability that a brute force attack consisting of a set
of synthetic fingerprint minutiae (attack point 4) will succeed in matching a given stored tem-
plate. Note that generating all possible images (attack point 2) to guess the original matching
fingerprint image would have an even larger search space and consequently would be much
more difficult.

4.1 Naive model

For the purpose of analyzing the “naive” minutiae brute force dictionary attack, we assume the
following.

e The system uses a minutia-based matching method and the number of paired minutiae
reflects the degree of match.

o The image size, S = 300 x 300.

o A ridge plus valley spread, T = 15 pixels.
7



Figure 4: Probability of a successful brute force attack.

o The total number of possible minutiae sites, (K = (S/T)%) = 20 x 20 = 400.
¢ The number of orientations allowed for the ridge angle at a minutiae point, d = 4, &, 16.

e The minimum number of corresponding minutiae in query and reference template, (N,) =
10,12, 14,16, 18.

_ /K
Then, possible ways to place N, minutiae in K possible locations is ( N ) ;

q
and, possible ways to assign directions to each minutiae is d™e

Hence, the total number of possible minutiae combinations equals

2 x (@) M
()

q

Note that it is assumed that the matcher will tolerate shifts between query and reference
minutiae of at most a ridge and valley pixel width, and of an angle by up to half a quantization
bin (=£45 deg for d = 4).

Plugging these values into Expression (1), for d = 4 and N, = 10, the probability of
randomly guessing a correct feature set is 3.6 x 10~26 = 285, The log, of the probability
of randomly guessing a correct feature set through a brute force attack for different values of
d and N, is plotted in Figure 4. This is the equivalent number of bits in a fingerprint when
considered as a password. This should convince the readers that a brute force attack in the
form of a random image or a random template to impersonate an individual will, on average,
require a very large number of attempts before succeeding.

The forgoing analysis assumes that each fingerprint has exactly N, minutiae, that only N,
minutiac are generated and that all of these minutiae have to match. A realistic number is
much lower because one can generate more than N, o query minutiae, say, Nyq, and only some
fraction N, of these must match N, minutiae of the reference fingerprint. This leads to a factor

8



of about (N""“‘) or a loss of nearly 64 bits in strength for N, = 10 with Ny, = 50. The
equivalent strength thus is closer to 20 bits for this parameter set. A more sophisticated model,
which carefully incorporates this effect is described below.

4.2 Complex model

In the naive approach, we made several simplistic assumptions. In the complex model, we will
make assumptions that are more realistic and analyze the brute force attack model in a more
realistic fashion.

Let the reference print have N, minutiae, each minutiae have d possible directions and one
of K possible location. The probability then that a randomly generated minutiae will match
one of the minutiae in the reference print in both location and direction can be approximated
by:

N,
Dest = K xd (2)

In a comprehensive model one would really need to model the probability distribution of
minutiae locations relative to the center of the print (more likely in the middle). In addition, the
directional proclivities based on position (tend to swirl around the core) need to be modeled.
In this model, however, we will ignore such statistical correlation between minutiae and use
this somewhat simpler formulation.

While the expression above is valid for the first generated minutiae, when creating the full
synthetic sct it is undesirable to generate two minutiae with the same location. So after j — 1
minutiae have been generated, the probability that the j** minutiae will match could be as high
as the following {assuming the previous j — 1 all fail):

< Al
P> +1d
So to be conservative, while generating N, random minutiae we can assume each of the
minutiae has matching probability:

3

P=P =T _N,+1)d
For typically parameters values like K = 400, N, = N, = 50 and d = 4 we find p.s =
0.03125 while py; = 0.03561 (14% higher). This is a relatively small effect in itself, but

important in the overall calculation.
Therefore, the probability of getting exactly ¢ of N, generated minutiae to match is about:

(4

Pthresh = pt(l - p)Nq—t (5)

This derivation breaks down for small K because the minutiae matching probability changes
depending on how many other minutiae have already been generated as well as on how many
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of those minutiae have matched. However, for the large K’s typically encountered (e.g., 400)
it is reasonably close.

Now there are a number of ways of selecting which ¢ out of the N, minutiae in the reference
print are the ones that match. Thus, the total match probability becomes:

N, _
Pezact = ( ¢ )pt(l _p)Nq t (6)
But matches of m or more minutiae typically count as a verification, so we get:
N,
S (N: -
Pﬂer = Z ( ¢ )pt(l _p)Nq ¢ (7)
t=m
For convenience, let us assume that V, = N, = N, so the above equation can be rewritten
as:
Ne /N
P‘UET' = Z ( )pt(l _p)N_t' (8)
t=m t

Since p is fairly small in our case, we can use the Poisson approximation to the above
binomial probability density function:

N — N,
(Np)te” P
P‘uer = t_Z oy (9)

This summation is usually dominated by its first term (¢ = m). For typical parameter
values the second term is 10 to 20 times smaller than the first. Neglecting all but the first term
may make the overall estimate approximately 20calculations this is fine. Thus, we rewrite the
expression as simply:

(Np)me—Np (10)
m!

Because m is moderately large, we can use Stirling’s approximation for the factorial and
further rewrite the equation as:

Pverz

(Np)re~e

P, ver — (1 1)
(2mrm )e—mmm
and regrouping to emphasize the exponential dependency:
e NP reNp\™
Puer = bl 12
ver — ( — ) (12)

This P, is plotted in Figure 5 for N = 40, d = 4, K = 400 with m (the number of
minutiae required to match) between 10 and 35. For a value of rn = 10, we have about 22 bits
of information (close to the prediction of the revised naive model). For the legal threshold of
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Figure 5: Bit strength in the complex model.

m = 15, we have around 40 bits of information (about 140 times the population of the earth).
For a more typical value of m = 25, we have roughly 82 bits of information content in this
representation. This is equivalent to a nonsense password which is 16 characters long (like
“m4yus78xpmks3bc9”).

We make two important observations. First, in both the naive and more sophisticated mod-
els, it can be seen that adding extra feature information at every minutiae (e.g., raising d)
increases the strength of the system significantly. Similarly, if the spatial domain extent is
increased or the location tolerance decreased {e.g., by raising K), the strength also increases.
Both these factors directly affect p, the single minutiae matching probability, which shows up
inside the exponential term of P,.,. Second, there is also a strong dependence on NV, the overall
number of minutiae in a fingerprint. For the best security, this number needs to be kept as low
as possible (i.e., spurious minutiae are bad). This is one reason why the probability of break-
ins is much smaller when good quality fingers are enrolled than when poor quality images are
used.

5 New security enhancements

Automated biometrics can play an important role in secure user authentication. However, it
comes with a new set of problems as pointed out in Section 3. We try to alleviate some of these
problems with novel solutions described in this section. In particular, we will address the issue
of replay attacks, i.e., the detection of stale signals (attack points 2 and 4 in Figure 3).
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5.1 WSQ-based data hiding

Often, a biometrics signal acquired in the field is compressed and transmitted to the authen-
tication server. The authentication procedure is carried out at this server. In both Web-based
and other on-line transaction processing systems, it is undesirable to send uncompressed fin-
gerprint images to the server due to bandwidth limitations. A typical fingerprint image is in the
order of 512 x 512 pixels with 256 gray levels, resulting in an image size of 256 Kbytes. This
would take nearly 40 seconds to transmit at 53 Kbaud. Unfortunately, many standard com-
pression methods have a tendency to distort the high-frequency spatial structural ridge features
of a fingerprint image. This has lead to several research proposals regarding domain-specific
compression methods. As a result, an open wavelet-based image compression scheme (WSQ)
proposed by the FBI [4] has become the de facto standard in the industry because of its low
image distortion even at very high compression ratios (over 10 : 1).

Typically, the compressed image is transmitted over a standard encrypted channel as a
replacement for (or in addition to) the user’s PIN. Yet, because of the open compression stan-
dard, transmitting a WSQ compressed image over the Internet is not particularly secure. If
a compressed fingerprint image bitstream can be freely intercepted (and decrypted), it can be
decompressed using readily available software. This potentially allows the signal to be saved
and fraudulently reused (attack point 4 in Figure 3).

One way to enhance security is to use data-hiding techniques to embed additional informa-
tion directly in compressed fingerprint images. For instance, if the embedding algorithm re-
mains unknown, the service provider can look for the appropriate standard watermark to check
that a submitted image was indeed generated by a trusted machine (sensor). Several tech-
niques have been proposed in the literature for hiding digital watermarks in images. Bender et
al. [7] and Swanson et al. [10] present excellent surveys of data-hiding techniques. Petitcolas et
al. [11] provide a nice survey and taxonomy of information hiding techniques. Hsu and Wu [6]
describe a method for hiding watermarks in JPEG compressed images. Most of the research,
however, addresses issues involved in resolving piracy or copyright issues, not authentication.

Our approach is motivated by the desire to create online fingerprint authentication systems
for commercial transactions that are in particular secure against replay attacks. To achieve this,
the service provider issues a different verification string for each transaction. The string is
mixed in with the fingerprint image before transmission. When the provider receives the image
back it can be decompressed and the image can be checked for the presence of the correct
one-time verification string. This guards against resubmission of stored images. The method
proposed here hides such messages with minimal impact on the decompressed appearance of
the image. Moreover, the message is not hidden in a fixed location (which would make it more
vulnerable to discovery) but is, instead, deposited in different places hased on the structure of
the image itself. Although our approach is presented in the framework of fingerprint image
compression, it can be easily extended to other biometrics.

Our information hiding scheme works in conjunction with the WSQ (Wavelet Scalar Quan-
tization) fingerprint image encoder and decoder, which are shown in Figure 6(a). In the first

“step of the WSQ compression, the input image is decomposed into 64 spatial frequency sub-
bands using perfect reconstruction multirate filter banks. The filters are implemented as a pair
12
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of separable 1D filters. The two filters specified for encoder 1 of the FBI standard are plotted
in Figure 6(b) and (c). The subbands are the filter outputs obtained after a desired level of
cascading of the filters as described in the standard (see Figure 7(b)). For example, subband 25
corresponds to the cascading path of “00,10,00,11° through the filter bank. The first digit in
each binary pair represents the row operation index. A zero specifies lowpass filtering on the
row (column) while a one specifies highpass filtering on the row (column).

There are two more stages to WSQ compression. The second stage is a quantization pro-
cess where the discrete wavelet transform (DWT) coefficients are transformed to integers with
a small number of discrete values. This is accomplished by uniform scalar quantization for
each subband. There are two characteristics for each band: zero of the band (Z;) and width
of the bins (Q}). These parameters must be chosen carefully to achieve a good compression
ratio without introducing significant information loss that will result in distortions of the de-
compressed images. The Z; and Q) for each band are transmitted directly to the decoder. The
final stage is Huffman coding of the integer indices for the DWT coefficients. For this purpose,
the bands are grouped into three blocks. In each block, the integer coefficients are re-mapped
to numbers between 0-255 prescribed by the translation table described in the standard. This
translation table encodes run lengths of zeros and large values. Negative coefficients are trans-
lated in a similar way by this table.

Our data-hiding algorithm works on the quantized indices before this final translation (i.e.,
between stages 2 and 3). We assume the message size is very small compared to the image
size (or, equivalently, the number of DWT coefficients). The Huffman coding characteristics
and tables are not changed; the tables are computed as for the original coefficients, not after
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the coefficient altering steps described next.

As mentioned, our method is intended for messages which are very small (in terms of bits)
compared to the number of pixels in the image. The basic principle is to find and slightly
alter certain of the DWT coefficients. However, care must be taken to avoid corrupting the
reconstructed image. To hide a message during the image encoding process, we perform three
(or, optionally, four steps) basic steps:

e The sclection of a set of sites S: Given the partially converted quantized integer indices,
the role of this stage is to collect the indices of all possible coefficient sites where a
change in the least significant bit is tolerable. Typically, all sites in the low frequency
bands are excluded. Even small changes in these coefficients can affect large regions
of the image because of the low frequencies. Subsequently, candidate sites are selected
with coefficient of large magnitude. Making small changes to the larger coefficients leads
to relatively small percentage changes in the values and hence minimal degradation of
the image. Note that among the quantizer indices there are special codes to represent
run lengths of zeroes and large integer values, as well as other control sequences. All
coefficient sites incorporated into these values are avoided. In our implementation, we
only select sites with translated indices ranging from 107 to 254, but excluding 180 (an
invalid code).

e Generating a seed for random nurnber generator for selecting sites for modification: Sites
from the candidate set .S, which will be modified, are selected in a pseudo-random fash-
ion. To retain predictability in encoder and decoder, the seed for the random number
generator is based on the subbands that are not considered for alteration. For example,
in the selection process the contents of sub-bands 0-6 are left unchanged in order to
minimize distortion. Typically, fixed sites within these bands are selected, although in
principle any statistic from these bands may be computed as seed. Selecting the seed in
this way ensures that the message is embedded at varying locations (based on the image
content). It further ensures that the embedded message can only be read if the proper
seed selection algorithm is known by the decoder.

o Hiding the message at selected sites by bit setting: The message to be hidden is translated
into a sequence of bits. Each bit will be incorporated into a site chosen pseudo-randomly
by a random number generator seeded as described above. That is, for each bit a site is
selected from the set S based on the next output of the seeded pseudo-random number
generator, If the selected site has already been used, the next randomly generated site
is chosen instead. The low order bit of the value at the selected site is changed to be
identical to the current message bit. On average, half the time this results in no change
at all of the coefficient value.

e Appending the bits to the coded image: Optionally, all the original low order bits can be
saved and appended to the compressed bit stream as a user comment field (an appendix).
The appended bits are a product of randomly selected low-order coefficient bits and the
message, and hence these bits are uncorrelated with the hidden message.
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Figure 7: WSQ results. (a) fingerprint image; (b) its 64 subbands; (b) reconstructed image with
embedded message.
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The decoder also performs three steps (optionally four steps). The first two steps are iden-
tical to the first steps of the encoder. These steps construct the set S and compute the seed
for the random number generator. The third step uses the pseudo-random number generator to
select specific sites in S in a particular order. The least significant bits of the values at these
sites are extracted and concatenated to recover the original message.

If a restoration appendix is included, the decoder can optionally restore the original low-
order bits while reconstructing the message. This allows perfect reconstruction of the image
(up to the original compression) despite the embedded message. Because the modification
sites S are carefully selected, the restored decompressed image will be nearly the same as
the decompressed image with the message still embedded. In practice, the error due to the
embedded message is not perceptually significant, and does not affect subsequent processing
and authentication.

Using this process only a specialized decoder can locate and extract the message from the
compressed image during the decoding process. This message might be a fixed authentication
stamp, personal ID information which must match some other part of the record (which might
have been sent in the clear), or some time stamp. Thus, if the bit stream does not contain an
embedded message or the bit stream is improperly coded, a specialized decoder will fail to
extract the expected message and hence can reject the image.

Many versions of the same algorithm are possible by using different random number gen-
erators or partial seeds. This means it is possible to make every implementation unique without
much effort; the output of one encoder need not be compatible with another version of the de-
coder. This has the advantage that cracking one version will not compromise any other version.

5.2 Image based challenge/response method

Besides interception of network traffic, more insidious attacks might be perpetrated against an
automated biometrics authentication system. One of these is a replay attack directly on the
input signal (attack point 2 in Figure 3). We propose a new method to thwart such attempts
based on a modified challenge/response system. Conventional challenge/response systems are
based on challenges to the user, such as requesting a mother’s maiden name, or challenges to
a physical device, like a special-purpose calculator that computes a numerical response. Our
approach is based on challenges to the sensor that is assumed to have enough intelligence to
respond to the challenges. Many silicon fingerprint scanners [1] are able to exploit the proposed
method as a processor can be integrated without much effort.

Note that standard cryptographic techniques are not a suitable substitute. While they are
mathematically strong, they are also very computationally intensive and would require main-
taining secret keys for a large number of sensors. Moreover, the encryption techniques cannot
check for liveliness of a signal. An old stored image could be given to the encryptor that will
happily encrypt it. Similarly, a digital signature of a signal checks only for its integrity, not its
liveliness.

Our system computes a response string, which depends not only on the challenge string,
but also on the content of the returned image. The changing challenges ensure that the image
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Figure 8: Signal authentication based on challenge/response.

was acquired after the challenge was issued. The dependence on image pixel values guards
against substitution of data after the response has been generated.

Our proposed solution works as shown in Figure 8. A transaction is initiated at the user
terminal or system. First, the server generates a pseudo-random challenge for the transaction
and the sensor. Note that we assume that the transaction server itself is secure. The client
system then passes the challenge on to the intelligent sensor. Now, the sensor acquires a new
signal and computes the response to the challenge that is based in part on the newly acquired
signal. Because the response processor is tightly integrated with the sensor (preferable on the
same chip), the signal channel into the response processor is assumed ironclad and inviolable.
It is just about impossible to inject a fake image under such circumstances.

As an example of an image-based response, consider the function “x1+” which operates by
appending pixel values of the image (in scan order) to the end of the challenge string. A typical
challenge might be “3, 10, 50”. In response to this, the integrated processor then selects the
3rd, 10th and 50th pixel value from this sequence to generate an output response such as “133,
92, 176”. The complete image as well as the response is then transmitted to the server where
the response can be verified and checked against the image.

Other examples of responder functions include computing a checksum of a segment of the
signal, a set of pseudo-random samples, a block of contiguous samples starting at a speci-
fied location and with a given size, a hash of signal values and a specified known function of
selected samples of the signal. A combination of these functions can be used to achieve arbi-
trarily complex responder functions. The important point is that the response depends on the
challenge and the image itself.

The responder can also incorporate several different response functions from among the
challenger could select one. For instance, the integrated processor might be able to compute
either of two selectable functions, “x1+” and “x10+”. Financial institution A might use func-
tion “x1+” in all its units, while institution B might use “x10+” in all of its units. Alternatively,
for even numbered transactions, function “x10+" might be used, and for odd numbered trans-
actions “x1+” might be used. This variability makes it even harder to reconstruct the structure
and parameters of the response function.
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6 Cancelable biometrics

Deploying biometrics in a mass market, like credit card authorization or bank ATM access,
raises additional concerns beyond the security of the transactions. One is the public’s percep-
tion of invasion of privacy. In addition to private information such as name and date of birth, the
user is asked to give images of their body parts, such as fingers, faces and iris. These images,
or other biometrics signals, will be stored in digital form in databases. A concern is the pos-
sible sharing of databases of biometrics signals with law enforcement agencies, or sharing of
these databases among commercial organizations. These privacy concerns can be summarized
as follows:

1. Much data about customers and customer behavior is stored. The public is concerned
about every bit of additional information that is known about them.

2. The public is, in general, suspicious of central storage of information that is associated
with individuals. This type of data ranges from medical records to biometrics. These
databases can be used and misused for all sorts of purposes, and the databases can be
shared among organizations.

3. The public is, rightfully or wrongfully so, worried about giving out biometrics because
these could be used for matching against databases used by law enforcement agencies.
They could be, for example, be matched against the FBI or INS fingerprint databases to
obtain criminal records.

Hence, biometrics being coupled with other personal parametric data is a concern, as is the
potential use of stored biometrics for searching other databases.

These concerns are aggravated by the fact that a biometrics cannot be changed. One of the
properties that make biometrics so attractive for authentication purposes, their invariance over
time, is also one of their liabilities. When a credit card number is somehow compromised,
the issuing bank can just assign the customer a new credit card number, When a biometrics is
compromised, however, a new one cannot be issued.

As an answer to these issues, we propose a novel concept to deal with these issues called
a “cancelable biometric”. This is an intentional, repeatable distortion of a biometrics signal
based on a chosen transform. The biometrics signal is distorted in the same fashion at each
presentation, for enrollment and for every authentication. With this approach, every instance
of enrollment can use a different transform thus rendering cross-matching impossible. Further-
more, if one representation is compromised, then the transformation can simply be changed to
create a new representation for re-enrotlment.

Cancelable transforms can be applied in either the signal domain or the feature domain.
That is the biometrics signal can be transformed directly after acquisition or the signal can
be processed is usual and the extracted features can be transformed. Moreover, extending a
template to a larger representation space via a suitable a transform can further increase the
brute force strength of the system. Several example transforms are described below.
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Figure 9: Distortion transform based on morphing.

» Transform of the biometrics at the signal level: This category includes grid morphing
and block permutation as suitable transforms. Qur claim is that the transformed images
cannot be successfully matched against the original images, or against similar transforms
of the same image using different parameters. In Figure 9, the original image is shown
with an overlaid grid aligned with the features of the face. In the adjacent image, we
show the morphed grid and the resulting distortion of the original face. In Figure 10, a
block structure is imposed on the image aligned with characteristic points. The blocks in
the original image are subsequently scrambled randomly but repeatable.

o Transform of the biometrics in the feature domain: One transforms in this category is
the random, repeatable perturbations of the feature points. This can be done within
the same physical space as the original, or while increasing the range of the axes. The
second case provides more brute force strength as was noted in Section 4 (this effectively
increases the value of K). Examples of these transforms are shown in Figure 11. These
transform are non-invertible hence the original feature sets cannot be recovered from
the distorted versions. For instance, it is impossible to teil which of the two blocks
the points in composite block B,D originally came from. Consequently, the owner of
the biometrics cannot be identified except through the information associated with that
particular enrollment.

Note that for the transform to be repeatable, we need to have the biometrics signals properly
registered before the transformation. Fortunately, this problem has been partially answered by
a number of techniques available in the literature (such as finding the “core™ and “delta” points
in a fingerprint). Ideally the transform should be non-invertible so that the true biometric of a
user cannot be recovered from one or more of the distorted versions stored by various agencies.
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Figure 10: Distortion transform based on block scrambling.

scramble

Figure 11: Distortion transform based on feature perturbation.
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Figure 12: Business process based on cancelable biometrics.

The techniques presented here for transforming the biometrics signal differs from simple
compression using signal or image processing techniques. While compression of the signal
causes it to lose some of its spatial domain characteristics, it strives to preserve the overall
geometry. That is, two points in a biometrics signal before compression are likely to remain
at comparable distance when decompressed. Our technique also differs from encryption. The
purpose of encryption is to allow a legitimate party to regenerate the original signal. Encryption
of signals does not permanently obscure the signal in a non-invertible manner as cancelable
transforms do.

When employing cancelable biometrics, there are several places where the transforms, the
parameters of the transform, and identification templates could be stored. This leads to a
possible distributed business process model as shown in Figure 12. An individual user has
subscribed to multiple services (like e-commerce merchants or banks). The authentication for
each transaction might be performed either by the service provider itself, or by an independent
third party. Similarly, the distortion transform might be managed either by the authenticator
or by still another independent agency. Alternatively, for the best privacy the transform might
remain solely in the possession of the user, embedded within something like a smart card.
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7 Conclusions

Biometrics based authentication has many usability advantages over older systems such as
passwords. Among these are the facts that the user can never lose his biometrics and the fact
that the biometrics signals is difficult to steal or forge. We have shown that the intrinsic strength
of a biometric signal is quite good, especially for fingerprints, when compared to conventional
passwords.

Yet, any system, including biometrics systems, is vulnerable when hackers are determined
enough. We have highlighted eight particular weak points in a generic biometrics system and
have discussed possible attacks. We suggested several ways to alleviate some of these particular
security threats. Replay attacks have been addressed using data hiding techniques to secretly
embed a telltale mark directly in the compressed fingerprint image. A challenge/response
method has been proposed to check the liveliness of the signal acquired from an intelligent
Sensor.

Finally, we have touched on the often-neglected problems of privacy and revocation of
biometrics. It is somewhat ironic that the greatest strength of biometrics, the fact that the bio-
metrics does not change over time, is at the same time its greatest liability. Once a biometrics
has been compromised, it is compromised forever. To address this issue, we have proposed
intentionally applying repeatable non-invertible distortions to a biometrics signal in order. Re-
issuance simply requires the specification of a new distortion. Privacy is enhanced because
different distortions can be used for different services and the true biometrics never has to be
revealed to the authentication server. The intentionally distorted biometrics, in addition, cannot
be matched to legacy databases.
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