
RC 21980 (98779) 2 March 2001 Computer Science

IBM Research Report

A Pattern Solution to a Meta-Problem

James W. Cooper
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Pattern Solution to a MeWProblem
James W. Cooper

Recently, I had to read some tiles containing document metadata. Metadata, you probably
recall, is data about the document rather than data that you find directly in a document.
Typically metadata contahs information like the documents title, date, major topics,
source, copyright information and so forth. If you have a whole lot of documents with
such metadata, such as a collection of technical or news articles, it is helpful to catalog
the metadata so that you can find the documents that fall into whatever categories the
metadata provides. Of course, if you have all this metadata, you have to put it into some
sort of organized system like a database or search engine index so you can find it when
you need it. Here is where we find a little object lesson in a number of good
programming techniques.

Lets consider the following hypothetical set of document metadata.
Date:20001102
Time:0700
Service:Snow Jones
Topics:Java;Servers;Design Patterns;Factories:
Location:Mountain View;New YorkjRedmond;
Companies:Fawcette;Sun;Microsoft;IBM;

These data consist of tags describing the type of data and values for each tag type. Some
data are numeric and some are text data. Some types have multiple values and others do
not. We want to write a parser to take these data and store them in tables in a database or
a search engine index. One further twist is that we want to store the time and date
information in a numeric table so that we can ask for documents that were createdin a
certain date and time range. You could imagine a few other numeric metadata types as
well such as document length or writing level.

So, when we parse these data, we want to put some of them in numeric tables and some
in text tables. At first this seems absurdly easy. We just check for the ‘Time”or “Date”
tags and put the data that follows into a numeric table, and put all other data in text tables.
So, you could imagine writing code like:
public void tableStuffer(String line) {

int i = line.indexOf (":");
if(i > 0) {

String tag = line.substring (0, i);
String data = line.substring (i + 1);
if ((tag.equals ("Date")) 11 (tag.equals("Time")))

putNumeric(tag, data);
else

putText(tag, data) ;
1

)
But gack! What a terrible piece of code! This certainly wont scale very well, and it
hardly is object oriented. In fact, as a general rule, if you have a bunch ogftests like this
to decide which routine to call, you should start over again and try to design classes tint

