
RC 22020 (98884) 5 April 2001 Computer Science

IBM Research Report

Distinguishing Between Prolific and Non-Prolific Types for
Efficient Memory Management

Yefim Shuf+*
 Manish Gupta+

 Rajesh Bordawekar+
Jaswinder Pal Singh*

+IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

*Computer Science Department
Princeton University
Princeton, NJ 08544

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Distinguishing Between Prolific and Non-Prolific Types for
Efficient Memory Management

Yefim Shuf
���

Manish Gupta � Rajesh Bordawekar � Jaswinder Pal Singh �
� IBM T. J. Watson Research Center � Computer Science Department

P. O. Box 218 Princeton University
Yorktown Heights, NY 10598 Princeton, NJ 08544�

yefim, mgupta, bordaw � @us.ibm.com
�
yshuf, jps � @cs.princeton.edu

ABSTRACT
In this paper we introduce the notion of prolific and non-prolific
types, based on the number of instantiated objects of those types.
We propose and empirically validate a new hypothesis, the prolific
generational hypothesis, which states that the objects of prolific
types have short lifetimes. We use this hypothesis to develop a new
garbage collection scheme, which is similar in spirit to generational
collection, but uses types rather than age to distinguish between dif-
ferent regions of the heap. It looks for garbage first among objects
of prolific types. Our approach lets the compiler eliminate redun-
dant write barriers by simply checking the type of objects involved
in a pointer assignment. We describe techniques that enable this test
to be done effectively at compile time, in spite of the complications
due to polymorphism and dynamic class loading in Java. A prelim-
inary implementation of this approach as a non-copying type-based
collector in the Jalapeño Java Virtual Machine has shown very en-
couraging results. Compared with the corresponding generational
collector, for the SPECjvm98 and SPECjbb2000 benchmarks, the
number of dynamically executed write barriers is reduced by 18%
to 74% (except for three programs, for which there is no reduc-
tion). The total garbage collection times are reduced by an average
of 7.4% over all benchmark programs, with improvements of up
to 15.2%. The overall performance improves modestly (by up to
2.8%) for all programs except for one (mtrt), for which there is a
performance degradation of 2.2%.

1. INTRODUCTION
The popularity of the Java Programming Language [14] has rekin-

dled a great deal of interest in automatic memory management.
Java does not provide the programmer with an explicit mechanism
to deallocate objects, and requires the underlying Java Virtual Ma-
chines (JVM) to support garbage collection. A large number of
garbage collection algorithms have been developed by researchers
over the last four decades [21, 37].

One of the popular approaches to garbage collection is known
as generational garbage collection [23, 6]. It is inspired by an ob-
servation, known as the weak generational hypothesis, that most

objects die young [34]. A simple generational scheme involves
partitioning the heap space into two regions – a nursery (or new
generation) and an old generation. All new objects are allocated in
the nursery. Most collections, termed minor collections, only re-
claim garbage from the nursery. Survivors from a minor collection
are promoted to the older generation, which is subjected to collec-
tion only during infrequent, major collections. In order to support
a generational collection, the compiler has to insert a write barrier
for each statement writing into a pointer field of an object, to keep
track of all pointers from objects in the old generation to objects in
the nursery. These source objects in the old generation are added as
roots for minor collection, so that objects in the nursery which are
reachable from those objects are not mistakenly collected. Com-
pared with their non-generational counterparts, generational col-
lectors typically have short pauses, due to the need to look at a
smaller heap partition at a time, but lead to lower throughput of
applications due to the overhead of executing write barriers.

In this paper, we present a new approach to garbage collection
based on the notion of prolific and non-prolific object types. An em-
pirical study we have conducted on some well-known Java bench-
marks shows that for each program, relatively few object types,
which we refer to as prolific types, usually account for a large per-
centage of objects (and heap space) cumulatively allocated by the
program. This observation has led us to propose a hypothesis that
the objects of prolific types have short lifetimes, and therefore, ac-
count for a large percentage of garbage that is collectible at various
points during program execution. We validate this hypothesis em-
pirically and propose a new approach to garbage collection which
relies on finding garbage primarily among prolific objects. Our ap-
proach is, therefore, conceptually similar to generational garbage
collection, but it distinguishes between “generations” of objects
based on type rather than age.

In our type-based garbage collector, all objects of a prolific type
are assigned at allocation time to a prolific space (P-space), which
is analogous to a nursery in a conventional generational collector.
All minor collections are performed on the P-space. All objects of
a non-prolific type are allocated to a non-prolific space (NP-space),
which corresponds to the old generation in a generational collector
with two generations.1 Unlike generational collection, objects are
not “promoted” from the P-space to the NP-space after a minor col-
lection. This approach leads to several benefits over generational
collection:

� The compiler is able to identify and eliminate unnecessary�
We can extend our approach to be analogous to a generational

collector with a larger number of generations by defining multiple
levels of prolificacy of types.

1

write barriers using simple type checks. This leads to perfor-
mance benefits like:

– reduction in the direct overhead of executing write bar-
riers, and

– for most write barrier implementations, a reduction in
the number of spurious roots that are considered dur-
ing minor collections, leading to fewer objects being
scanned and potentially fewer collections.

	 In a copying collector, the overhead of copying objects of
non-prolific types across generations is avoided.

We have implemented our approach in the Jalapeño JVM [2].
The experience from this preliminary implementation is very en-
couraging. Our type-based non-copying collector delivers the ad-
vantages of generational collection (shorter pause times than non-
generational collection), with reduced overhead of write barriers.
Compared with the corresponding (non-copying) generational col-
lector as well, it exhibits shorter pause times and shorter overall
garbage collection times.

This paper makes the following contributions:
	 It proposes and provides empirical data to support a novel

hypothesis that a few prolific types in a program usually ac-
count for a large fraction of cumulatively allocated heap space
and collectible garbage during program execution.

	 It presents techniques to identify prolific types, and to effi-
ciently check for an object being of a prolific type in a lan-
guage with polymorphism and dynamic class loading.

	 It proposes a new type-based approach to garbage collection
that provides much of the benefits, like short pause times,
of generational collection, but significantly reduces the over-
heads due to generational collection, such as executing write
barriers and copying costs.

	 It provides experimental results from an implementa-
tion of the type-based (non-copying) collector in the
Jalapeño VM. Compared with the corresponding (non-
copying) generational collector, for the SPECjvm98 [27] and
SPECjbb2000 [28] benchmarks, the number of dynamically
executed write barriers is reduced by 18% to 74% (except for
three programs, for which there is no reduction). The total
garbage collection times are reduced by an average of 7.4%
over all benchmark programs, with an improvement of up to
15.2% for javac. The overall performance improves mod-
estly (by up to 2.8%) for all programs except for one (mtrt),
for which there is a performance degradation of 2.2%.

The rest of the paper is organized as follows. Section 2 presents
the basic ideas underlying the notion of prolific and non-prolific
types and techniques to identify prolific types. Section 3 discusses
our proposed approach to type-based garbage collection. Section 4
describes an implementation of the simplest, non-copying version
of the type-based collection approach in the Jalapeño VM. Sec-
tion 5 presents the experimental results obtained by us. Section 6
discusses related work. Finally, Section 7 presents conclusions and
ideas for future work.

2. BASIC IDEA
In this section, we introduce the concept of prolific and non-

prolific types. We use this concept to propose and empirically val-
idate a prolific generational hypotheses. We then describe tech-
niques to identify prolific types for a program.

2.1 Prolific and Non-Prolific Types
It is well known that for most applications, a large percentage of

the program execution time is spent in relatively small section of
the code (according to a 90/10 rule of thumb, 90% of the time is
spent in 10% of the code). This behavior is exploited by adaptive
runtime compilers like the Hotspot compiler [19] and the Jalapeño
adaptive optimization system [4], as they focus expensive optimiza-
tions on those “hot-spots”. It is not surprising that a similar hot-spot
behavior is exhibited by object-oriented programs with respect to
the types of objects that are created in those programs. In a study
of some well-known Java benchmarks (namely, SPECjvm98 and
SPECjbb2000), we have confirmed this observation. For example,
in the jack program, 12 types account for 99% of all objects allo-
cated during a typical stead-state phase between minor collections,
occupying 96% of the heap space allocated during that phase.

We use the term prolific type to refer to a type that has a suf-
ficiently large number of instances. More specifically, a type is
prolific with respect to a program if the fraction of objects of this
type exceeds a certain threshold 2. All remaining types are referred
to as non-prolific.

2.2 The Prolific Generational Hypothesis
We postulate a hypothesis that the objects of prolific types have

small lifetimes – we refer to it as the prolific generational hypothe-
sis. An intuitive basis for this hypothesis is that if this were not true,
the application would have unsustainable memory requirements, as
it would keep creating objects of prolific types at a fast pace with-
out reclaiming sufficient space. It has been observed empirically
that the size of the reachable portion of the heap is often small rel-
ative to the total amount of space cumulatively allocated by most
applications [22].

Stated another way, our hypothesis predicts that the objects of
prolific types die younger than objects of non-prolific types. It fol-
lows that most of the garbage collectible at various stages of the
application would consist of objects of prolific types. This leads us
to propose a different way of collecting garbage, described further
in Section 3, which looks for garbage first among objects of prolific
types.

Interestingly, the prolific generational hypothesis has some re-
semblance to a phenomenon commonly found in nature. Offsprings
of prolific species are often short-lived [36].

2.3 Validating the Hypothesis
We now show some data on the allocation behavior and survival

characteristics of a typical phase of some Java applications from the
SPECjvm98 benchmark suite. We used the Jalapeño JVM config-
ured with a generational copying collector for this study.

Table 1 presents data for a single representative minor collec-
tion that occurred in the steady state of each application. There
was relatively little runtime compilation activity during the steady
state. The third column shows the number of prolific and non-
prolific types (based on a threshold of 1% of allocated objects) for
the given phase (between two minor collections) for each applica-
tion. In most applications, relatively few prolific types account for
most of the heap space allocated during this phase (column 7). The
compress program allocates very few objects some of which are
very large arrays of primitives. The mpegaudio program allo-
cates very little heap space for its objects. Since it has very few
minor collections (usually no more than one), we could not collect
meaningful data between two minor collections. Hence, we have

In our experiments, the threshold is simply set to 1% of the total

number of objects created by an application. This threshold can be
adjusted to control the size of the P-space.

2

Table 1: Allocation and surivival characteristics of objects for a steady state phase
ALLOCATED SURVIVED DEAD

Benchmark TypeCateg. Types Inst. AverSize %AllInst. %AllSpace Inst. AverSize Rel.%Inst. Rel.%Space %DeadInst. %DeadSpace

compress Prolific 12 123 181392 87.20 99.99 17 58 13.821 0.004 85.50 99.99
Non-Prolific 10 18 29 12.80 0.01 - - - - 14.50 0.01

db Prolific 2 512980 16 99.65 56 585 89 0.114 0.636 99.65 55.70
Non-Prolific 27 1799 3608 0.35 44 10 48 0.555 0.007 0.35 44.30

jack Prolific 12 230487 42 99 96 6096 84 2.644 5.301 98.90 96.10
Non-Prolific 24 2719 140 1 4 161 23 5.921 0.966 1.10 3.90

javac Prolific 13 338590 26 86 81 125996 25 37.211 35.334 89.5 85.40
Non-Prolific 82 54915 38 14 19 29886 37 54.422 52.478 10.5 14.60

jess Prolific 7 293970 36 99.75 99.60 1970 37 0.670 0.704 99.75 99.60
Non-Prolific 8 750 61 0.25 0.40 43 135 5.733 12.681 0.25 0.40

mtrt Prolific 8 391305 21 98 97 45 23 0.011 0.012 97.90 96.90
Non-Prolific 2 8340 32 2 3 - - - - 2.10 3.10

omitted data for mpegaudio. The db program also allocates a
small number of large arrays of references consuming a large chunk
of heap space and used to sort the data. Some of our conclusions
may not apply to these atypical Java programs. However, we have
included data for these benchmarks (except for mpegaudio for
this specific table) for the sake of completeness.

Column 5 shows that except for compress, objects of prolific
types are smaller on an average than objects of non-prolific types.
We found that instances of scalar objects of prolific types tend to be
smaller than 32 bytes. However, because many objects of prolific
types are arrays, the average size of all prolific objects, in some
cases, is greater than 32 bytes.

Column 10 (marked “Rel%Inst”, short for relative percentage of
instances) shows that the relative survival rates (among objects al-
located during this phase) are usually lower for objects of prolific
types than for objects of non-prolific types. This validates the pro-
lific generational hypothesis. An interesting result is that for most
benchmarks, the average size of objects of prolific types that sur-
vived a minor collection (column 9) is larger than that of objects of
prolific types that were allocated (column 5). This is probably be-
cause arrays tend to live longer than scalar objects. An exception is
compress, where most of allocated large arrays are garbage col-
lected. Finally, most of the dead objects and most of the garbage
collected in a minor collection comes from short-lived objects of
prolific-types (columns 12 and 13).

2.4 Identifying Prolific Types
We now discuss various approaches that may be used to identify

prolific types. These approaches vary in terms of their overhead
and accuracy.

2.4.1 Off-Line Profiling
The simplest method of identifying prolific types is to use offline

profiling. In an offline run, a modified runtime system monitors
memory allocation requests issued by an application and counts the
number of objects of each type that are allocated on behalf of an ap-
plication. In our implementation, collecting allocation profile car-
ries a 5-10% run-time overhead. When an application (or a JVM)
exits, the collected allocation profile is saved into a file. During
an actual run, the runtime system uses previously collected alloca-
tion profile to perform various optimizations. Thus, no monitoring
overhead is incurred during the production run of the application.

A disadvantage of this approach, as with any offline profiling
method, is that it requires a separate profiling run and the allocation
profiles may vary depending on input data supplied to an applica-
tion. In addition, an application may consists of several execution
phases with drastically different allocation profiles. An allocation
profile of such an application is going to reflect its “average” be-
havior during the entire run. Although imperfect, this “one size fits
all” approach still works quite well for many applications.

2.4.2 Adaptive Identification of Prolific Types
An adaptive approach, in contrast to the offline profiling ap-

proach, attempts to identify prolific types during the actual pro-
duction run of the program. An obvious adaptive strategy would
be to monitor each memory allocation in the application. How-
ever, this has the disadvantage of relatively high runtime overhead
(which we have measured at 5-10% for offline runs). It should be
possible to reduce the overhead of monitoring object allocations by
using sampling techniques, such as those presented in [1].

An alternate approach is to monitor the garbage collections rather
than memory allocations to identify prolific types. We expect most
dead objects to be of prolific types. Although examining dead ob-
jects could lead to a fairly accurate characterization of types as pro-
lific or non-prolific, it would be an expensive operation. Again,
sampling techniques using weak references [1] could help reduce
the overhead, since only a small subset of the dead objects would
then be examined.

3. TYPE-BASED MEMORY MANAGEMENT
In this section we discuss a type-based approach to memory

management, based on the prolific generational hypothesis. We
describe how to modify a generational garbage collector to obtain a
type-based collector. We describe how this methodology applies to
both copying and non-copying versions of the collector. We explain
how partitioning types into prolific and non-prolific allows us elim-
inate many write barriers with efficient compile-time analysis, in
spite of the issues related to polymorphism and dynamic class load-
ing which complicate compiler analysis. We also describe some
extensions to the basic approach. Finally, we discuss the strengths
and weaknesses of our collector.

3.1 Basic Approach
Our basic approach is to distinguish between prolific and non-

prolific objects in the heap, and direct the collection effort first to-
wards prolific objects.

3.1.1 Type-based allocation
The type-based memory allocator partitions heap space into a

prolific space and a non-prolific space: P-space and NP-space, re-
spectively. Note that the actual allocation mechanism is related to
the kind of collector used by the system. When used with a copy-
ing (type-based) collector, the allocator uses different regions of the
memory for the P-space and NP-space. With a non-copying collec-
tor, the objects of prolific and non-prolific types are tagged differ-
ently, but not necessarily allocated in separate memory regions.

Given an allocation request for an object of a certain type, the al-
locator checks the allocation profile of the application (with infor-
mation about whether or not the type is profilic) to decide whether
to place the object in the P-space or NP-space. Hence, compared to

3

a traditional memory allocator, the allocation path of the type-based
allocator would have an extra step for checking the type of the ob-
ject. However, since the prolificacy of types is known at compile-
time, the compiler can avoid the overhead of the type check by
simply calling (and possibly inlining) a specialized version of the
allocator for prolific or non-prolific types.3

3.1.2 Type-Based Collection
Based on the prolific generational hypothesis, the type-based

garbage collector assumes that most objects of prolific types die
young, and performs minor collections only on the P-space. Since
objects of prolific types account for most of heap space, we hope
to collect enough garbage on each P-space collection. When a P-
space collection does not yield a sufficient ammount of free space,
a full collection of both P-space and NP-space is performed. Be-
cause enough unreachable objects should be uncovered during a
P-collection, we hope that the full collections will be infrequent.
Objects remain in their respective spaces after both P-space and
full collections – i.e., unlike generational collection, objects that
survive a P-space (minor) collection stay there and are not “pro-
moted” to the NP-space. This enables the compiler to eliminate
unnecessary write barriers with a relatively simple type check, as
described in Section 3.1.3. Given the low survival rates of objects
in the P-space, we do not expect the “pollution” of P-space due to
longer lived objects to be a significant problem.

In order to ensure that during a P-space (minor) collection, any
object reachable from an object in the NP-space is not collected,
we have to keep track of all such pointers from an object in the
NP-space to an object in the P-space. This is accomplished by exe-
cuting a write barrier code for pointer assignments during program
execution, which records such references and places them in a write
buffer. The contents of the write buffer represents roots used in a
P-space collection.

3.1.3 Eliminating Write Barriers with Compile-Time
Analysis

In the type-based collection, we do not move objects from P-
space to NP-space or vice versa. Hence, write barriers (which are
supposed to keep track of references from NP-space to P-space)
can be eliminated at compile time based on a simple type check.
More specifically, given an assignment statement where the pointer
of an object of type source is assigned a value corresponding to a
pointer of an object of type target, we express the condition for
eliminating a write barrier as:

������������������� � ���� �!�"�����#�%$&'�%"�(�!)$���*
+-, ����."��% �!)"�����#��$&/����!�0��%��*

(1)

3.1.3.1 Potential Opportunity.
Table 2 shows the percentage of pointer assignments originat-

ing from an object of a prolific type, i.e., those for which Is-
Prolific(source) is true at run time. This data was ob-
tained by running SPECjvm98 benchmarks (with size 100) and the
SPECjbb2000 benchmark with the Jalapeño VM, using the opti-
mizing compiler and a non-copying generational collector. The
high percentages for all programs, except for db, show that there
is clearly a potential to eliminate a substantial percentage of write
barriers. Note that the numbers presented in Table 2 only give an
upper bound on how many of the write barriers can be eliminated
(based on the IsProlific(source) part of the test). The ac-
1
Our current implementation does not yet perform this optimiza-

tion.

Table 2: The fraction of dynamic assignments into the fields of
objects of prolific types

Benchmark % of 24365�287:9;2=<
compress 53
db 1
jack 99
javac 42
jess 99
mpegaudio 63
mtrt 80

jbb 73

tual numbers are likely to be lower due to language features like
polymorphism and dynamic class loading that introduce conserva-
tiveness in the compiler analysis.

3.1.3.2 Conservativeness due to Polymorphism.
Given that Java is an object-oriented language with polymor-

phism, the above test (1) requires analyses like class hierarchy
analysis [11] or rapid type analysis [5], similar those needed for
inlining or devirtualization of methods. We make this conserva-
tiveness explicit by redefining the test (1) to be:

��������>��������%� � ?�(���%�)�� �!)"�����#)��$&'�%"�(�!$���*
+@, ?�(���%�)��.)"��� �!)"%����#��$)&/�)��!�0����)*

(2)

Given a declared type A of an object B , the compiler checks
for

?�(C���%�)�� �!�"�����#�%$D& B * by checking that all children of A in
the class hierarchy are prolific, and can similarly check for?�(C���%�)��."��� �!)"�����#��$�& B * .

3.1.3.3 Conservativeness due to Dynamic Class Load-
ing.

Dynamic class loading [14] is another feature of Java that forces
us to do compile-time analysis more conservatively. Again, the
problem is similar to the problem with inlining of virtual methods
in the presence of dynamic class loading [12, 26].

Due to dynamic class loading, a program can load a new class
that is non-prolific but subclasses a prolific class, unless the pro-
lific class is declared final. Note that with a type prolificacy
based methodology, a newly loaded class (which the compiler does
not know about) would not be classified as prolific, since no in-
stance of that class would have been seen. Therefore, while the
check MustBeNonProlific(target) in (2) could be done
by looking at the existing type hierarchy, the check MustBe-
Prolific(source) would be conservatively set to IsFi-
nal(source), so that the code continues to work correctly after
new classes are loaded. In this case, the condition under which a
write barrier may be eliminated becomes:

����E�������������� � ����F�>����C&'�%"�(�!$���*
+-, ?�(C�����)��."��% �!)"�����#��$&/�)��!�0��%�)*

(3)

It is possible to use the techniques for inlining virtual methods
in the presence of dynamic class loading, like preexistence anal-
ysis [12] and extant analysis [26], to improve the effectiveness of
the above test. For example, using extant analysis, if we create a
specialized method in which the source reference is known to
be extant (i.e., pointing to an existing object) [26], the test Must-
BeProlific(source) can be performed based on the existing
class hierarchy, without worrying about any new classes that might
be loaded. We use a much simpler technique, described below, in

4

our implementation.

3.1.3.4 Simplified Solution.
We postulate that the prolific types are likely to be leaves, or

close to leaves, in a type hierarchy. The intermediate classes are
typically used for defining a functionality that is common to all
of their children classes. The subclasses then refine the behavior
of their parent classes and are usually instantiated more frequently
than their respective parent classes.

While it is possible that a prolific class may have one or more
subclasses that are not prolific, we have made a choice to treat all
children of prolific types as prolific. This greatly simplifies the
test to check if a type is definitely prolific. The test returns true
if the declared type of the variable is prolific, and returns false
otherwise (without looking any further at the class hierarchy). In
particular, the test for eliminating redundant write barriers can be
done without worrying about any new classes that may be dynami-
cally loaded in the future (since we would regard any dynamically
loaded class that subclasses a prolific type as prolific):

G)H�I�J�I�K)L�M�N�O�P Q R�S�T�N)U%H�L�V�N%W%X�V)Y%H�I�ZI�U)['S%Y�\�VU�N�]
^-_a` \CS�M%P)N�bY�K�X�V)Y�H�I�ZI�U[/M�L�V�c�N%M�] (4)

Our decision to treat the children of a prolific type as prolific
seems to work well in practice. We have profiled all SPECjvm98
applications and the SPECjbb2000 benchmark and discovered that
(with a few exceptions) prolific types are indeed the leaves in a type
hierarchy. We have seen only three cases in the SPECjvm98 bench-
mark suite where prolific types were not a leaves in a type hierar-
chy: only in two cases, prolific types were leaves in a class hierar-
chy and had sub-types that were not prolific; in one case, a prolific
type had a subtype that was also prolific. Namely, in javac, a
prolific class Instruction has a non-prolific subclass Label;
in mtrt, a prolific class IntersectPt has a non-prolific sub-
class CacheIntersectPt; finally, also in mtrt, a prolific class
Point has a subclass Vector that is also prolific:

3.2 Extensions
We now describe various extensions to the basic scheme, which

can improve the performance of the system.

3.2.1 Avoiding Scanning References to Type Informa-
tion Blocks

One of the fields in an object header usually points to a special
object describing its type (or class) information. For example, in
Jalapeño, this field points to a type information block (TIB) and is
called a TIB field. Table 3 provides data4. Scanning TIB pointers
for every reachable object does not seem to be necessary and can
be avoided in the type-based scheme.

It is sufficient for only one object of a type to survive a collection
to ensure that the TIB of that object is scanned and marked as live.
The scanning of TIB fields of all other instances of that type are un-
necessary, although the garbage collector will realize after reaching
the TIB object that it has already been marked.

Since the number of distinct types is small, the number of objects
representing them is also small. It follows that such objects can be
classified as instances of a non-prolific type and placed in the NP-
space. As a result, the TIB fields (which now point to the NP-space)
do not have to be scanned during a P-space collection.
d
Each SPECjvm98 ran through three iterations showing that a large

fraction of scanned pointers (28%-55% depending on the bench-
mark) are TIB pointers. After loading a database, SPECjbb2000
ran for two minutes.

Table 3: Many pointers scanned during garbage collection are
reference fields in object headers such as those pointing to the
type information block (TIB) objects

References Scanned
Benchmark # of TIB refs. # of all refs. % of TIB refs.

compress 8885294 28923650 30.719
db 1561864 2795719 55.866
jack 1446534 3796136 38.105
javac 4563270 14301008 31.908
jess 1940900 6551758 29.624
mpegaudio 409520 1421784 28.803
mtrt 2139610 3873905 55.231

jbb 2008508 5582408 35.979

3.2.2 Processing Fewer Pointers
The idea of not scanning TIB objects during a P-space collection

can be taken further by observing that only objects of prolific types
need to be scanned in the P-space collection. We will now show
that in our type-based scheme, the number of pointers processed
can be reduced even further during a P-space collection.

During the P-space scanning process, for each object, the garbage
collector requests the list of fields that are references. This list is
created when a class is loaded. Normally, the returned list contains
all such reference fields. Consequently, all such references are first
processed and then some of them (e.g. those pointing to young
objects) are scanned.

However, in the type-based collector, there is no need to return
a complete list of reference fields to the collector during a P-space
collection. Only the references pointing to objects of prolific types
have to be returned (because object residing in the NP-space are
only scanned during a full collection). To support this extension,
the class loader needs to provide to the collector with two different
sets of methods returning the lists of reference fields: one (returning
a partial list) for a P-space collection and one (returning a full list)
for a full collection.

3.2.3 Multiple “Generations”
By defining several degrees of prolificacy of types, we can create

several P-spaces. The prolific generational hypothesis predicts that
objects corresponding to different levels of prolificacy will have
different lifetimes. Each such space may be collected with a differ-
ent frequency. This is analogous to generational garbage collectors
employing multiple generations and promoting objects with differ-
ent ages to different generations.

3.2.4 Partitioning of P-space and NP-space
It would be useful to have a separate sub-space within the NP-

space for objects of non-prolific types that cannot point to objects in
the P-space directly. By partitioning the NP-space in this manner,
we can eliminate the need to maintain card marking data structures
for this sub-space because a write barrier cannot be executed on
any object in this sub-space.

3.2.5 Lifetime Analysis
Combining type-based memory management with lifetime anal-

ysis of objects may lead to further performance improvements. Al-
though, most short-lived objects are instances of prolific types, there
may be some non-prolific types whose instances are always short-
lived. It may be advantageous to colocate such objects of non-
prolific types with objects of prolific types in the P-space (and to
treat them as if they were instances of prolific types) thereby re-
ducing the pollution of NP-space, albeit only slightly. However, if

5

such short-lived objects can point directly to a P-space, then this
colocation can also reduce the pollution of P-space after a P-space
collection.

3.3 Discussion
The type-based approach, while similar to the generational ap-

proach in spirit, has some important differences. First, it involves
pretenuring objects of non-prolific types into the heap partition
which is collected less often. These objects do not need to be
scanned during P-space (minor) collections. However, we expect
those savings to be limited because non-prolific types, by their very
nature, would not have occupied a lot of space in the nursery.

Second, objects of prolific types are never promoted to the heap
partition which is collected less often. This can be a double-edged
sword. If objects of prolific types live for a long time, they can pol-
lute the P-space, causing the scanning time to increase during fu-
ture minor collections.5 However, this approach can also help avoid
the negative side effects of premature promotion of young objects
which are going to die soon anyway (namely, dragging more ob-
jects via write buffers into the old generation; and requiring more
major collections).

Third, the separation between the heap partitions based on the
types of objects allows redundant write barriers to be eliminated
with a simple (and well-known in the context of dealing with virtual
methods) compile-time analysis. This, apart from saving the direct
overhead of executing write barriers, can also help avoid adding
unnecessary objects to the write buffer, thus leading to fewer roots
for minor collections, and potentially, more effective garbage col-
lection.

4. PRELIMINARY IMPLEMENTATION
We will now describe an initial implementation of the type-based

approach in the Jalapeño VM [2]. Except for some low level com-
ponents, Jalapeño is itself written in Java. Jalapeño supports a num-
ber of different garbage collectors, which can be used in different
configurations of the VM. We implemented our type-based scheme
by making a number of modifications to the non-copying genera-
tional garbage collector, which we found the simplest to start with.

4.1 Execution Modes
We modified the JVM to introduce two modes of execution, with

the selection controlled by a command line parameter. In one (pro-
filing) mode, the allocation profile is collected; in the other (pro-
duction) mode, the allocation profile collected in the profiling run
is used by the memory allocator and garbage collector to imple-
ment type-based heap management, and by the compiler to opti-
mize away redundant write barrier code. These modes are similar
to the compilation run (write mode) and the production run (read
mode) of the quasi-static compiler [25].

4.2 Allocator and Collector
In the profiling mode, the memory allocator monitors all alloca-

tion requests, collect its type profile, and produces a file with the
profile information, including class hierarchy information. In the
production mode, the memory allocator uses the previously col-
lected type profile to make allocation decisions. Also, in the pro-
duction mode, the garbage collector repeatedly collects space oc-
cupied by dead objects of prolific types. When only a small portion
of memory is freed, it collects the entire heap.

e
Our experimental results show that the times for minor collections

are, in fact, lower for our type-based collector.

4.3 Write Barriers
Jalapeño uses one of the bits in the object header for write bar-

riers. When an object is created, this bit is cleared. When an ob-
ject survives a minor collection, the bit is set while an object is
promoted to the old generation. When a reference assignment op-
eration (such as putfield or aastore) is executed, the write
barrier code checks whether this bit is set in the object into which
a new reference is stored (i.e. the source object). If it is cleared,
nothing needs to be done. If the bit is set, a references to the source
object is added to a write buffer, and the write barrier bit is cleared
to ensure that no more than one reference to the source object is
added to the write buffer. The references stored in the write buffer
(in addition to the references on the stack of all threads and the
references in the JTOC array) become roots of minor collections
and are processed accordingly. Once a reference stored in the write
buffer is processed, the write barrier bit for the object correspond-
ing to the reference is set again.

In Jalapeño, no write barrier code is executed for putstatic
operations, because all static variables appear in a global table called
JTOC, which is scanned on each collection.

We have made modifications to this code to ensure that the write
barriers work appropriately for our type-based approach. While the
write barrier bit is cleared by default when objects are created, we
set it for objects of non-prolific type at allocation time (reflecting
our decision to “pre-tenure” these objects in NP-space). Further-
more, rather than setting this bit for all objects surviving a minor
collection, we do not set this bit for objects of prolific type, because
those objects are not “promoted” to the NP-space.

We modified the Jalapeño optimizing compiler to eliminate re-
dundant write barriers during the production run of a program. The
compiler analysis to identify redundant write barriers is based on
the simplified solution described in Section 3.1.3.4. However, the
analysis has to deal with an additional, Jalapeño-specific issue of
boot-image, which makes the analysis more conservative, as de-
scribed below.

4.4 Jalapeño-Specific Issues Related to the Boot-
Image

We now describe the boot-image issue, which arises in the con-
text of the Jalapeño JVM, and is likely to be relevant for any JVM
implemented in Java.

4.4.1 The Boot-Image Problem
A number of Jalapeño components (implemented in Java) nec-

essary to bring up the JVM are first compiled into machine code
by a compiler. The compiled code is then written into a file called
the boot-image. Unlike the rest of the heap space, the portion of
the heap occupied by the boot-image is not garbage collected. In
addition, some of the boot-image objects cannot be moved out of
the boot-image because pieces of code implemented in C (such as
interrupt handling routines) point inside of Java objects (namely,
arrays of integers used to store compiled machine code).

As we discussed earlier, the type-based scheme allows us to
eliminate write barriers for references that are written into instances
of prolific types (which ought to reside in the P-space). The prob-
lem arises when the boot-image contains an instance of a prolific
type for an application. This type is likely to be one of the types de-
fined in the Java class libraries, such as String, which is actively
used by applications.

Given a reference to an object of a prolific type, the compiler
cannot always infer whether this reference (pointing to a source
object) will only point to an object that does not reside in the boot-

6

image.6 In such cases, if the write barrier is eliminated, the target
object of a prolific type pointed to by the boot-image object may be
mistakenly collected during the P-space collection (unless it is also
pointed to from one of the objects residing in the NP-space which
is collected only during a full collection).

4.4.2 Unsuitable Solutions to the Boot-Image Prob-
lem

Several obvious approaches that could alleviate this problem are
not suitable. One possible solution, to move instances of prolific
types from boot-image into the P-space, may not be done easily
due to the restrictions on moving objects out of the boot-image,
discussed above. Another solution is not to use the potentially pro-
lific types for applications as such in the JVM implementation (and
hence, ensure that they do not appear in the boot-image). Although
it may be accomplished by implementing an internal version of
classes that have the same functionality as those in Java libraries
but different names, this solution requires a fairly cumbersome ef-
fort. Finally, if we force the garbage collector to scan the boot-
image objects on each collection, we would no longer need write
barriers for assignments out of objects in the boot-image. How-
ever, because of the large size of the boot-image, we ruled out this
approach as well.

4.4.3 The Adopted Solution
Clearly, the compiler cannot eliminate a write barrier if the source

reference may be pointing to an object residing in a boot-image.
Consequently, we adopted the following conservative strategy. We
modified the test (4) to check for the type of source being in the
boot-image:
fg�h�i�h�jk�l�m�n�o p qsr�tCu�l�o)m�v�w)x%g�h�yh�z)q'u%x�t�wz�m�{

|-}�~ r�tCu�l��x�l%o)m���j�ox�x�l��i-k���m@q'u%x�t�w)z�m�{>{
�-� r�tCu�l�o)m��x�j%v�w)x�g�h�yh�zq/l)k�w���m%l){

(5)

The information about all of the classes in the boot-image is
available for each configuration of Jalapeño.

5. EXPERIMENTAL RESULTS
In this section we present the results of our experiments which

were performed on an RS/6000 system with a 333 Mhz PowerPC
604e processor and 768 MB of memory. We studied applications
from the industry standard SPECjvm98 benchmark suite [27] and
the SPECjbb2000 benchmark (Release 1.0) [28]. The SPECjbb2000
benchmark, which we refer to as jbb, is based on the pBOB (portable
business object benchmark) [8], which follows the business model
of the TPC-C benchmark [33] and measures the scalability and
throughput of the JVM. We used the largest data set size (set to
100) to run SPECjvm98 applications. For all SPECjvm98 bench-
marks, we used a 64 MB heap, except for javac (80 MB). The jbb
program ran with a 128 MB heap.

5.1 Reducing the Overhead of Write Barriers
Table 4 demonstrates the effect of our write barrier elimination

technique on reducing the overhead associated with execution of
write barriers. Each SPECjvm98 program was executed with ������� � flags and run through three iterations. The jbb benchmark ran
for two minutes after the initial ramp up stage.
�
Although, the location of an object is always known at run-time,

we are interested in a compile-time solution. In some cases, the
compiler may be able to trace the source reference to the site where
the object it points to is instantiated.

For some benchmarks, the fraction of sites at which write bar-
riers have been eliminated is fairly small (column 2). For others,
it is quite significant and ranges from 15% to 32%. Note that the
number of write barriers eliminated at compile time does not trans-
late linearly to the number of write barriers eliminated at run time
(column 5). It can be seen that the programs that are amenable to
our optimization execute 18%-74% fewer write barriers which im-
proves the throughput of these programs. Interestingly, a compar-
ison with data presented in Table 2 suggests that there is a consid-
erable potential for eliminating more write barriers by using more
precise compiler analysis. In those programs, 3%-84% fewer en-
tries are added to the write buffer for processing, which reduces the
GC pauses and reduces the pollution of the heap. Benchmarks like
compress and mpegaudio do not allocate a lot of objects which
could be classified as instances of prolific types. Consequently, on
these benchmarks, we are not able to eliminate write barriers. In
db, most of the pointer assignments were to a few large arrays of
references (which were classified as non-prolific) used for sorting
data . As a result, the reduction in of write barrier overhead is in-
significant.

5.2 Performance and Throughput of Applica-
tions

Table 5 shows the throughput of SPECjvm98 and SPECjbb200
benchmarks under the Jalapeño JVM built with different garbage
collectors (GC): our non-copying type-based GC, the non-copying
generational GC, and the non-copying (non-generational) GC.
The best execution times (SPECjvm98) and the throughput
(SPECjbb2000) for each benchmark are highlighted in Table 5
and then presented again for comparison in Table 6. Interestingly,
our scheme yields the highest throughput numbers on three bench-
marks, most notably jack and jbb.

Each SPECjvm98 program was run with ������� � � flags and
was executed six times. The execution time in the initial iteration
was the highest while throughput was the lowest due to compilation
performed by an optimizing compiler. In each of the remaining five
steady state iterations, there was very little compilation activity.
After a ramp up, the jbb benchmark runs for two minutes. We
ran this benchmark twice to ensure the representativeness of timing
data.

Compared to the generational GC, our scheme performs up to
3% better on all benchmarks, except for mtrt where the through-
put is 2% worse. (We believe this anomaly is due to data locality
effects, and are investigating this further.) This is an encouraging
result, suggesting that our scheme can improve the throughput of
applications in systems where the generational GC is used.

Compared to the non-generational non-copying GC, our scheme
performs noticeably better (by almost 12%) on jess, and some-
what better on jack, mtrt and jbb on which it shows a 1.5%-
4.7% improvement. The non-generational GC performs better than
our scheme on compress, db, and mpegaudio, probably be-
cause these programs do not generate a lot of objects. This program
behavior limits the opportunities where our optimizations can ap-
ply.

5.3 Garbage Collection Statistics
Table 7 shows the benefits of our technique for garbage collec-

tion. The data was collected during performance runs for which we
presented the data in Section 5.2.

Compared to the non-copying generational collector, our scheme
has fewer garbage collections during the execution of javac and
jess. Interestingly, on javac, the number of both P-space and
full collections (compared to minor and major collections in the

7

Table 4: The reduction of write barrier overhead.
Static count Dynamic count

% of WB eliminated # of write barriers executed # of ref. added to the write buffer
Benchmark optimized original optimized % elim. original optimized % elim

compress 0.000 3514 3514 0 149 149 0
db 3.048 81440517 81407032 0 63 54 14.2
jack 0.840 29326975 20849265 28.9 3912 3775 3.5
javac 31.967 41026080 33728942 17.8 714812 603352 15.5
jess 15.838 30777556 8106063 73.7 1765 1602 10.2
mpegaudio 0.000 17436480 17436480 0 310 310 0
mtrt 17.187 9832002 3513591 64.3 1073 167 84.4

jbb 0.622 26740265 19967459 25.3 46707 8803 71.1

Table 5: Throughput (collected in the GC timing run). Execution times are given in secs. for SPECjvm98 programs (smaller is
better) and the throughput is given in ops/sec. for SPECjbb2000 (larger is better). The best numbers are highlighted.

Iteration
Benchmark 0 1 2 3 4 5

Non-copying GC Type-Based
compress 72.792 57.121 57.065 56.994 57.008 56.999
db 108.502 88.283 88.814 89.520 88.576 88.249
jack 108.169 51.003 50.757 50.879 50.850 50.732
javac 174.706 52.281 52.171 52.277 52.639 52.261
jess 88.501 31.215 31.122 31.969 31.992 31.251
mpegaudio 66.568 26.808 27.000 28.193 27.540 26.785
mtrt 55.584 23.203 22.975 23.566 23.071 23.455
jbb n/a 1165.18 1171.35 - - -

Non-copying GC Generational
compress 73.574 58.697 58.598 58.644 58.685 59.371
db 107.468 88.771 88.788 89.772 88.546 88.817
jack 110.041 51.922 51.651 51.649 51.619 51.670
javac 190.356 54.644 54.692 54.682 53.369 54.032
jess 93.093 32.464 32.725 31.728 32.139 32.927
mpegaudio 66.03 27.328 27.121 27.353 28.366 27.814
mtrt 56.732 23.403 22.485 24.137 22.568 23.510
jbb n/a 1137.05 1137.59 - - -

Non-copying GC
compress 69.191 55.289 55.294 55.311 55.311 55.272
db 105.818 87.979 88.727 88.277 88.745 88.267
jack 102.593 52.639 52.560 52.478 52.538 52.559
javac 144.788 47.349 47.533 47.499 47.586 47.577
jess 86.607 35.649 34.813 34.884 35.060 35.210
mpegaudio 62.103 27.233 27.040 26.974 27.587 28.205
mtrt 53.877 23.347 23.313 23.242 23.239 23.289
jbb n/a 1119.24 1118.30 - - -

8

Table 6: Comparison of the best throughput results (collected in the GC timing run). Execution times are given in secs. for
SPECjvm98 programs (smaller is better) and throughput is given in ops/sec. for SPECjbb2000 (larger is better). The best num-
bers for each benchmark are highlighted.

Non-Copying GC
Generational Non-Generational Type-Based

Benchmark Raw Raw Normalized w.r.t Raw Normalized w.r.t.
Generational GC Generational GC

compress 58.598 55.272 106.017 56.994 102.814
db 88.546 87.979 100.644 88.249 100.336
jack 51.619 52.478 98.363 50.732 101.748
javac 53.369 47.349 112.714 52.171 102.296
jess 31.728 34.813 91.138 31.122 101.947
mpegaudio 27.121 26.974 100.544 26.785 101.254
mtrt 22.485 23.239 96.755 22.975 97.867
jbb 1137.59 1119.24 98.386. 1171.35 102.967

generational scheme) is reduced. On mtrt, the number of P-
space collections went up slightly. On all other benchmarks, the
number of collections is the same. Overall, except for the “atypi-
cal” Java benchmarks like compress and mpegaudio, both the
type-based and the generational collectors have a higher number
of collections than the non-generational GC (which is expected).
However the number of expensive full collections is significantly
smaller in the type-based scheme (and in the generational scheme)
compared to the non-generational GC. This is done at the “ex-
pense” of performing more frequent, less-costly P-space (minor)
collections.

Compared to the generational scheme, the type-based GC spends
less time collecting the P-space. The javac program is an ex-
ception. For this benchmark, the average time spent on collecting
the P-space is approximately twice as large as the time spent on
collecting the nursery in the generational scheme. At the same
time, the average time spent on collecting the whole heap is no-
ticeably smaller (25%). Although the type based-scheme executes
more inexpensive collections than the generational scheme during
the execution of the mtrt benchmark, its average time for collect-
ing young objects is smaller. With exception of mpegaudio, the
total time spent on collecting the whole heap is smaller in the type-
based scheme than in the generational GC. Finally, for all bench-
marks, the total time spent on garbage collection is smaller in the
type-based scheme compared to the generational GC. The improve-
ments range from 1.2% to 15.2%, with an average improvement of
7.4%. Short average GC times is an attractive characteristic of the
type based scheme.

Both minimum and maximum GC pauses during collection of
young and all objects are shorter in the type-based scheme than
those exhibited by the generational GC. This observation is im-
portant since short GC pauses is a critical requirement for some
systems. The mtrt program is an exception where the maximum
pause time for a full collection is slightly longer.

5.4 The Impact of the Jalapeño BootImage
For most of the benchmarks, the bootimage problem was not

very important and had an insignificant impact on performance.
However, for jess, 25% of write barriers executed dynamically
could have been eliminated if java.lang.String objects were
not a part of the Jalapeño bootimage. Similarly, in jbb, 7% and
25% of write barriers could have been optimized away if the bootim-
age did not contain strings or arrays of objects, respectively.

6. RELATED WORK
Jones and Lins [21] present a comprehensive overview of vari-

ous memory allocation and garbage collection strategies. Surveys
by Wilson [37], and Wilson, Johnstone, and others [38], discuss
uniprocessor garbage collection and dynamic memory allocation
algorithms, respectively.

Exploitation of object lifetimes for garbage collection has been
investigated extensively. The key observation that the lifetime of
many objects is short was reported as early as 1976 [13]. This in-
sight then led to the formulation of the weak generational hypoth-
esis [34] which states that most objects die young. This hypothesis
forms the basis of generational garbage collection [23, 6]: focus on
reclaming objects that are most likely to die, i.e., young objects.

Stefanovic et al. have investigated alternatives to the traditional
young-first generational collectors [29]. They propose age-based
garbage collection [30] algorithms, some of which use an older-first
collector, that collects older objects before the younger ones. This
approach primarily reduces copying costs over the traditional gen-
eration collectors. Both the age-based and traditional generational
collectors follow the same philosphy: both use age as a criterion
for identifying objects for collection (young objects in generational
and old objects in age-based collectors). On the contrary, the pro-
lific garbage collector, uses the prolificacy of object types as the
criterion for identifying prospective moribund objects.

Experimental studies by Zorn [39], and Tarditi and Diwan [32]
have shown that the cost of generational garbage collection is be-
tween 5% to 20%. Generational collectors usually segragate heap
objects by their age. However, substantial performance improve-
ment can be achieved by allocating large objects in a separate non-
copy region, usually termed as large object space(LOS) [10]. Iden-
tification of large objects can be an absolute measure (e.g., more
than 1024 bytes [35] or 256 bytes [20]) or a relative one (i.e., iden-
tify the object type whose instances occupy substantial space [18]).
Many recent generation collection implementations use the LOS
for storing large objects [16, 2]. The cost of write barriers is also
significant, especially for pointer-intensive applications [32]. While
there have been several efforts for improving the write barrier per-
formance [17, 18], we did not come across any work that eliminates
write barriers via static compile-time analysis.

Previous studies have investigated off-line feedback-driven ap-
proaches for segragating objects using criteria such as object life-
time and reference behavior. Barrett and Zorn [7] use full-run
profiles on allocation-intensive C programs to predict short-lived
objects, place them contiguously and delay their deallocation un-
til large 4KB batches become free. Seidl and Zorn [24] propose
partitioning heap for storing objects according to their reference
behavior (frequently vs. infrequently referred objects) and life-
times (short-lived vs. long-lived) objects. Blackburn et al. describe

9

Table 7: Garbage collection statistics.
Non-copying GC Type-Based

of GCs GC Time P-sp. col. pause time Full col. pause time
Benchmark P-space Full Total P-space Full Total Min Max Min Max

compress 2 94 96 0.184 50.935 51.120 0.068 0.121 0.531 0.631
db 14 3 17 5.041 2.682 7.724 0.150 0.172 0.590 1.061
jack 64 9 73 8.682 5.724 14.406 0.101 0.455 0.592 0.674
javac 28 31 59 20.845 46.723 67.569 0.232 0.815 0.595 1.935
jess 56 11 67 7.006 7.667 14.674 0.111 0.208 0.639 0.769
mpegaudio 1 2 3 0.177 1.222 1.400 0.179 0.179 0.592 0.634
mtrt 30 5 35 8.419 4.378 12.798 0.126 0.674 0.877 1.170
jbb 10 5 15 3.497 4.911 8.409 0.266 0.572 0.658 1.344

Non-copying GC Generational
of GCs GC Time Minor col. pause time Major col. pause time

Benchmark Minor Major Total Minor Major Total Min Max Min Max

compress 2 94 96 0.193 55.786 55.979 0.102 0.142 0.604 0.756
db 14 3 17 5.314 2.967 8.282 0.180 0.186 0.661 1.202
jack 64 9 73 9.180 6.228 15.408 0.130 0.490 0.661 0.743
javac 53 38 91 17.468 62.253 79.721 0.250 0.913 0.672 2.119
jess 57 11 68 7.417 8.280 15.697 0.137 0.234 0.717 0.843
mpegaudio 1 2 3 0.183 1.313 1.497 0.209 0.209 0.660 0.703
mtrt 27 5 32 8.728 4.223 12.952 0.169 0.766 0.660 1.043
jbb 10 5 15 3.751 5.373 9.125 0.304 0.641 0.726 1.600

Non-copying GC
of GCs GC Time Minor col. pause time Major col. pause time

Benchmark Minor Major Total Minor Major Total Min Max Min Max

compress . 96 96 . 45.563 45.563 . . 0.436 0.505
db . 14 14 . 10.710 10.710 . . 0.448 0.826
jack . 62 62 . 31.271 31.271 . . 0.436 0.619
javac . 58 58 . 46.948 46.948 . . 0.436 1.080
jess . 64 64 . 36.630 36.630 . . 0.439 0.689
mpegaudio . 3 3 . 1.398 1.398 . . 0.435 0.488
mtrt . 26 26 . 19.018 19.018 . . 0.435 0.874
jbb . 11 11 . 9.137 9.137 . . 0.447 0.963

10

Figure 1: Normalized GC times of type based GC (with respect to generational GC).

com
press

db jack

javac

jess

m
pegaudio

m
trt

jbb

60

80

100

120

N
or

m
al

iz
ed

 G
C

 t
im

es
 o

f
th

e
 t

yp
e-

ba
se

d
G

C

Cumulative P-space (minor) collections time

Cumulative full (major) collections time

Total GC time

profile-driven technique for reducing copying by pre-tenuring long-
lived objects, i.e., storing long-lived objects in an uncollected re-
gion [9]. Recently, Harris [15] has presented a dynamic technique
in which selection of objects for pre-tenuring is performed at run-
time.

Stefanovic et al. [31] describe analytical models for object life-
times in object-oriented programs. Appel [3] has proposed that a
plausible object lifetime distribution should use the following prop-
erty: the expected future lifetime of an object is proportional to its
current age.

7. CONCLUSIONS
We have presented a new approach to memory management. It

is inspired by the observation that a few prolific types in an ap-
plication usually account for a large majority of objects that are
cumulatively allocated; furthermore, objects of these prolific types
tend to have short lifetimes. Therefore, our approach to garbage
collection directs the frequent collections towards objects of pro-
lific types, much like generational collection directs them towards
young objects. This approach leads to some important advantages
over generational collection – it leads to fewer write barriers, poten-

tially more effective collections, and lower copying costs (not ver-
ified yet, because our current implementation only performs non-
copying collection).

With a preliminary implementation of this approach in the Jalapeño
VM, we have observed significant improvements over the gener-
ational collector. For the SPECjvm98 and SPECjbb2000 bench-
marks, the number of dynamically executed write barriers is re-
duced by 18% to 74% (except for three programs, for which there
is no reduction). The total garbage collection times are reduced
by an average of 7.4% over all benchmark programs. The overall
performance improves modestly for most programs.

This work opens up a number of interesting possibilities for fu-
ture research. We plan to develop a copying version of our type-
based collector. This would also involve allocating objects of pro-
lific and non-prolific types in distinct regions of memory. It would
be interesting to study the impact of such an allocation policy and
copying collection on the data locality characteristics.

Another interesting direction would be to investigate a more dy-
namic version of our approach, where the detection of prolific types
is done during program execution in an adaptive manner. Chang-
ing the status of a type from prolific to non-prolific, or vice versa,
would require selective recompilation of sections of code where

11

write barriers may have been eliminated based on the older classi-
fication of types (we do not anticipate a need to undo the effect of a
previously eliminated write barrier, as long as the existing objects
are not moved across their respective spaces).

We also plan to implement some of the extensions described in
Section 3.2. In particular, with the techniques that allow fewer
pointers to be processed and fewer objects to be scanned, we hope
to show even greater benefits from our approach.

Acknowledgments
We would like to thank the members of the Jalapeño team for pro-
viding us with an infrastructure for this work. We would also like
to thank Pratap Pattnaik for valuable technical discussions.

8. REFERENCES
[1] O. Agesen and A. Garthwaite. Efficient object sampling via

weak references. In Proc. International Symposium on
Memory Management, pages 127–136, 2000.

[2] B. Alpern, C. R. Attanasio, J. J. Burton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C.
Shephard, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and
J. Whaley. The Jalapeno virtual machine. IBM Systems
Journal, 39(1):194–211, 2000.

[3] A. Appel. A better analytical model for the strong
generational hypothesis, November 1997.

[4] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney.
Adaptive optimization in the Jalapeño JVM. In Proc. of
OOPSLA 2000, Minneapolis, MN, October 2000.

[5] D. Bacon and P. Sweeney. Fast static analysis of C++ virtual
function calls. In Proc. Conference on Object-Oriented
Programming Systems, languages and Applications, pages
324–341, 1996.

[6] H. G. Baker. Infant mortality and generational garbage
collection. SIGPLAN Notices, 28(4):55–57, 1993.

[7] D. A. Barrett and B. G. Zorn. Using lifetime predictors to
improve memory allocation performance. ACM SIGPLAN
Notices, 28(6):187–196, June 1993.

[8] S. J. Baylor, M. Devarakonda, S. Fink, E. Gluzberg,
M. Kalantar, P. Muttineni, E. Barsness, R. Arora,
R. Dimpsey, and S. J. Munroe. Java server benchmarks. IBM
Systems Journal, 39(1):57–81, 2000.

[9] S. Blackburn, J. Cavazos, S. Singhai, A. Khan, K. McKinley,
and J. E. B. Moss. Profile-driven pretenuring for java. Poster
in OOPSLA 2000, October 2000.

[10] P. J. Caudill and A. Wirfs-Brock. A third-generation
smalltalk-80 implementation. In Proceedings of ACM
Conference on Object-Oriented Systems, Languages and
Applications, pages 119–130, October 1986.

[11] J. Dean, D. Grove, and C. Chambers. Optimization of
object-oriented programs using static class hierarchy. In
Proc. 9th European Conference on Object-Oriented
Programming, pages 77–101, 1995.

[12] D. Detlefs and O. Agesen. Inlining of virtual methods. In
Proc. 13th European Conference on Object-Oriented
Programming, pages 258–278, 1999.

[13] L. P. Deutch and D. Bobrow. An efficient incremental
automatic garbage collector. Communications of the ACM,
19(7), July 1976.

[14] J. Gosling, B. Joy, and G. Steele. The Java(TM) Language
Specification. Addison-Wesley, 1996.

[15] T. Harris. Dynamic adaptive pre-tenuring. In Proceedings of
the ACM SIGPLAN International Symposium on Memory
Management(ISMM’00), pages 127–137, October 2000.

[16] M. Hicks, L. Hornof, J. T. Moore, and S. M. Nettles. A study
of large object spaces. In Proceedings of the International
Symposium on Memory Management, pages 138–146, 1998.

[17] U. Hoelzle. A fast write barrier for generational garbage
collectors. In Proceedings of OOPSLA’93 Workshop on
Garbage Collection, 1993.

[18] A. L. Hosking, J. E. B. Moss, and D. Stefanović. A
comparativr performance evaluation of write barrier
implementations. In Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 92–109, October 1992.

[19] The Java hotspot performance engine architecture.
http://java.sun.com/products/hotspot/
whitepaper.html.

[20] R. Hudson, J. E. B. Moss, A. Diwan, and C. Weight. A
language-independent garbage collector toolkit. Technical
Report TR91-47, University of Massachusetts at Amherst,
September 1991.

[21] R. Jones and R. Lins. Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. John Wiley and
Sons, 1996.

[22] J.-S. Kim and Y. Hsu. Memory system behavior of Java
programs: Methodology and analysis. In Proc. 2000 ACM
SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, pages 264 – 274, Santa
Clara, CA USA, June 2000.

[23] H. Lieberman and C. Hewitt. A real-time garbage collector
based on the lifetimes of objects. Communications of the
ACM, 26(6):419–429, June 1983.

[24] M. L. Seidl and B. G. Zorn. Segragating heap objects by
reference behavior and lifetime. In Proceedings of
Architectural Support for Programming Languages and
Operating Systems, pages 12–23, 1998.

[25] M. Serrano, R. Bordawekar, S. Midkiff, and M. Gupta.
Quicksilver: A quasi-static compiler for Java. In Proc. of
OOPSLA 2000, Minneapolis, Minnesota USA, October
2000.

[26] V. Sreedhar, M. Burke, and J.-D. Choi. A framework for
interprocedural optimization in the presence of dynamic
class loading. In SIGPLAN 2000 Conference on
Programming Language Design and Implementation. ACM
SIGPLAN, 2000.

[27] Standard Performance Evaluation Council. SPEC JVM98
Benchmarks, 1998.
http://www.spec.org/osg/jvm98/.

[28] Standard Performance Evaluation Council. SPEC JBB2000
Benchmark, 2000.
http://www.spec.org/osg/jbb2000/.

[29] D. Stefanović. Properties of Age-based Automatic Memory
Reclamation Algorithms. PhD thesis, University of
Massachusetts, Amherst, MA, February 1999.

[30] D. Stefanović, K. McKinley, and J. E. B. Moss. Age-based
garbage collection. In Proceedings of the ACM Conference
on Object-Oriented Systems, Languages and Systems, pages
370–381, October 1999.

[31] D. Stefanovic, K. S. McKinley, and J. E. B. Moss. On

12

models for object lifetime distributions. In Proceedings of
the International Symposium on Memory Management,
October 2000.

[32] D. Tarditi and A. Diwan. The full cost of a generational
copying garbage collection implementation. In Proceedings
of the OOPSLA93 Workshop on Memory Management and
Garbage Collection, October 1993.

[33] Transaction Processing Performance Council. TPC-C
Benchmark, 2000.
http://www.tpc.org/cspec.html .

[34] D. M. Ungar. Generational scavenging: A non-disruptive
high performance storage reclamation algorithm. ACM
SIGPLAN Notices, 19(5):157–167, April 1984.

[35] D. M. Ungar and F. Jackson. Tenuring policies for generation
based storage reclamation. ACM Transactions on
Programming Languages and Systems, 14(1):1–27, 1992.

[36] A. R. Wallace. On the tendency of varieties to depart
indefinitely from the original type. In Letters to the Royal
Society, Feb. 1858.

[37] P. Wilson. Uniprocessor garbage collection techniques.
Technical report, University of Texas at Austin, 1994. To
appear in ACM Computing Surveys.

[38] P. Wilson, M. Johnstone, M. Neely, and D. Boles. Dynamic
storage allocation: A survey and critical review. In
Proceedings of International Workshop on Memory
Management, September 1995.

[39] B. Zorn. Comparative Performance Evaluation of Garbage
Collection Algorithms. PhD thesis, EECS Department,
University of California at Berkeley, 1989.

13

