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Abstract. Due to their low cost and ease of access, online auctions are a very
popular way of selling perishable excess inventory in the travel industry. We analyze
online auctions for airline seats where leftover seat capacity on flights between two given
cities is traded. In addition to the number of tickets requested and the bid amount, bids
may specify a set of alternative flights, each equally acceptable for the bidder. A winning
bid will have all requested seats allocated on the same flights. We study an iterative
mechanism where the decision to accept and reject bids and to provide minimum bid
suggestion for rejected and displaced bids has to be made in real time. Each iteration of
the mechanism can be thought of as a general combinatorial auction where customers
bid on bundles of flights. We discuss heuristics as well as exact solution methods for
solving the underlying Integer Program. We show that the model can be easily extended
to incorporate more general settings. Preliminary computational results for synthetic
data are also presented.
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1. Introduction. Due to their low cost and ease of access, online auc-
tions are a very popular way of selling perishable excess inventory in the
travel industry. Auctions for specific tickets, trips or even vacation pack-
ages are common at online travel agencies (e.g., Bid4Trips.com, SkyAuc-
tion.com) while other sites offer reverse auctions for the very flexible trav-
eller (e.g., Priceline.com). Most major airlines provide online booking at
their web sites but up to our best knowledge none of them offer automated
online auctions (even though more than half of the tickets booked online
are purchased through these sites). We believe that customer traffic at the
sites of major airlines may generate enough demand so that excess seats on
different flights can be pooled together and traded within the same auction
(rather than trading pre-specified tickets one by one) allowing customers to
express their preferences better and the airlines to achieve a more efficient
allocation of resources and thus more revenue.

This paper addresses the question of designing a simple iterative auc-
tion for trading excess seat capacity for an airline. Our study originated in
the following real-life application where the airline was interested in auc-
tioning off leftover seat capacity on flights between two given cities. The
proposed format is an iterative sealed bid auction where bidders get instant
feedback, including minimum bid suggestion for declined bids. Customers
bid on round-trip tickets by specifying the number of tickets they wish to
purchase and a per ticket bid amount. Bidders can express their preferences
by submitting several flights, assumed to be equally acceptable, for both
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the inbound and the outbound leg. Winners are assigned all the seats they
requested on one flight in each direction. Each bid is evaluated instantly:
it is either rejected or temporarily accepted. Temporarily accepted bids
may be displaced during the course of the auction by other bids, in which
case the bidder is immediately notified. Note that bids can be displaced
indirectly; that is, displaced bids do not even have to contain any of the
flights that the new bid displacing them does. A minimum bid suggestion
is provided for rejected and displaced bids; these bids may be resubmitted
with a higher bid amount, otherwise they are not considered again. The
auction lasts for a given amount of time or until inactivity, whichever is
later. Temporarily accepted bids become winners at closing, the owners of
these bids are notified of their allocation and pay what they have bid.

Every iteration of the problem presented above can be modelled as a
multi-unit combinatorial auction where the bundles customers bid on con-
sist of the required number of tickets on acceptable flight pairs. With one
bid a customer specifies an entire set of bundles which can be obtained
by enumerating all the acceptable flight pairs. Combinatorial auctions re-
ceived much attention lately, see [2] for a survey and [4] for background and
computational complexity. Determining the winners (computing the best
allocation of resources to the bidders) in a multi-unit combinatorial auc-
tion is NP-hard since the problem can be formulated as a multi-knapsack
problem [3].

The above problem could be stated in a more general way. The air-
line could offer its leftover seat capacity on any number of flights, not just
between two given cities. (Other products, like hotel rooms and rental
cars could also be included in the bundles.) Customers could bid on arbi-
trary bundles of flights (not just pairs) and they could express a complex
preference ordering on these flight combinations (rather than valuing all
acceptable flight pairs the same). These generalizations do not make the
winner determination problem computationally any more difficult (having
a complex preference ordering might even help to avoid degeneracy of the
multi-knapsack problem since these preferences translate to non-uniform
objective coefficients). The remainder of the paper will mainly focus on
the original problem setting but we will refer back to the extensions dis-
cussed in this paragraph from time to time.

The proposed mechanism is iterative: after a bid is submitted the win-
ner determination problem is solved and feedback is provided in the form
of a minimum bid suggestion for rejected bids. In general, bid submission,
solving for the best allocation and providing some feedback for bid refor-
mulation are repeated in a loop (until termination) in an iterative auction.
The auction mechanism introduced above could be improved upon in all
three components of this loop. First, bids are captured in our problem in
the form of flights that are equally acceptable for the bidder. More sophis-
ticated bid descriptions that capture customer preferences better could be
included as long as all the possible flight combinations along with their
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valuations can be efficiently enumerated. (For instance, limits on the time
spent away from the departure city could be easily incorporated.) Sec-
ond, since winner determination is the computationally intensive part of
the loop it would make sense to execute it less often. That is, the allo-
cation problem could be solved for batches of new bids that are collected
over a given (short) period of time. This can result in more profit for the
airline (since bids that are rejected when considered one by one cannot be
used in a later iteration) and in more consistent bid reformulation signals
(the minimum bid suggestion will fluctuate less, see Section 2.3). On the
other hand it will take longer for the bidders to receive a feedback. Third,
feedback for bid reformulation could be provided in a more general form.
It is well known that no equilibrium item prices (i.e., prices for seats on
individual flights) exist in a combinatorial auction if bidders have comple-
mentarities in their preferences (see e.g. [5]). However, suggestions could
include extended flight sets that subsume those in the bid (which flights
to include in the extended set requires business intelligence tools that are
beyond the scope of this paper).

In a practical application of mechanism design it is highly desirable
for the auction to be simple (the rules are transparent and easy to un-
derstand), efficient (the final allocation maximizes the participants’ overall
valuations), difficult to manipulate (by a single participant or by collusion)
and incentive compatible (bidders reveal their true valuations). Of these
properties simplicity and difficulty of manipulation is true for our iterative
design. We believe that efficiency holds in the limit (in each iteration bids
are processed after everyone has submitted a bid and the auction termi-
nates only at inactivity) if bids reflect true valuations. However, incentive
compatibility cannot be shown for this setup. We plan to investigate the
economic properties further.

In what follows we will first describe the roles of the participants in the
auction, then discuss the winner determination problem in detail. We pro-
vide an Integer Programming formulation and outline heuristics and exact
methods for solving it. Finally we present some computational results.

2. Participants of the auction. There are three roles in the auction,
the auction organizer, the seller and the bidders. The airline plays the
first two roles and the customers the third. The two roles of the airline
should be treated separately since it might be advantageous to have an
independent auctioneer. Having an independent auctioneer could increase
the bidders’ trust in the auction process since the identity, number and
payment information of the bidders need not be disclosed to the airline.
Also, an independent auctioneer will be able to handle offers from more
than one airline.

2.1. The seller. Before the auction starts the seller needs to spec-
ify for the auctioneer the items for sale and any requirements that might
restrict the feasibility of allocations. The airline needs to identify seat ca-
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You can go back to the previous page

cancelmodify

to reenter the auction is

The suggested minimum bid amount
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11/16   06:25

Roundtrip tickets between A and B

Inbound

Fig. 1. a. Page for entering a bid. b.Rejection page with minimum bid suggestion.

pacity and reservation prices for the flights to be offered at the auction. In
our setting reservation prices are the same for all flights but they could be
differentiated based on historical demand information. Requirements on
the feasibility of allocations could include limits on the number of winners,
or, on the proportion of winners requiring at least a certain number of tick-
ets. Also, a limit could be placed on the number of displaced bids when a
new bid is accepted.

2.2. The bidders. Interested customers visit the auction site and
browse through the schedule of flights available for auction. If they would
like to participate then payment information (e.g., credit card) has to be
submitted since winning bids are binding. After specifying some initial
information (departure and destination airports, approximate dates for
travel) bidders could be presented with a page like the one sketched out on
Figure 1.a where they could fine tune their flight selection. The number of
tickets requested and the bid amount (optional since minimum bid sugges-
tion is provided otherwise) are also entered through this page. The system
will immediately return with a page informing the bidder of acceptance or
rejection (see Figure 1.b for a possible rejection page).

If a bid is rejected the customer may choose to increase the bid amount
or cancel the bid. Cancelled bids are never used again by the system. If
the bid is temporarily accepted the bidder will learn only this fact and not
the temporary allocation. If a bid is later displaced the auction notifies the
bidder (for instance, via e-mail) and also supplies a minimum bid amount
needed for re-acceptance (assuming other bidders don’t change their bids).
Similarly as for the rejected bids, the bidder can either increase the bid
amount or cancel the bid. Note that the bidder might want to change other
factors of his bid than the bid amount (after a rejection or displacement).
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In the current setup this can be accomplished by cancelling the bid and
submitting a new one, but any part of the bid could be modified in general
(the minimum bid suggestion does not provide enough information for this,
however).

We assume that bidders have private valuations for the goods and that
they behave rationally. Also, if their bid is rejected or displaced bidders
resubmit the bid as long as the suggested minimum bid amount is below
their valuation.

2.3. The auctioneer. The main tasks of the auction organizer are to
collect information from the seller, open the auction, collect the bids and
respond to them, close the auction and announce the winners. The closely
related problems of determining whether a bid is accepted or rejected and
computing the minimum bid amount are the computationally challenging
operations.

While the auction is open a list of temporarily accepted bids along with
the corresponding seat assignment is maintained by the auctioneer. When a
new bid arrives it is evaluated and is either accepted or rejected. Evaluation
(also called winner determination) means computing the ”best” allocation
(which maximizes the seller’s utility) given the temporarily accepted bids
and the new bid. (Comparing allocations and solving the winner determi-
nation problem will be discussed in Section 3.) If the new best allocation
is better than the best allocation from the previous iteration then the new
bid is accepted and the best allocation is updated to be the new allocation.
Otherwise the bid is rejected and the best allocation remains the same.

To compute the minimum bid suggestion we have to determine an
amount for the new bid at which the new best allocation becomes prefer-
able over the previous one. This can be accomplished by pretending that
the new bid is accepted at reservation prices and computing the new best
allocation. If none of the temporarily accepted bids is displaced (the allo-
cation can be different however) then the minimum bid amount needed to
enter the auction is the sum of reservation prices on the assigned flights.
Otherwise there are displaced bids and the bidder must compensate the
seller for the lost revenue or pay the reservation price, whichever is higher.
We propose two different methods for compensating the seller: pay the full
amount needed for the new best allocation to overtake the previous allo-
cation, or pay a little more (per ticket) than the highest payment from the
displaced bids.

The first method of fully compensating the seller has the advantage
that successive allocations become better and better for the seller at each
iteration. However, the minimum bid amounts do not necessarily increase
monotonically which might be counterintuitive for bidders familiar with
single-item ascending price auctions. The example of Figure 2 illustrates
that fluctuations may happen with both of the minimum bid computation
rules. For the example we assume that there are no reservation prices and
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flights seats Bid 1 Bid 2 Bid 3 Bid 4 Bid 2 Bid 3
out 1 2 2 1 1 1
out 2 1 1 Bid 4 1
in 1 2 2 replaces 1
in 2 1 1 1 Bid 1 1 1

$105 $100 ?? $220 $100 ??
compensate $310 $100
overbid $105 $100

Fig. 2. Example of fluctuating minimum bid amounts.

that the seller wants to maximize the revenue collected from the bidders.
There are two outbound and two inbound flights with corresponding seat
availabilities. When Bid 3 arrives the first time it has to displace both Bid
1 and Bid 2 to be accepted. Thus the bidder would need to pay 2*$105 +
$100 = $310 (plus a bid increment of say $1) to get accepted. Assume that
this is above the bidder’s valuation and he stays away. Now Bid 4 arrives
and replaces Bid 1, leaving one seat on both out 1 and in 1 unallocated.
Should the new bidder resubmit his bid now, only Bid 2 would need to be
displaced and the bidder pays $100 (+$1).

With the second method of (per ticket) overbidding the highest dis-
placed bid the minimum bid suggestion may still fluctuate; in the above
example Bidder 3 would need to pay $105 (+$1) in the first case and $100
(+$1) in the second case. In addition to this the seller’s revenue might
not be monotone (he collects only $105 (+$1) compared to $310 if the new
bid offers at least the minimum bid amount). This method may also leave
more unallocated seats at the end of the auction.

As we have mentioned in the Introduction, solving the winner deter-
mination problem for batches of new bids will result in less fluctuation in
the minimum bid amounts (for the full compensation case). Indeed, op-
timizing with more than one new bid at once rather than incrementally
provides better allocations with more of the resources assigned. Several
new bids together may displace a set of accepted bids, sharing the cost of
compensation. Note that even if bids are evaluated in batches, the mini-
mum bid suggestion is computed for each bid one by one, assuming that
the other bids remain the same. Thus some bid amount needs to be known
for all new bids. While reservation prices may play this role the resulting
minimum bids would be over-estimated in this case.

We have experimented with both minimum bid computation rules
(see Section 3.4) and arrived to the conclusion that the full compensation
method is superior if bidders can accept fluctuating minimum bids.

3. The winner determination problem. In this section we will fo-
cus on how to find the best allocation given the set of temporarily accepted
bids and the new bid(s). We discuss how to compare different allocations,
formulate the winner determination problem as an Integer Program and
outline heuristics and exact methods for solving it. Computational results
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are also presented at the end of this section.

3.1. Comparing allocations. The first question to ask is that given
a set of bids and seat (resource) availability, what objective should the seller
use to compare different allocations. These objectives could be the seller’s
profit (the total amount collected from the bidders minus the reservation
prices of the allocated seats), the number of accepted bids or the number of
seats allocated. The profit of the seller is the best base for comparison since
otherwise the auction could be easily manipulated and the outcome would
not be efficient. (If the allocation with the higher number of accepted bids
is preferred then bidders wishing to purchase multiple tickets would have
a better chance of winning by submitting multiple bids for single tickets
instead of one bid for multiple tickets. If the allocation with the more
seats assigned is preferred then in case of high enough demand no new bids
are accepted after all the seats are temporarily allocated.) An allocation is
optimal if it is best with respect to the chosen objective for the given the set
of bids. Other objectives than profit maximization could be incorporated
as part of a composite objective or as side constraints. We used profit
maximization as the seller’s objective in our computational experiments.

3.2. IP formulation of winner determination. We can formulate
the Winner Determination problem as an Integer Program. Let us intro-
duce some notation first. The flights available for auction are given as
S = {1, . . . , m} with corresponding seat availability (capacity) c1, . . . , cm

and reservation prices r1, . . . , rm. The flights are indexed by j. There are
n bidders, bid i consists of the set of acceptable flights in both directions
Ei ⊂ S and Fi ⊂ S, the number of tickets requested ti and the per ticket
bid amount bi. Let us enumerate the acceptable flight pairs and index them
with k = 1, . . . , ki where ki = |Ei||Fi|. If the bid is temporarily accepted
then the bidder will be allocated ti seats on one flight in Ei and one flight
in Fi and will pay tibi if the bid is a winner.

To formulate the winner determination problem we introduce binary
variables for each acceptable flight pair of each bidder indicating whether
the flight pair is chosen in the solution or not:

xi,k = 1 if flight pair k is chosen for bidder i; k = 1, . . . , ki

There are two sets of constraints: the seat availability cannot be exceeded
for any of the flights and at most one of the flight pairs can be chosen for
any bidder. Introduce aj

i,k to denote the number of tickets on flight j for
flight pair k of bidder i (that is, aj

i,k is ti if j is one of the two flights in the
pair and 0 otherwise). With this notation the resource limit constraints
can be written as

∑n
i=1

∑ki

k=1 aj
i,kxi,k ≤ cj , j = 1, . . . , m;

and the second set of constraints (choose at most one flight combination
for each bidder) as
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Fig. 3. Integer Programming formulation of the winner determination problem.

∑ki

k=1 xi,k ≤ 1, i = 1, . . . , n.

We also include the integrality restrictions on the variables:

xi,k ∈ {0, 1}, i = 1, . . . , n; k = 1, . . . , ki.

The objective is to maximize the seller’s profit (payment collected from
winners minus reservation prices):

max
∑n

i=1

∑ki

k=1

(
tibi −

∑m
j=1 aj

i,krj

)
xi,k

We provide a sketch of the formulation in Figure 3 for a simple case where
the reservation prices are assumed to be constant (so they can be omitted
from the objective function). Columns of the matrix correspond to the
acceptable flight pairs. Note that the flights can be divided into two sets,
the outbound and inbound flights. Each flight pair will have one entry in
each set, the number of tickets required by the bidder. The sketch makes
it clear that this is a multi-unit combinatorial auction where the bids are
for bundles of flights (we can introduce a fictitious flight for each bidder
to account for the second set of constraints.) Observe that the problem
matrix has m + n rows,

∑n
i=1 ki columns and three nonzeros per column

(thus the problem matrix is very sparse).
As we have mentioned in the Introduction, any set of flights could

be offered for auction. In this case the set of rows could be subdivided
so that flights in the same subset have the same origin and destination.
Also, customers could bid on general bundles, probably containing at most
one flight from each subset. Finally, complex preference orderings on the
acceptable flight combinations could be incorporated into the objective
function.

To enforce that a certain bid is accepted (which is needed for minimum
bid computation, see Section 2.3) exactly one of the flight pairs must be
chosen for the bid. This can be achieved by setting the constraint in the
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second set corresponding to this bidder to equality:
∑ki

k=1 xi,k = 1 to accept bid i.

Restrictions imposed by the seller (mentioned in Section 2.1) can be
added in the form of additional (side) constraints. For instance, limits on
the total number of accepted bids can be expressed as

L ≤ ∑n
i=1

∑ki

k=1 xi,k ≤ U

Note that flight pairs with non-positive objective coefficients (i.e.,
reservation price exceeds bid amount) will never participate in any optimal
allocation. Therefore, columns (and variables) corresponding to such flight
pairs can be simply left out of the formulation before solving the problem.

3.3. Solving the winner determination problem. Here we will
outline heuristic and exact solution methods for the winner determination
problem. We will discuss how to solve the problem for one new bid or
a batch of new bids, and how to use the same algorithm to compute the
minimum bid suggestion for one rejected/displaced bid. The drawback
of the first two heuristics described below is that they cannot efficiently
handle the winner determination problem for a batch of new bids.

Another difficulty that my arise when using heuristics is that small
changes in the formulation might require the development of different spe-
cialized algorithms. This is however not the case with the heuristics dis-
cussed here.

We will present the heuristics and the exact methods in increasing
order of their computational complexity.

3.3.1. Obvious inclusion. This is a very straightforward algorithm.
Given an already existing allocation the new bid is accepted only if there is
enough capacity to accommodate it without reallocating the already (tem-
porarily) accepted bids. This happens when there is enough unallocated
seating capacity for both segments of an acceptable flight pair. We call
this the obvious inclusion of the new bid. If there is enough capacity on
more than one acceptable flight pair then one has to be chosen based on
some rule (e.g., choose the flight pair with the smallest reservation price,
or choose at random). Side constraints can be incorporated by rejecting
the new bid if its acceptance would violate the constraint.

If the winner determination problem is solved for a batch of new bids
then order the bids (e.g., randomly, or in the order of their arrival) and ac-
cept/reject them one by one using obvious inclusion. This procedure could
be repeated for different orderings of the new bids (if there are few new
bids, all orderings could be considered, otherwise repeat only a constant
number of times or until some time limit is reached).

Since the existing allocation cannot be modified by definition of this
method, minimum bid suggestions are made only if there is enough unallo-
cated capacity for the bid but the bid amount does not reach the reservation
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price.
We check for obvious inclusion before any other method since it is

computationally very cheap. However, our experiments confirm that both
the seller’s profit and the allocated capacity is weak if this heuristics is used
alone.

3.3.2. Simple greedy heuristics. This heuristics uses obvious in-
clusion repeatedly. We consider the already accepted bids and the new
bid(s) together, order them randomly and accept/reject them one by one
using obvious inclusion. This procedure is repeated a constant number
of times or until a time limit is reached. If the overall best allocation is
better than the allocation with the previously accepted bids then the new
allocation replaces the old one.

To compute the minimum bid suggestion for a rejected or displaced bid
consider only those orderings of this bid and the bids in the new allocation
where this bid is the first. Again, a sequence of obvious inclusions is applied
to these orderings and the overall best solution is used for minimum bid
computation.

This heuristics is computationally inexpensive and results in a better
quality solution than the previous one.

3.3.3. IP based heuristics. The compute the new best allocation
the winner determination IP of Section 3.2 needs to be solved for the already
accepted bids and the new bid(s). The new allocation replaces the old one
if it is better. To compute a minimum bid suggestion the IP is considered
with the bids in the new allocation and the rejected/displaced bid (which
is forced into the solution by setting its constraint to equality).

Solving the winner determination IP to optimality might not be a
practical approach if the size of the input is too large. During a typical IP
solution process (like Branch-and-Bound) linear relaxations of the IP have
to be solved repeatedly. Since the computational effort to solve the linear
relaxations is determined by the row dimension of the problem matrix,
our IP based heuristics uses only a submatrix of the original formulation.
In particular, the heuristics considers only those flights (rows) that are
acceptable for bidders who are currently assigned seats on flights acceptable
for the new bid. We achieve this by ”fixing” the allocation to other bids
that currently do not have any seats assigned to them on flights the new
bidder would accept. The fixing is accomplished by setting the variables
corresponding to the flight assignments to one.

Any side constraint that was included in the original IP formulation
can also be added to the restricted IP. This heuristics is still computa-
tionally intractable (NP-hard) in theory since it is still a multi-knapsack
problem. However, the size of the problem is expected to be much smaller
than the size of the original formulation and thus we expect to obtain a
solution faster. Any of the methods sketched out in the next section could
be applied.
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3.3.4. Exact solution of the IP. If the problem size is reasonable,
commercial IP packages (which employ a Branch-and-Bound backbone)
can be used to solve the Integer Program to optimality. This is what
we did in our experiments. However, it is likely that more sophisticated
methods have to be devised especially if the set of flights offered for auction
is extended or if the the number of flights or the flight capacities are large.

A generic IP solver could be significantly enhanced. Using problem
specific information a custom code could be built that uses, for instance,
column generation, better branching rules and warmstarting. In a column
generation scheme (also called pricing) we start with a small, promising
subset of the variables and add other variables to the formulation itera-
tively. Our implementation is under way using BCP, an LP formulation
based parallel Branch-and-Cut-and-Price framework for Mixed Integer Pro-
grams. BCP is a module in COIN-OR, an Open Source initiative for the
OR community (see [1]). Special branching rules can be devised that take
the problem structure into consideration. For instance, instead of branch-
ing on a variable (which assigns a flight pair to a bidder) we could branch on
whether a particular flight leg is assigned to a bidder or not. Warmstarting
is a method to use information from a previously solved problem to speed
up computations in the current one. Since the subsequent IPs differ only
in a few bids the search tree of the previous optimization is likely to be a
good starting point for the current problem.

3.4. Some computational results. We have used uniformly gener-
ated data in our tests. First we constructed the flight availability infor-
mation (m, cj , rj) by hand, with the seat capacity uniformly distributed
among the flights. The number of flight segments that could be chosen in
both directions (|Ei|, |Fi|) and the number of tickets (ti) were both uni-
formly distributed between one and four. Per ticket bid amounts (bi) were
chosen uniformly from the interval [$200, $300] The number of bids (n) to
generate was chosen so that the total demand is twice or four times the
supply (the first case representing low demand while the second high de-
mand). The bids were taken in the order they were generated and either
temporarily accepted or rejected. Rejected and displaced bids were never
resubmitted in our tests. Reservation prices were set to $200 for all the
flights and we assumed a minimum bid increment of $1.

We have implemented the three heuristics and the exact method for
solving the winner determination problem, as discussed above. We solved
the IPs using IBM OSL, a commercial solver package. Both minimum
bid computation rules were implemented (fully compensate the seller and
overbid the highest displaced bid). In half of the experiments we included
a side constraint that limits the number of displaced bids to two in each
iteration. Our tests were carried out on an IBM RS6000 43P Model 40
computer.

Figures 4 and 5 summarize our results for a small example. There are
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compensate overbid
no limit on displ no limit on displ

alloc cap profit time alloc cap profit time
obvious 44.6 11.20 0 42.8 10.73 0
greedy 46.2 11.80 0.2 42.2 11.19 0.1
IP heur 48.8 12.66 6.8 46.6 12.27 8.6

compensate overbid
displ ≤ 2 displ ≤ 2

alloc cap profit time alloc cap profit time
obvious 43.2 11.21 0 42.2 10.45 0
greedy 46.4 12.06 0.1 41.8 10.97 0.1
IP heur 49.0 13.07 6.1 48.6 12.69 5.7

Fig. 4. Experiments: 50 seats, 40 bids (low demand)

compensate overbid
no limit on displ no limit on displ

alloc cap profit time alloc cap profit time
obvious 48.2 12.02 0 48.2 12.22 0
greedy 48.8 12.65 0.4 45 12.55 0.3
IP heur 50 13.66 32.9 49.4 13.82 17.1

compensate overbid
displ ≤ 2 displ ≤ 2

alloc cap profit time alloc cap profit time
obvious 49 12.60 0 48.8 12.23 0
greedy 48.8 12.76 0.3 46.2 12.59 0.3
IP heur 50 13.62 38.6 49.6 13.75 19.3

Fig. 5. Experiments: 50 seats, 80 bids (high demand)

50 seats available, 40 bids were generated for the low demand and 80 bids
for the high demand case. The tables contain the allocated capacity, the
seller’s profit and the running time for the three heuristics, for both mini-
mum bid computation rules and with or without the limit on the number
of displaced bids. That is, there are altogether 12 experiments for each
problem instance. The table contains averages for five instances.

Using our synthetic data we can conclude that most of the seats can
be allocated at the end of the auction in the high demand case no matter
which heuristics we use. However, the seller’s profit improves dramatically
with the more sophisticated heuristics. Obviously, running times are the
exact opposite. Observe also that the allocated capacity is higher with
the ”compensate the seller” minimum bid computation rule than with the
”overbid the highest displaced bid” rule. Profits are also significantly higher
with the first rule in the low demand case. Also note that limiting the
number of displaced bids does not hurt the allocated capacity or profits in
the high demand case.

4. Conclusions. We have presented an iterative design for airline
seat auctions which we believe could be profitable to introduce in the travel
industry, it is easy to understand and is trustable for consumers and can be
implemented using readily available optimization software. In the future
we plan to further investigate the economic properties of the design and the

12



computational feasibility of more complex settings outlined in the paper.

Acknowledgements Thanks to Manoj Kumar for posing the original
problem and to all who read the draft of the paper and provided valuable
suggestions.

REFERENCES

[1] COIN-OR: Common Optimization Interface for Operations Research,
http://www.coin-or.org.

[2] S. de Vries, R. Vohra, Combinatorial Auctions: A Survey. Technical report,
MEDS, Kellogg Graduate School of Management, Nothwestern University. 2000.

[3] M.R. Garey, D.S. Johnson, Computers and Intractability. W.H. Freeman, 1979.
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