
RC 22036 (98924) April 17, 2001 Computer Science

IBM Research Report

A Debugging Platform for Java Server Applications

Bowen Alpern, Jong-Deok Choi ,Ton Ngo Manu Sridharan,
John Vlissides, Hytm-Gyoo Yook

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Debugging Platform for Java Server Applications

Bowen Alpern Jong-Deok Choi Ton Ngo Manu Sridharan’ John Vlissides
Hytm-Gyoo Yook

IBM T. J. Watson Research Center
PO Box 704, Yorktown Heights, NY 10598

cdchoi, alpemh, ton}@us.ibm.com, msridhar@mit.edu. vlis@us.ibm.com, hyun@watson.ibm.com

Abstract
Development of multithreaded server applications is particularly tricky because of their nondetenninistic execu-

tion behavior, availability requirements, and extended running times. New tools are needed to help programmers
understand server behavior. Key to the realization of such tools is the ability to repeat nondeterministic execution
behavior.

This paper presents a platform for understanding and debugging Java server applications. DejaVu supports de-
terministic replay of nondetenninistic, multithreaded Java programs running on the J.&p&o virtual machine on
unipmcessors. Jalapeiio is written in Java, and its optimizing compiler combines application, virtual machine, and
DejaVu instrumentation code into unified machine-code sequences. Such integration compounds the difficulty of
replaying nondeterministic behavior accurately and with minimal interference from the instrumentation. DejaVu en-
sures deterministic replay through symmetric insrrumenration-side-effect-preserving instrumentation in both record
and replay modes-and remore reflection, which exposes the state of an application without perturbing it.

1 Introduction

Software development tooling has matured to the point that any programming environment will provide a debugger
that can single-step, set breakpoints, inspect values, and evaluate expressions. Multithreading support is less common.
Still, many current twls add straightforward extensions to the basic functions to petit independent control and

inspection of threads.

One aspect of multi&read debugging has defied solution. Even the most carefully designed and implemented mul-
titbreaded program can behave nondetenninistically: that is, successive runs with the same input data may nonetheless

produce different outputs. Nondetetinism makes errors difficult to reproduce, greatly complicating the hunt for bugs.

Compounding this problem are two trends in software technology:

1. Software is increasingly dynamic, with mope and more configuration, translation, linking, and optimization
being performed at run-time. Dynamism is the enemy of high performance.

2. Distributed systems often incorporate multithreaded middleware components. Nondeterminism may arise within

the component, in its interactions with other components, or both The etmrs that result can elude unit testing,

surfacing only under production conditions. It may not be feasible to halt a large production system to debug

such errors, and yet they might not be reproducible on a smaller scale.

These trends are not independent; addressing one of them can exacerbate the other. For example, Jalapeiio [2] is a
Java virtual machine (JVM) designed for high-performance servers. Written in Java, Jalapeiio uses a compilation-only

*Dept. of Electrical E@needn~ and Computer Science, Massachusetts Imtifute of Technology, Cambridge, MA 02139.

1

