
RC220000 (98829) 19 March 2001 Computer Science

IBM Research Report

Design of a Pointerless BDD Package

 Geert Janssen

 IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Abstract

In this paper a pointerless BDD package is pro−
posed. The new design is inspired by the 1998
ICCAD paper of David Long [Long98]. The main
idea is to enforce a strict ordering on the BDD node
identifiers and cleverly reap the advantageous
consequences of that decision, such as a better
memory locality of the nodes and faster unique
table lookup. The down side is a more complicated
garbage collection scheme, although it offers some
extra flexibility. It will also be shown how dynamic
variable ordering fits into this new context. The
ultimate goal is to exceed the performance of a
pointer−based package and have reproducible
results across different platforms.

Introduction

BDDs are effectively deployed in many EDA
tools, in particular in the area of formal verification.
A plethora of public domain BDD packages are
available on the web [bdd−portal]. In this paper we
propose a new design for a BDD package in the
programming language C that uses indices (non−
negative integers) to identify the nodes. This fact in
itself is already a deviation from Long’s paper; he
still insists on using pointers and also defines his
node ordering based on the addresses of the
memory where the nodes reside. Using indices we
obtain better control over node allocation and can
easily achieve platform independence.

In the following sections we shall detail our
decisions and discuss their consequences w.r.t. the
main data structures: the unique table and the
computed table. Next we show how we implement
garbage collection and do dynamic variable order−
ing. At the end you will find some experimental
results and conclusions. First we briefly mention
related work.

Related work

As stated before, the main thrust to investigate a

new design for a BDD package was the publication
by David Long [Long98]. Long introduces the
notion of node−age and rearranges his node
allocation and garbage collection accordingly. He
uses pointers to identify nodes and therefore runs
into problems when the memory allocator issues
out−of−order blocks. His reference objects (our
handles) use a hash table to ensure unique−
ness [Long99]; in our approach no intermediate data
structure is necessary. We use a slightly different
garbage collection algorithm. Long’s paper does not
address dynamic variable ordering. The BDDs as
implemented in earlier versions of SMV
[McMillan93], do not use node reference counts; a
mark−sweep garbage collector is used. Variable
reordering is using Rudell’s algorithm [Rudell] but
does excessive BDD traversals to calculate accurate
live node counts because no explicit reference
counts are used. Armin Biere’s package called
ABCD [Biere] focusses on compactness of repre−
sentation (only 64 bits per node) and uses indices to
achieve this. It does not take advantage of the node
order and does not offer dynamic variable ordering.
Also its memory management is rather rigid.

Preliminaries

We assume the common terminology of BDDs
to be known [Bryant]: Boolean functions are
canonically represented by a multi−rooted directed
acyclic graph (DAG); nodes are kept in a unique
table; operations are sped up by employing a
computed table. Occasionally, the order of variables
may be changed to reduce the total number of
nodes. We furthermore assume the reader to be
familiar with the "classical" way of implementing a
BDD package in an imperative programming
language like C, see e.g. [Brace]: nodes are C
structs that contain a variable identifier and THEN
and ELSE children pointers; a NEXT pointer strings
nodes together that belong to the same collision
chain in the unique table. Recycling of nodes is
easily implemented by keeping a reference count for
each node.

In the following we will discard most of the

1

Design of a Pointerless BDD Package

Geert Janssen
IBM T.J. Watson Research Center

geert@watson.ibm.com

Submitted to 10th Intl. Workshop on Logic & Synthesis
Granlibakken, Lake Tahoe, CA, June 12−15, 2001

classical implementation decisions and start afresh
with a new set of requirements. Why would one
want to do this? What’s wrong with the current
BDD packages? For one (and this is a very impor−
tant point in many commercial applications), a
pointer based BDD package almost invariably will
use hashing on pointer values. This means that even
on the same machine, a repeated invocation of the
same program using such a package need not
exhibit exactly the same behavior: nodes get
allocated to different addresses, these pointers get
hashed to different table indices, this causes a
different pattern of hits and misses in the computed
table, and ultimately the usage of nodes and the
sizes of the resultant BDDs might differ because of
(presumably unpredictable) calls to garbage collec−
tions and dynamic variable orderings that are
triggered by heuristics depending on node usage.
On a different machine, the behavior might even get
more erratic because of different memory alignment
requirements, different direction of run−time stack
growth, et cetera. All in all, it could be said that
debugging such a BDD package is a programmer’s
nightmare.

A second important reason to deviate from a
pointer based implementation is the opportunity to
uniquely identify nodes by (consecutive) integer
numbers and thereby achieve better control over
node allocation. Being able to control the
assignment of numbers to identify nodes, naturally
imposes a strict order on the nodes. This order can
be used to our advantage: keep the DAG ordered
like a priority queue, hence searching for a
particular node will obviously benefit; keep
collision chains ordered, then on average less time
is spent searching. Since BDDs are typically
constructed bottom−up in a recursive depth−first
fashion and since traversal of BDDs is a common
operation that proceeds in a similar fashion, it pays
off to keep adjacent (parent and children) nodes
close in memory as well.

Ground rules for the new package

Clearly, our first rule should be: no more
pointers. We identify a node by a number and the
easiest is of course to let this number coincide with
the index in the memory array where the node
resides. We assume the availability of a single,
contiguous array of nodes. Conceptually this is the
easiest way to implement the node memory; in
reality we find that repeatedly having to re−allocate
such a large contiguous array is not feasible. Unlike

David Long’s proposal, we decided against a
complicated scheme of memory blocks, but opted
for a paging oriented solution. Consequently, when
the need for more nodes arises, we only have to
allocate a much smaller stretch of nodes. Any
reference to a BDD node will be done by means of
its index: the THEN, ELSE, and NEXT fields of a
node are therefore also indices.

We will insist that nodes be handed out in order
of increasing indices, so that the newest (or
youngest) node has the largest index. Think of the
index of a node as its date of birth, then a young
node has a recent date of birth. In the BDD DAG,
where we naturally allocate the parent node later
than the children nodes, we will have the
counterintuitive situation that a parent node is
younger than its two children (Figure 1).

Complemented edges are handled in a way that
is similar to what has been used in pointer−based
packages. We define complemented edges by
merely flipping the most significant bit of the 32−
bit unsigned integer index value of a node.

Complemented edges are of course not a
necessity, but, as Fabio Somenzi [Somenzi01]
pointed out, they do offer more advantages than just
a simple way of representing the negated function
and a trivial implementation for the logical not
operation. Indeed, because we are able to do
complementation and test for complement both in
constant time, we can define more bottom cases to
speed−up other operations as well, e.g. the and
operation can now test for complemented operands
and immediately return the 0 (zero/false) BDD.
Rules of DeMorgan can be used at negligible cost to
reduce the number of distinct cases that need be
implemented. Also, some applications rely on the
fact that the root nodes of a pair of complemented
BDDs are in fact the same and in this way share
certain attributes.

The next departure from the classical approach is
to refrain from using reference counts. They would
not be of much use anyway because dead nodes i.e.,
nodes with a 0 reference count, cannot be (directly)
reused when we require node indices to obey the
age requirement. The consequences are rather
severe: we no longer have a precise notion of

2

Figure 1: Node memory and the concept of node age.

0 1 2 3 next free

x y v

3
2

old young

whether a node is alive or dead. It will be harder to
find useful metrics to be used in heuristics that
control invocation of garbage collection and dy−
namic variable ordering calls. When implementing
dynamic variable ordering based on local level
swaps, it is crucial to have a precise measure for the
number of nodes gained by that swap. More on this
in a subsequent section.

Not using reference counts obviously saves
space in the node (typically 16 bits are used for a
reference count) and saves time: directly, because
no increments and decrements need be performed;
and indirectly, because the referred node itself need
not be accessed and therefore we have less moves
across the memory hierarchy. Actually, in some
model−checking benchmarks [Yang98] it was
observed that it often happens that one and the same
BDD is repeatedly constructed and immediately
disposed off. It was the reason of the invention of a
so−called death row data structure. Its purpose is to
queue BDDs that are candidates to be freed. The
actual freeing is postponed in the hope that they
might get resurrected and put to use again before the
queue is full and the real freeing kicks in. Without
reference counts, there is no longer a need to worry
about this behavior. Figure 2 outlines the various
fields in the BDD node.

In order for garbage collection to be meaningful,
we do need to have a means of gathering all BDD
nodes currently referenced by an application. These
external references are the starting points of a node
marking scheme that identifies all live nodes. Such
external references are captured by handle objects.
A handle implements the external view of a BDD.
For simplicity, handles will have reference counts
and therefore can easily be recycled. It is expected
that the number of live handles at any time will be
much less than the current number of live BDD
nodes. Handles are to be interpreted as the Boolean
functions of interest, and each function typically
comprises many BDD nodes. Obviously, a handle
should be unique w.r.t. the node it refers to.
Handles are the ideal place to cache additional data

about the Boolean function, e.g. its size and its set
of support variables.

With the ground rules laid down, it is now time
to explore their consequences. The next sections
discuss the impact our new requirements have on
the rest of the framework.

Unique table

Strong canonicity is achieved by ensuring that
the triple <v,T,E> is associated with a unique node.
The triple <v,T,E> consists of the variable identifier
v and the edges to the THEN and NEXT sub−BDDs
which themselves are assumed to consist of unique
nodes. Of course in our case, T and E are the
(possibly complemented) indices of the children
nodes. A simple and fast implementation applies a
hash function to the triple to obtain the index in the
unique table of the start of a collision chain of
nodes. Comparing the triple against the nodes in the
chain resolves the look up. Note that instead of
hashing on the children indices, hashing on a not
necessarily unique signature kept in a node would
work just as well, provided we do search for
matching children indices in the collision chain.
The reason why we would want to do this, is to
make the hash key independent of the memory
position of the node; when garbage collection
moves the node in memory, at least its signature
would stay the same. However, since we empty and
rebuilt the unique table during garbage collection,
there’s no real need to assure hash key independ−
ence. This doesn’ t hold for the computed table
though, as we will see shortly.

Computed table

The computed table, a.k.a. operation cache,
records results of operations on BDDs. Typically it
stores the fact that R = op(F,G,H), i.e., the BDD R
is the result of the operation op applied to three
BDD arguments F, G, and H, in a hash table. The
hash key should obviously be composed of the
operation and its operands. But should we use the
indices of the operand BDDs? If we did, and
garbage collection alters indices, we need to rehash
those entries in the computed table. If the hash key
were independent of the indices, then we merely
need to invalidate entries that refer to dead nodes.
Like David Long does, we decided to define a
signature for each node which consists of the
variable associated with that node and a pseudo
random number (whose sequence is of course

3

Figure 2: Memory layout of a BDD node.

F RC Signature Variable

0
C

H

Then
Else
Next

31 0

27 0

Cl

deterministic). Computed table hashing takes the
signature of the operands and their complement bit
as a key. Note that incorporating the complement
bit is vital: it is easy to construct a case involving
the calculation of the and of two parity functions
which exhibits exponential behavior if the comple−
ment bit is left out.

2−bit reference count

Proper utilization of the computed table is vital
for efficiency. One should avoid storing facts that
are either trivial (typically these concern operations
where some of the operands are constant) or facts
that are very unlikely to ever be retrieved. The
negative effect of storing too much is that crucial
facts might get overwritten. Facts concerning
operands with low, in particular a single, reference
count should be ignored. Unfortunately, in our new
design we no longer have a reference count per
node. Instead, we reintroduce a 2−bit saturating
reference count with the sole purpose of indicating
whether a node has no, a single, or more references.
It is not necessary to keep this count accurate (we
don’ t even bother to decrement the count when
nodes are freed).

Garbage collection

Most BDD packages use a reference counting
garbage collector. The idea is simple: if we keep
count of the number of references to each BDD
node, then a count of 0 means that the node is no
longer in use and thus can be recycled. Often the
recycling does not occur immediately. The dead
node would have to be unlinked from the unique
table and the entries in the computed table referring
to this node would have to be invalidated; both of
which is considered prohibitively costly. Instead,
occasionally, when a certain percentage of the nodes
is dead, the unique table is swept and all dead nodes
are moved to a free list. The disadvantage of
reference counting is the extra memory needed for
each node and the overhead in increment and
decrement operations. The great advantage is that at
any time we have an accurate knowledge of the
number of references for each node.

In a mark−sweep garbage collector, a marking
phase that identifies all live nodes is proceeded by a
sweeping phase that cleans up the garbage (= dead)
nodes. A prerequisite for this to work is that we
know all external references to the nodes. Also, if
we consider garbage collection as if it were an

asynchronous process (which it would be if we
decided to run it as a separate thread), every inter−
mediate BDD that occurs during a (recursive)
operation needs to be explicitly protected. In our
new design, there are actually two reasons why
certain local variables in the program code need to
be protected:

1. The obvious reason: if we do not protect a
variable that holds an index to a BDD node that
will be needed later, that node might be consid−
ered garbage by the collector.

2. The not so obvious reason: our garbage collector
compacts the node memory and hence nodes get
moved and their indices change. We need a
mechanism to be able to report back the "change
of address" of a node.

We use a mark−sweep−update−sweep ap−
proach: the marking phase does the obvious; in the
first sweep over the node memory, from lower
indices to higher indices, live nodes are assigned a
forwarding address at their original position and are
then moved over to the left to fill the holes created
by the dead nodes. At the same time, the THEN and
ELSE fields are updated to reflect the new positions
of the children nodes. Note that in the node memory
the direction of the "pointers" THEN, ELSE, and
NEXT is always from right to left (because of the
node−age rule). During the update phase, all
external references and all explicitly protected
internal references are notified of any change of
address. Then the second sweep phase cleans the
marks and reestablishes the unique table. See
Algorithm 1 for more details. The way we do

4

void gc(void)
{
 mark_phase();
 new_nextfree = 0;
 for (i = 0; i < nextfree; i++)
 if (marked(i)) {
 n = new_nextfree++;
 THEN(i) = FORWARD(THEN(i));
 ELSE(i) = FORWARD(ELSE(i));
 mem[n] = mem[i], but retain
 n’s mark and forwarding address;
 FORWARD(i) = n;
 }
 invalidate_computed_table();
 update_phase();
 for (i = 0; i < new_nextfree; i++) {
 unmark(i);
 add i to unique table;
 }
}

Algorithm 1: mark−sweep−update−mark garbage
 collection.

compaction has the nice property that it preserves
node−age, moreover it even improves node
proximity, see Figure 3. There is no obvious need to
always consider all nodes for garbage collection; we
allow a user to set a breakpoint below which nodes
will be frozen. This might be beneficial in those
applications that keep some initial BDDs around for
most of their life−time, e.g. in model checking one
could set the breakpoint after the next−state
function BDDs.

Figure 3: Node memory during garbage collection.

Dynamic variable ordering

Dynamic variable ordering is the process of
changing the rank order of the variables in the
presence of BDDs. This implies that all existing
BDDs need to be modified to reflect the new
variable positions. The objective is to decrease the
overall size of the BDDs. Like garbage collection,
dynamic variable ordering should best be
considered an asynchronous process that potentially
can be invoked at any time during the construction
and manipulation of BDDs. We will here sketch
how the popular Rudell sifting algorithm [Rudell] is
implemented in our new package. We concentrate
on the basic operation of swapping two neighboring
variables. Clearly, exchanging parent and children
nodes destroys the node−age property. Moreover,
we need an accurate measure of the number of
nodes gained (or lost) by a swap. We propose the
following solutions:

� We do not rely on node−age during dynamic
variable ordering; we will carefully rebuilt the
BDDs afterwards to reestablish this invariant.
This also means that the unique table may not
assume a certain order of the nodes in its
collision chains.

� All nodes are taken out of the original unique
table and stored in linked lists per variable
(using the NEXT field). The lists are stored in a
table indexed by rank numbers.

� We reintroduce full−fledged reference counts for
the nodes. The reference count can conveniently
be stored in the space for the variable identifier.

In our approach we distinguish 3 phases: 1) the
prologue that prepares the rank table of node lists
and appropriate reference counts, 2) the processing
phase that does the actual level swaps, and 3) the
epilogue that reestablishes the node−age invariant
and unique table. The processing phase is not much
different from an implementation that uses separate
unique tables per variable, except that it operates on
the rank table. Algorithm 2 outlines the processing
of the lists of two neighboring levels to establish a
variable swap.

Note that during a level swap the unique table
only stores nodes labeled with the same variable.
We do not explicitly need to hash on the variable
and need not store it.

Managers

All major data structures are defined relative to a
manager record. In this way multiple invocations of
the BDD package can coexist. Since handles are
not pointers but indices into some table that is
owned by a manager, we are faced with the problem
of associating a manager with each handle. A
simple solution is to encode a manager index (of
course) into the object that holds the handle index.
For now we opted for a 3−bit index allowing for 8

5

void swap_levels(k, k+1)
{
 for (n in level[k+1]) mark(n);
 for (n in level[k])
 if(!marked(THEN(n))&&!marked(ELSE(n))
 move n to unique table;
 for (n in level[k]) {
 T = THEN(n); E = ELSE(n);
 n11 = marked(T)? THEN(T): T;
 n10 = marked(T)? ELSE(T): T;
 n01 = marked(E)? THEN(E): E;
 n00 = marked(E)? ELSE(E): E;
 THEN(n) = ut_lookup(vk,n11,n01);
 ELSE(n) = ut_lookup(vk,n10,n00);
 }
 for (n in level[k+1]) {
 unmark(n); remove n from level[k+1];
 if (dead(n))
 put n on freelist;
 else
 add n to level[k];
 }
 for (n in unique table)
 remove from unique table,
 add to level[k+1];
 swap(rank(vk), rank(vk+1));
}

Algorithm 2: Swapping of 2 neighboring variables.

0 1 2 3 next free

1 111

0 1 2 3 new_next free

1 111

4 5

managers. Should the need arise to enlarge the
number of managers we could always resort to 64−
bit handle objects.

Experiments

To be supplied.

Acknowledgments

Thanks go to Thomas Kutzschebauch for
carefully proofreading the paper. Jessie Xu should
be mentioned for all her efforts in integrating the
new BDD package in the Verity verification tool
and supplying valuable feedback.

References
[bdd−portal]: Meinel, Ch. Wagner, A., www.bdd−portal.org,
http://www.bdd−portal.org, 2000

[Biere]: Biere, Armin, ABCD: a compact BDD library,
http://www.inf.ethz.ch/personal/biere/projects/abc, 2000

[Brace]: K. S. Brace, R. L. Rudell, R. E. Bryant, Efficient
Implementation of a BDD Package, Proc. 27th DAC, 40−45,
1990

[Bryant]: R. E. Bryant, Graph−Based Algorithms for Boolean
Function Manipulation, IEEE Trans. on Computers, 677−691,
1986

[Long98]: D. E. Long, The Design of a Cache−Friendly BDD
Library, Proc. ICCAD, 639−645, 1998

[Long99]: D. E. Long, private (email) communication, 1999

[McMillan93]: K. L. McMillan, Symbolic Model Checking,
1993

[Rudell]: R. Rudell, Dynamic variable ordering for ordered
binary decision diagrams, Proc. ICCAD, 42−47, 1993

[Somenzi01]: F. Somenzi, Efficient Manipulation of Decision
Diagrams, STTT, , 2001

[Yang98]: Bwolen Yang, et al., A Study of BDD Performance
in Model Checking, Formal Methods in Computer Aided
Design, 255−289, 1998

6

