RC 21980 (98779) 2 March 2001 Computer Science

|BM Resear ch Report

A Pattern Solution to a M eta-Problem

James \W. Cooper
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Y orktown Heights, NY 10598

== =— Research Division
Almaden - Austin - Beijing - Haifa - India- T. J. Watson - Tokyo - Zurich

—
-—
-
v

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of 1BM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Y orktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.comv/library/CyberDig.nsf/home .

A Pattern Solution to a Meta-Problem
James W. Cooper

Recently, | had to read some tiles containing document metadata. Metadata, you probably
recall, is data about the document rather than data that you find directly in a document.
Typicaly metadata contans information like the documents title, date, major topics,
source, copyright information and so forth. If you have a whole ot of documents with
such metadata, such as a collection of technical or news articles, it is helpful to catalog
the metadata so that you can find the documents that fall into whatever categories the
metadata provides. Of coursg, if you have al this metadata, you have to put it into some
sort of organized system like a database or search engine index so you can find it when
you need it. Here is where we find alittle object lesson in a number of good

programming techniques.

Let’ consider the following hypothetical set of document metadata.

Date;20001102

Ti me: 0700

Service:S8now Jones

Topics:Java;Servers;Design Patterns;Factories;
Location:Mountain View;New York;Redmond;
Companies:Fawcette;8un;Microsoft; IBM;

These data consist of tags describing the type of data and values for each tag type. Some
data are numeric and some are text data. Some types have multiple values and others do
not. We want to write a parser to take these data and store them in tables in a database or
a search engine index. One further twist is that we want to store the time and date
information in a numeric table so that we can ask for documents that were createdin a
certain date and time range. Y ou could imagine a few other numeric metadata types as
well such as document length or writing level.

S0, when we parse these data, we want to put some of them in numeric tables and some
in text tables. At first this seems absurdly easy. We just check for the “Time” or “Date”
tags and put the data that follows into a numeric table, and put all other data in text tables.
S0, you could imagine writing code like:

public void tableStuffer(String line) {
int i = line.indexOFf (":");
if(1 > 0) |
String tag = line.substring (0, 1);
String data = line.substring (i + 1);
if ((tag.equals ("Date")) || (tag.equals("Time")))
putNumeric{tag, data);
el se
putText (tag, data) ;
}

)
But gack! What aterrible piece of code! This certainly wont scale very well, and it

hardly is object oriented. In fact, as a general rule, if you have a bunch ofif tests like this
to decide which routine to call, you should start over again and try to design classes tat

avoid this kind of testing. Each class should operate on only one kind of data and the
class selection should be done without all these ugly if statements whenever possible.

Writing the Indexers

Suppose we write a class to index the text data first. We’ll parse it and store the tag-value
pairs in a database. This isnt really at all difficult. Here is the entire class:

//Indexes text metadata
//and stores it in a database table
public class Indexer {
protected Databass db;
public Indexer{Databass datab) {
db = datab;
}

public void addData(String tag, String datalLine) {
int 1 = dataline.indexOf (";"}:
while(i » 0) {
String tval =dataline.substring(0,1);
db.addItem (new DBEntry({tag, tval));
dataLine = datalLine.substring (i+1};
i = datalLine.indexQf (";");

if (dataline.length () >0) {
db.addItem (new DBEntry({tag, datalLine));

}
}

Note that we are using a class called Databass,

//Bhn artifishal database
//used to test storage of indexed data
public class Databass {
private Vector numData, textData;
public Databass(} {
numData = new Vector():;
textData = new Vector();
}
public void addItem(DBEntry dbe) {
textData.addElement (dbe) ;
}

public void addNumericltem(DBEntry dbe) {
numData.addElement (dbe);
1

public Vector getNumericData() {
return numbata;

public Vector getTextData() {
return textData;
}

Since we havent yet decided on the database well need to deploy this system, we are
using this fishy substitute that just keeps the namevalue pairs in a vector of DBEntry
objects. Our DBEntry class just has get and set methods for the name and value.

Since we are using the Databass class as a proxy for a real database that we might
introduce later, we could consider this as an example of the Proxy pattern.

The Numeric Indexer

Now we will also need an indexer for the numeric data, and it is een simpler since we
can reuse some of the basic Indexer code:

//Indexes numeric data
public class NumIndexer extends Indexer {
public NumIndexer (Databass db) |
super (db} ;
}

public void addData(String tag, String dataLine) {
int value = new Integer(dataline}.intvValue (};
DBEntry dbe = new DBEntry(tag, value);
db.addNumericItem (dbe};
}
} .
We also made our DBEntry class do double duty by giving it two constructors and a
place to store either text or numeric data. Only one kind can ever exist however,
depending on the constructor you call, and one will go in the numeric table in the
database and the other in the text table.

//holds one name-value pair
//either text or numeric
public class DBEntry {
private String fieldName, text;
private int numValue;
public DBEntry(String field Name, String t) {
fieldName = field Name;
text =t;
}
public DBEntry({String field Name, int value) {
fieldName = field Name;
numvValue = value;
}
public String getFieldName ()} {
return fieldName;
}

public String getText{) {
return text;
}

public int getNumValue{) {
return numvValue;
}

}

Choosing the Indexer We Need

Now, how do we go about choo sing the right indexer, without going through a bunch of
if statements? One way is to use a Hashtable with keys for each expected type. In the
IndexFactory class below we create an instance of each kind of indexer (here we only
have two) and add them into a hash table with their keys. We also add a couple of text
tags we know will always be in the metadata files.

public class IndexFactory {
private Hashtable Indexers;
private Indexer txt;
private NumIndexer num;

public IndexFactory(Databass dbass) {
//keep them in as hash table
Indexers = new Hashtable():;
txt = new Indexer (dbass);
num = new NumIndexer {dbass) ;
//store them with appropriate keys
Indexers.put ("Date", num);
Indexers.put ("Time", num);
Indexers.put ("Companies", tXt);
Indexers.put ("Service", txt);

}
Then to get the right indexer out of the factory, we just use the tag as the key to the hash

table.

//get an indexer based in the tag
public Indexer getIndexer (String tag) {
Indexer ind = (Indexer)Indexers.get (tag):
//default is to return a text indexer
if (ind ==null} {
ind = txt;
}

return ind;

}

In this implementation, we require that we specificdly identify cases where the numeric
indexer is needed, and assume that all other cases can be indexed using a text indexer.
We can easily add new indexers as we need them by just expanding the entries in the
hash table.

The code that does the indexing by reading from the file just amounts to reading each
line, finding the tag, asking for the indexer, and calling its addData method:

public veid readData(String filename) {
String tag = "";
String line = "";
InputFile f1 = new InputFile (filename};
String s = fl.readLine ();
while(s != null) {
int i = s.indexOf {(":");
if(i » 0y {
tag = s.substring (0,1i).trim();
line = s.substring {(i+l).trim();
Indexer ind = ixFactory.getIndexer {tag);
ind.addbData(tag, line);
8 = fl.readLine ();

}
}

This IndexFactory class is, of course, an example of the Factory Pattern.

Displaying the Result
We need to be able to inspect our work and see that we have done it correctly. So, I puyt
together a simple graphical program to display the text and numeric data, as shown in

Figurel and 2.

SRS

Snow Jones
Java
Semvers w
-Design Patt... i
Facfories
mountain Vi,
_ New York
Location Redmond
E(_)_grgpanies Fawcette

i

Figure 1 — The text values indexed

Figure 2 —The numeric values indexed

But we now have some new, interesting problems to solve. When we click on the two
radio buttons, we again have the possibility of a couple of if statements, along the lines of

public void actionPerformed{ActionEvent ev) {
Cbject obj = ev.getSourcel);

if {obj == TextRadio)
//show text data
if (obj == NumRadio}

//show numeric data

}

This is just as bad an idea here in the user interface code as it was in the indexer choosing
code. And as we have done in the past, we can do away with this kind of decision,by
making each radio button know about what it has to do. We derive TextRadio and
NumRadio from the JRadioButton class, but also have each implement the Command
interface:

public interface Command {
public void Execute();

}

Then, whatever the radio buttons need to do when clicked can be put inside those Execute
methods. Here is the TextRadioButton class:

public class TextRadio extends JRadioButton implements Command {
private Mediator md;

public TextRadio{Mediator med) {
super ("Text data");
md = med;
}
public void Execute{) ({
//do something to display data
}

Putting the Data in the Table

You will note that I left out what exactly the radio button has to do in the
TextRadioButton class above, because we have another problem to solve here. The data
we are going to display in the JTable on the right side of the display has to get there
somehow. With a JTable this happens by setting a different TableModel into the JTable
class. So to display the text data, for example, we need to write a class that implements
the AbstractTableModel class. Fundamentally, it has to implement the getValueAt
method as well as the getColumnCount and getRowCount methods. Here is the class for
the Text display:

public class TextModel extends AbstractTableModel {
private Databass db;
protected Vector data;
public TextModel (Databass dbase} {
db = dbase;
data = db.getTextData ();
}
public java.lang.Object getValueAt{int row, int column) {
if ((row < data.size ()) && (row>=0)) {
DBEntry dbe = (DBEntry)data.elementAt (row);
switch (column) {
case 0:
return dbe.getrFieldName (};
case 1l:
return dbe.getText ();
default:
refurn "";
}
}

else
return "";
}
public int getColumnCount ()} {
return 2;
}

public int getRowCount () {
return data.size {);
}

public java.lang.String getColumnName (int column) {
switch (column) {
case 0:
return "Tag";
case 1l:
return "Value";
default:
return "";
1

}

Now we begin to see the scope of our problem. The Execute method for each of the radio
buttons needs to set an instance of the TableModel into the JTable, and this implies that
the radio button derived class needs to have instances of the correct table model, the
JTable and probably the Databass class This seems like a lot of clutter, especially since it
has to be duplicated in both of the radio button classes.

A Mediator for our Problem

A better solution is for another class to keep track of these objects and pass them to the
table as needed. Then the two radio buttons need only call the correct method on that
class. This “other” class is a Mediator class, because it mediates between three user
interface objects and two TableModel classes. It also turns out to be a good place for the
data to be read in and placed in the database in the first place. Our complete Mediator
class looks like this:

public class Mediator {
private Databass db;
private IndexFactory ixFactory;
private JTable jtb;
private NumModel numModel;
private TextModel textModel;

public Mediator (Databass dbase, JTable jtab) {
db = dbase;
jtb = jtab;
ixFactory = new IndexFactory(db);
textModel = new TextModel (db) ;
numModel = new NumModel (db) ;

}

public veid readData(String filename} |
String tag = "";
String line = "";
InputFile fl = new InputFile (filename};
String s = fl.readLine ();

while(s != null) {
int i = s.indexCf (":");
if(i > 0y |

tag = s.substring (0,1i).trim{);

line = s.substring (i+1).trim{)};

Indexer ind = ixFactory.getIndexer (tag);
ind.addData(tag, line);

g = fl.readline ();

}

}

public void setTextData() {
jtb.setModel (textModel);

}

public void setNumericData({) {
jtb.setModel (numMedel) ;
}

Note the two methods, setTextData and setNumericData, These place the correct table
model in the JTable, and are the methods called by our radio button’ Execute method.

public void Execute() {
md.setNumericData() ;
}

Now the only class that the radio buttons need to know about is the Mediator, and it takes
care of all the heavy lifting and keeps classes from unneessary knowledge about cach
others internal workings.

Conclusions

We started out with a simple parsing problem what we wanted to solve in the best OO
fashion we could think of. We ended up using a Proxy pattern (for our database) a
Factory pattern for our Indexers, a Command pattern for the Radio buttons, a Mediator
pattern for loading the JTable, and in fact also are using an Observer pattern, because the
JTable observes changes in the TableModel and displays them. So again, design patterns
are all around us, and these really are ones we use pretty much every day to write better,
more scalable code.

