RC 21979 (98778) 2 March 2001 Computer Science

|BM Resear ch Report

Getting Started Using SOAP

James \W. Cooper
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Y orktown Heights, NY 10598

== =— Research Division
Almaden - Austin - Beijing - Haifa - India- T. J. Watson - Tokyo - Zurich

—
-—
-
v

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of 1BM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Y orktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.comv/library/CyberDig.nsf/home .

Getting Started Using SOAP
James W. Cooper

The Golden Oldies station was playing one more Eighties hangover: “Killing Me
Soffly...” when | cynically decided the wordsreally should be “Killing Me Soffly With
Hi Soap.” Or maybe that should be SOAP.

SOAP isan incredible clever way to transmit data over a network using XML and HTTP,
and it isjust coming to people’s attention as they begin to realize its power, especialy in
Java. Of course, the real power of SOAP, or Simple Object Access Protocol isthat it can
be cross language as well as cross platform, If it uses Javaand XML it must be good.
That's amost 100% buzz-word compliant

Inthisarticle, I'm going to show you how to install and use SOAP for Javato create
mote procedure calls between a client and server. While SOAP represents objects using
XML, we'll avoid getting bogged down in the details of XML, and instead concentrate on
how to use SOAP, which itself uses XML.

The whole point of SOAP isthat you can use it to transmit objects over a network in pure
XML form. The objects arc assembled into XML. on one machine and sent to another,
where they arc then reconstructed. This processis called serialization and desenialization,
and sounds quite a bit like Java RMI or some other kind of remote procedure call
mechanism

SOAP can be used really nicely to send objects back and forth thisway. And it has the
great advantage that unlike RMI, the transmitting protocol is plain old HTTP. This means
it will work between any two machines across any kind of network and through most
firewalls without any problem.

The SOAP specification grew out of an initial proposal by Microsoft. However, it quickly
became apparent that this inttiative had very broad implications and alarge number of
companies contributed to the development of the ideas in SOAP. The final specification
waswritten by scientistsfrom Microsoft, IBM, Lotus, DevelopMentor and UserLand
Software. In addition there were contributions from any number of other workers during
the specification process.

One important contribution was the development of IBM SOAP for Java which was
initially posted onIBM’s AlphaWorks site. Thiswas |ater further developed and donated
to the Apache project, where SOAP is now developed and maintained. It is this Apache
version we'll bediscussing in thisarticle.

Setting up SOAP on your machine is most of the battle. Once you get everything
working, you can write realy slick soap modules without much effort. So, in this article,
I"ll tell you how to get SOAP working on your machine, with an emphasis on Windows
2000/NT machines, althoughalmost everything | say appliesto Y our Favorite Unix
(YFU) aswell. We'll end up writing our first SOAP program and you' |l be on our way to
abright and bubbly future.

The Software You Need
You will need to download three packages to try out the SOAP system.

L.

The Apache Tomcat JavaServer pages / Servlet system. Go to
http://java.apache.org and click on Jakarta, then on Tomcat, and then on
Download Builds. For Windows, you want Jakarta-tomcat-3.x.x.zip and for YFU,
you’ll want the tar or tar.gz versions.

The SOAP 2.0 libraries. Go to hitp://xml.apache.org and click on SOAP and
Download. You want soap-bin-2.0.zip or later, if available.

The Xerces Java XML parser library. Go to http://xml.apache.org and click on
Xerces Java and then on Download. You want Xerces-J-bin-1.2.3.zip or later.

Installing the Software

1.

Installing Tomcat amounts to just unzipping it into a Tomcat directory. The
default is jakarta-tomcat. There is nothing to install after you unzip. To start the
JSP engine, you want to start the startup.bat file in the jakarta-tomcat\bin
directory. I usually make a desktop shortcut to this batch file.

Unzip the SOAP zip file into a Soap directory and the Xerces zip file into a
Xerces directory. They unzip into soap-2.0 and \xerces-1_2_3\tools, but I moved
or renamed them to \soap and \xerces for simplicity.

. Edit your CLASSPATH to include \soap\lib\soap jar. Alternatively, you can just

put soap.jar in the \Program Files\Javasoft\JRE\1.3\lib\ext directory and in the
\jdk1.3\jre\lib\ext directory. If you want to run the provided examples, you also
need to put \soap in your classpath. (Note that in Windows-2000, this whole thing
is buried in Settings/Control Panel| System|Advanced[Environment Variables).

Edit the tomcat.bat file in your \tomcat\bin directory to add the path to Xerces to
the front of the CLASSPATH line, so that Xerces is found first. This is necessary
because Tomcat comes with an older XML parser that won’t work. Line 38 of this
file should be changed to:

set CLASSPATH=d:\xerces\xerces.jar;¥CLASSPATH%;%Cp%

For YFU, you will need to edit the startup.sh file, and this is described in the tomcat.html
file in the soap documents install folder.

5. Make sure that you add the path to xerces.jar to the front of your actual classpath

declaration as well.

CLASSPATH=d:\xerces\xerces.jar; ..etc.

6. In the Tomcat \confiserver.xml file, add the following Context lines near the

bottom of the file just above the </ContextManger> line.

<Context path="/soap" docBase="d:\soap\webapps\soap"
debug="1" reloadable="true">
</Context>

7. Now start the Tomcat server by running the startup.bat file.

A

8. Then, point your browser to http://localbost:8080/soap/ and you should see the
Apache-SOAP startup screen shown in Figure 1.

Apache-SOAP
Hello! Welcome to Apache-SOAP.

What do you want to ‘do today?

+ Run the admin client _
+ Visit the SOAP RPC router URL for this SOAP
server

isaisa

Figure 1 — The Apache-SOAP startup screen.

Running a Sample Application

You might think that you are now ready to run the sample applications, but nooo. .. First
you have to deploy them. This simply means that you have to run a program that
registers the names these applications use and puts them in a deployment descriptor file
for Tomeat. If you go to the ‘\soap\samples\AddressBook directory, you will find that
there is a file called DeploymentDescriptor.xml.

To save typing, copy or rename this file to just dd.xml,

Rather than reading this file and trying to understand it, we can just run a program to
deploy this application by typing all one line:

java org.apache.sgoap.server.ServiceManagerClient
http://localhost:8080/s0ap/servlet /rperouter deploy dd.xml

Now, if you go to your browser Apache SOAP client display and click on “Run the
admin client,” and then on List, you will see that the AddressFetcher SOAP service has
been deployed as shown in Figure 2.

IBM-SOAP Admin Tool - Netscape

Service Listing

Here are the deployed services (select
one to see details)

+ urmn:AddressFetcher

Un-deploy

Figure 2 - The AddressFetcher service has been deployed.

If you then click on this urn: AddressFetcher link, you will get a whole blizzard of
deployment information. The most important parts of this are

ID: urn:AddressFetcher
Provider Class samples.addressbook.AddressBook
Methods getAddressgFromName, addEntry,

getAllListings, putlistings

This means that a service called AddressFetcher exists in the Java program AddressBook
and that it has four public methods.

Now, let’s see how we can call these. Let’s try the GetAddress example program. If from
the \soap directory we type

java samples.addressbook.GetAddress

we’ll get a message explaining what we actually need to type:

Usage:
java samples.addressbook.GetAddress [-encoding$tyleURI] SCAP-router-
URL nameTo Loockup

This is also explained in the README file in that directory.
So what we need to type is

java samples.addressbock.GetAddress
http://localhost:8080/soap/servlet/rpcrouter "John B. Good"

Y

And if we do, we’ll get a response:

123 Main Street
Anytown, NY 12345
(123) 456-7890

Great. So what’s going on here? The program GetAddress is taking our argument “John
B. Goed” and sending it to the SOAP service AddressFetcher and getting back a

response.

The code that does this can be found in the GetAddress.java example file, orignally
written by Matthew Duftler. A small part of that code is shown below.

Vector params = new Vector();
params.addElement (
new Parameter ("nameTcLookup”,

String.class,
nameToLookup, null));

call.getParams (params) ;

// Invoke the call.

Response resp;

try {
resp = call.invoke{url, ""};

catch (SCAPExceptiocn e) {
System.err.println(e.getMessage ()] ;
return;

}

// Check the response.

if (1resp.generatedFault()) {
Parameter ret = resp.getReturnValuel();
Object value = ret.getValuel();
System.out.println(value);

}
This provides a template for how to call a SOAP service and get a response. Now, with

this in mind we could write our own. However, before doing that, it is helpful to see what
is going on under the surface of these relatively calm waters.

The TCP Tunnel Tool

We can watch the messages going back and forth between the client and the SOAP
service using a convenient tool that watches a pair of TCP/IP ports and shows data sent to
them. What we then do, is to run this GetAddress program on a different port, say 8082
and then tell the tunnel tool to connect to that port and pass the data on to port 8080 after
monitoring it. You start the tool from the command line by

java org.apache.socap.util.net,TepTunnelGuil 8082 localhost 8080

Then we start the GetAddress on 8082

java samples.addressbook.GetAddress
http://localhost:8082/g0ap/servlet/rpecrouter "John B. Good"

and see the packets generated in the GUI as shown in Figure 3.

5

. From localhost:8082 . From focalhost:8080
Y letzip xsitype="rsd:int'=12345=fzip>
=gtreetMurm xsitype="ksd:int’>123</street
«sirestiame xsitype="xsd;string"=Main 5
legtate eitype="xsd.siing">Ny=/state=

1] =cify xsitype="xsd:string"=Anylown <igity>
=freturn>
=nst.getAddressFromNameResponse=
</SOAP-ENV:Body> '
<ISOAP-ENV-Envelope=|

<S0AP-ENV Envelope xmins: SOAP-ENY="
=S0AP-ENV. Body:)
=ns1;getaddressFromitames xminsns1="
=nameToLlookup xsitype="xsd:string"=Jok
1=«ingl.getAddressFromiName=
F=<IS0AP-ENV:Body>
1<ISOAP-ENV.Envelope=

éListening for connections.on port 8082 ..

Figure 3 — The TCP Tunnel tool, showing the data from port 8082 and sent from 8080.

What’s Going On?

Now we can see what is going on in a top-down sort of way. I didn’t start by subjecting
you to an XML tutorial, nor did I discuss the format of SOAP messages. Instead, we tried
one and can just look at the results. On the lefi side of Figure 3, we see that the method
getAddressFromName seems to have been executed. The packet sent out is

<S0AP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.ory/soap/envelope/"
xmlns:xsi="http://www.w3.0org/199%/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema" >

<SCAP-ENV:Body>

<nsl:getAddressFromName xmlns:nsl="urn:AddressFetcher" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<nameToLookup xsi:type="xsd:string">John B. Good</nameToLookup>
</nsl:getAddressFromName>

</S0AP-ENV:Body>
</SOAP-ENV:Envelope>

We also see that the argument “John B. Good” appears under “nameToLookup. In the
right-hand pane of Figure 3, we see the response. Part of it is excerpted below:

<SOAP-ENV:Body>
<nsl:getAddressFromNameResponsge xmlns:nsl="urn:AddressFetcher" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xmlns:ns2="urn:xml-soap-address-demc" xsi:type="ns2:address">
<phoneNumber xsi:type="ns2:phone"s>

<exchange xsi:type="xsd:string">456</exchange>

<areaCode xsi:type="xsd:int">123</areaCode>

<number xsi:type="xsd:string">7890</number:

</phoneNumber>

<zip xgl:type="xsd:int">12345</zip>

<streetNum xsi:type="xsd:int"»>123</streetNum>

<streetName xsi:type="xsd:string">Main Street</streetName>
<state xsi:type="xsd:string">NY</state>

<city xsi:type="xsd:string">Anytown</city>

</return=>

In other words, the phone number, address, street name, state and town are passed back
as elements in an XML structure which we don’t actually have to understand to use.

Writing our own SOAP Client and Service

Well the examples are all very nice, but we don’t own it if we can’t write it ourselves. So,
let’s write a program to get some data object from a server and learn the other half of this
process.

The way SOAP works is that objects are converted to XML using a process called
serialization and converted back to objects using deserialization. The SOAP package has
a numbser of serializer classes for various purposes, but we will concentrate here
exclusively on the BeanSerializer class to do these conversions. In order for the
BeanSerializer to work every parameter has to have a get and set method, just as a Bean
does in other contexts. In fact, under the covers, deserialization consists of creating a new
instance of the class on the client side and calling its sef methods to put the variables back
into it. Thus, there really has to be one set method for each variable you want to carry
into the client. In addition, all such classes have to have a constructor without arguments,
since the deserializer creates an instance calling this constructor and then calls the set
methods.

Let’s consider a simple class to hold an x-y data point pair.

//Represents one x-y data point pair
public class DataPoint {
private int x, vy;
//must have an empty constructor
//for the Bean deserializer to work
public DataPoint () {
x=0;
y=0;
}
//use this constructor when we first create it
public DataPoint (int x_, int y_) {
X = X_;
} Y = ¥_i
//get and set for x and y values
public int getX() {
return x;
}

public int get¥{) {
return y:
}

public void setX{int x_) {
x = x_;

-

}

public void set¥({int y_) {
Y =Y_;
}
}

The only reason we don’t use the java.awt.Point class is that it doesn’t have the
appropriate get and set methods.

Now if all we’re going to do is transfer a single point pair, this is probably overkill. So,
let’s create another class which holds an array of these point pairs. It too will have bean-
like set and get methods.

public class XY¥Data {

private DataPoint[] wv;
public XY¥Data() {

//get the array out of the class

public DataPoint[] getData{} {
return v;

}

//set some data back into the class
public void setData(DataPoint[] ve) {
v o= vC;
}
}

So now, we have a class XYData with a getData method that returns an array of
DataPoint objects. We want to have the SOAP service call this some object on the server
and return an instance of that data. We call that class the XY Getter class. All it does is
create and return the data on request: Note that we create a fixed-size array of DataPoint
objects here. While in theory you could also create a Vector here, the current SOAP
implementation does not deserialize that class correctly, although it does handle arrays.
//called by SOAP service

public class XYGetter {

private XY¥Data xydata ;
private DataPoint [l wv;

J/ -
public XYGetter() f{
xydata = new XYData{); //create data class
//£1ill it with data
v = new DataPoint[4];
v[0] = new DataPoint (10,20} ;
v[1l] = new DataPoint {(30,200);
v[2] = new DataPoint{5C,100);
v[3] = new DataPoint (70,30} ;
xydata.setData {(v); //put in class
}
J/=mmmmm e e

//return data tc scap service
public XYData getXY () {
return xydata;
}

Writing Our SOAP Client

Now we finally have to deal with writing the client that requests these data. Remember,
we said that the transport mechanism for SOAP is most commonly HTTP. So we actually
connect to our SOAP service using what looks like an ordinary URL. However, the
definition of these identifiers has been expanded to be more than just an HTTP address,
but an identifier in the SOAP deployment registry, so we refer to it as a URI for Uniform
Resource Identifier.

While we would normally connect to the Tomcat JSP engine through port 8080, we make
this a variable so that we can use another port and watch things happen using the TCP
tunnel program if we want to. So we start out be creating an instance of the URL class to
connect to the URI for the RPC router.

public class gTest {
private String port;
public sTest (String pertNum) {
URL url = null;
port = portNum;
//create the URI to connect to
String encoding8tyleURI = .Constants.NS_URI_SOAP_ENC;
try {
url = new URL("http://localhost:"+ port+
" /soap/servlet/rpcrouter");
} catch (MalformedURLException e) {
System.out.println("Bad url");

}
Then, for each object we want to transmit other than the simple, base Java objects, we
have to tell the serializer how to handle them:

//map the X¥Data and DataPoint cbjects
SOAPMappingRegistry smr = new SCAPMappingRegistry();
BeanSerializer beanSer = new BeanSerializer{();

smr.mapTypes (Congtants NS _URI_SOAP_ENC,
new QName ("urn:xy-demc", "xydata'"},
XY¥Data.class, beanSer, beanBer);
smr.mapTypes (Constants.NS_URI_SOAP_ENC,
new QName ("urn:xy-demo", "point'"),
DataPoint.class, beanSer, beanSer);

In the above code, we create a namespace for our program called “xy-demo,” and
indicate that this is a URN or Uniform Resource Name. This is the namespace for this
program. We also create names for the two objects in this namespace, calling one
“xydata” and the other “poi nt.” We map these types as shown above and indicate that
they are serialized using the BeanSerializer.

Then we create the call to the SOAP service and invoke it. The specific call we want to
invoke has the name “urn:soapGetxy.” We’ll see below how we give the service code this
name when we deploy it.

// Build the call.
Call call = new Call{);

call.setSOAPMappingRegistry{smr) ;

9

//this is the cbject we are calling
call.setTargetObjectURI ("urn:soapGetxy") ;
//and thig is the methed we will call
call.setMethodName ("getXY");
call.setEncodingStyleURI (encodingStyleURI) ;

Response resp;

try {
//inveoke the call

resp = call.invoke{url, "");

} catch (SCAPException e) {
System.err.println{e.getMessage{));
return;

}

// Check the response.

if (l!resp.generatedFault ()) {
Parameter ret = resp.getReturnValue();
//get the data and print ocut the result
X¥bata xydata = (XYData)ret.getValue();
DataPeoint [] v = xydata.getDatal();
System.out.println{"size="+v.length);

for (int i=0; i < v.length ; i++) {
DataPoint p = vI[i]:
System.out.println{p.getX ()+" "+p.get¥ (});

}
h
You might think that we can just compile and run this program, but noooo.. We have two
more things we have to do.

Deploying Our Service

Just as we had to deploy the sample Addressbook code above, we have to deploy this
service, telling the SOAP deployment system that there is a SOAP service named
“urn:soapGetxy,” and what Java class it has to use and what method it has to call. We
could do this using an XML file for the deployment descriptor, except that these things
are hard to write. Fundamentally, XML is ASCII machine readable text, it really isn’t that
human readable, and it can be hellish to type in without errors. So instead, the Apache
SOAP system has conveniently provided us with a screen where we can type in the
values to deploy a new service.

If you go to the same Apache-SOAP panel we had in Figure 1 and click on the
Administrative Client and then on the Deploy button, you will get a screen to fill in like
that shown in Figure 4. Enter the ID for the service to match the name in the program we
just wrote, in this case “urn:soapGetxy.” Make the scope Application wide and specify
that the Provider Type is Java and the Provider class is XY Getter.

1D

;,Depiﬁy a Service

" Service Deployment Descriptor Template

Details

m [n‘:s\:nmﬂ:«t‘zug‘ .

.ﬁmpe ALDEHTON - 8

‘ sy - R
M_‘ﬁmfk é(’iﬁﬁﬂpma_wpwm it of mcthwd numes)

Figure 4 — Deploying a new SOAP service

We also have to specify each of the classes we want to serialize here just as we did in the
program. The bottom of the deployment screen is shown in Figure 5.

ﬁm«ufmpmgs §: B et

El: ing Elesaent Type Tave Type bty :
Stylke Namespase URID Lokal Pat Serigbizee Desennkiney

Taoew ke XMIL XML to Tova

T iﬁ;‘?“iﬂ--dm o I!sg:'xiﬁnt.‘u‘ ___;g‘@."?l}:mm 'Ecirs.arw_:h_e._:spsm ,}:_wmupaﬂkrz.ac'

SOAF F farereten T fpotet heabiine | fery apeehe o e ek s

£ N

& q

Figure 5 — Registering mappings of two classes

The Namespace URI is urn:xy-demo, since this is the name we used m declaring our
classes in the Java program above. The Local Part is the names we gave these classes,
here “xydata” and “point.” The Java Type fields are the names of the actual classes. And
finally, all 4 of the serializer fields are filled with

org.apache.soap.encoding. scapenc.BeanSerializer

which is the complete package name to the BeanSerializer class.

We also must fill in the Number of Mappings as 2 in this interface so that these two lines
are copied into the deployment descriptor.

\

Finally, to deploy this, it is very important that you scroll to the bottom of this window
and click on the Deploy Button.

Figure 6 — The Deploy button you are to click on to deploy this SOAP service

DO NOT click on the pretty Deploy icon to the left, as this will erase your work and give
you a new screen to fill in from scratch.

Making the Classes Available

Finally, before all this will work, you have to make sure the classes we have created are
all in your CLASSPATH so that can be found by the SOAP system and by the
deserializer. I think the easiest way to do this is to package them all up in a jar file by
going to the project folder \soapdemo and typing on the command line

jar -c0f myobjects.jar *.class

This will put all the class files in your \soapdemo project directory into the class file. I
found that I changed the base sTestjava file a lot after I got the other classes done, so |
opened the jar file with WinZip and deleted the sTest.class file.

Then you either have to put the path to this jar file in the CLASSPATH declaration in the
Control Panel, or you need to copy the jar file to the two \jre\lib\ext directories.

Running Our Program

Now we’re finally ready to try out this program. It’s been glued, screwed, tattooed,
deployed and annoyed. We can start it by typing

java sTest 8082

and watching the drama unfold in the windows of the TecpTunnel program.

The calling program writes out

<S0OAP-ENV:Envelope xmlng:SOAP-
ENV="http://schemas.xmlscap.org/soap/envelope/"
xmlng:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema" >

<SOAP-ENV:Body>
<nsl:getXY xmlns:ngl="urn:soapGetxy” SOAP-

12

ENV:encodingStyle:"http://schemas.xmlsoap.org/soap/encoding/">
</nsl:getX¥>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

and the sending program writes back, in part,

<SOAP-ENV:Envelope xmlns:SCAP-
ENV="http://schemas.xmlgoap.org/socap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-inatance"”
xmlns :xsd="http://www.w3.0org/1999/XMLSchema" >

<S0AP-ENV:Body>

<nsl:getXY¥YResponse xmlns:ngl="urn:soapGetxy" SCOAP-
ENV:encodingStyle="http://schemas.xmlsoap.corg/soap/encoding/">
<return xmlng:ng2="urn:xy-demo" xsi:type="ns2:xydata":>

<data xmlns:ns3="http://schemas.xmlsoap.org/scap/encoding/"
xsi:type="ns3:Array" ngl:arrayType="ns2:point [4]">

<item xsi:type="ns2:point">

«x xsi:type="xsd:int">10</x>

<y xsi:type="xsd:int">20</y>

</item>»

<item xsi:type="ns2:point">»
<x xsi:type="xsd:int">30</x>
<y xsi:type="xsd:int">200</y>
</item:>

The actual result printed to the console is

java sTest 8082
size=4
10 20
30 200
50 100
70 90

s0 voila! it works. Or maybe viola, since we really had to orchestrate all this.

Conclusions

Tt certainly takes a bit of doing to set up a SOAP service the first time, as you’ve seen,

but after that they’re really quite easy to add to. SOAP provides a really light-weight,
portable, cross-platform way of exchanging objects. It can replace the heavier weight

RMI in many cases and will work across networks and through firewalls. We’ll look at

some further uses of SOAP in months to come.

13

