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Recent Advances in Direct Methods for Solving
Unsymmetric Sparse Systems of Linear Equations

Anshu! Gupta
IBM T.J. Watson Research Center

During the past few years, algorithmic improvements alone have reduced the time required for the direct
solution of unsymmetric sparse systems of linear equations by almost an order of magnitude. This paper
compares the performance of some state-of-the-art software packages for solving general sparse systems.
In particular, it demonstrates the consistently high level of performance achieved by WSMP—the most
recent of such solvers. It compares the various algorithmic components of these solvers and shows that
the choices made in WSMP enable it to run more than twice as fast as the best amoengst other similar
solvers. The key features of WSMP that contribute to its performance include a prepermutation
of rows to place large entries on the diagonal, a symmetric fill-reducing permutation based on the
nested dissection ordering algorithm, and an unsymmetric-pattern multifrontal factorization guided by
a minimal task-dependency graph with symmetric inter-supernode threshold pivoting. Our experiments
show that WSMP can factor some of the largest sparse matrices available from real applications in
only a few seconds on 4-CPU workstation.

Additional Key Words and Phrases: Sparse Matrix Factorization, Sparse LU Decompesition, Multi-
frontal Method, Parallel Sparse Solvers

1. INTRODUCTION

Developing an efficient parallel, or even serial, direct solver for general unsymmetric
sparse systems of linear equations is a challenging task that has been the subject of
research for the past four decades. Several breakthroughs have been made during this
time. As a result, a number of serial and parallel software packages for solving such
systems are available [Amestoy et al. 2000; Ashcraft and Grimes 1999; Cosnard and
Grigori 2000; Davis and Duff 1997b; Grund 1998; Gupta 2000; Li and Demmel 1999;
Shen et al. 2001; Schenk et al. 2000].

In this paper, we compare the performance and the main algorithmic features of
some prominent software packages for solving general sparse systems and show that
the algorithmic improvements of the past few years have reduced the time required
to factor general sparse matrices by almost an order of magnitude. Combined with
significant advances in the performance to cost ratio of parallel computing hardware
during this period, current sparse solver technology makes it possible to solve those
problems quickly and easily that might have been considered impractically large until
recently. We demonstrate the consistently high level of performance achieved by the
Watson Sparse Matrix Package (WSMP) and show that it can factor some of the
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largest sparse matrices available from real applications in only a few seconds on 4-CPU
workstation. The key features of WSMP that contribute to its performance include a
prepermutation of rows to place large entries on the diagonal, a symmetric fill-reducing
permutation based on the nested dissection ordering algorithm, and an unsymmetric-
pattern multifrontal factorization guided by a minimal task-dependency graph with
symmetric inter-supernode threshold pivoting In this paper, we discuss in detail the
contribution of each of these algorithmic components of the analysis and numerical
factorization phases of WSMP to its performance.

The original aim of the WSMP project was to develop a scalable parallel general
sparse solver for a distributed-memory parallel computer like the IBM SP. However, after
completing the serial version of the solver, we realized that we couldn’t find enough
large problems that would justify the use of an SP with several nodes. Therefore, we
tailored the parallel version to use a few CPU's in a shared-memory environment. It is
one of the objectives of this paper to make the user community aware of the robustness
and speed of the current sparse direct solver technology and encourage scientists and
engineers to develop bigger models with larger sparse systems so that the full potential
of these solvers can be utilized.

An outline of the paper is as follows. In Section 2, we compare the serial factor-
ization times of some of the prominent software packages for solving general sparse
systems. In Section 3, we list the main algorithms and strategies that these packages
use in their symbolic and numerical phases, and discuss the effect of these strategies
on their respective performance. In Section 4, by means of experimental comparisons,
we highlight the role that various algorithms used in WSMP play in the performance
of its LU factorization. In Section 5, we present a detailed comparison of WSMP's
performance with that of MUMPS-—the general purpose sparse solver that we show (in
Section 2) to be the best available at the time of WSMP's release. Section 6 contains
concluding remarks.

2. SERIAL PERFORMANCE OF SOME GENERAL SPARSE SOLVERS

In this section, we compare the performance of some of the well-known software pack-
ages for solving sparse systems of linear equations on a single CPU of an IBM RS6000
model S80. This is a 600 Mhz processor with a 64 KB level-1 cache and a peak the-
oretical speed of of 1200 Megaflops, which is representative of the performance of a
typical high-end workstation available before 1999.

Table 1 lists the test matrices used in this paper, which are some of the largest
publicly available unsymmetric sparse matrices from real applications. The table also
includes the dimension, the number of nonzeros, and the application area of the origin
of each of these matrices. Each package is compiled with the -O3 optimization option
of the AlX Fortran or C compilers and is linked with IBM’s Engineering and Scientific
Subroutine Library {ESSL) for the basic linear algebra subprograms (BLAS) that are
optimized for RS6000 processors. All packages were compiled and run in the 32-bit
mode and 2 GB of memory was available to each. A more detailed comparison of the
serial and the parallel versions of these solvers can be found in [Gupta and Muliadi
2000].

Table 2 lists the serial LU factorization time taken by UMFPACK Version 2.2 [Davis
and Duff 1997a], SuperLU [Demmel et al. 1999], SPOOLES [Ashcraft and Grimes 1999},
SuperLU gi5¢ [Li and Demmel 1998; Li and Demmel 1999], MUMPS5 4.1.6 [Amestoy et al.
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Matriz N NNZ Application
af23560 23560 484256 Fluid dynamics
av41092 41092 1683902 | Finite element analysis
bayer(1 57735 277774 Chemistry
bbmat 38744 1771722 Fluid dynamics
comp2c 16783 578665 Linear programming
€40r0000 17281 553956 Fluid dynamics
e40r5000 17281 553956 Fluid dynamics
ecl32 51993 380415 Circuit simulation
epb3 84617 463625 Thermodynamics
fidap011 16614 1091362 Fluid dynamics
fidapml11 22294 623554 Fluid dynamics
invextrl 30412 1793881 Fluid dynamics
thr34e 35152 764014 Chemical engineering
mil053 530238 3715330 | Structural engineering
mixtank 20957 1995041 Fluid dynamics
nasasrb 54870 2677324 | Structural engineering
onetonel 36057 341088 Circuit simulation
onetone2 36057 227628 Circuit simulation
pre2 659033 5859282 Circuit simulation
raefsky3 21200 1488768 Fluid dynamics
raefsky4 19779 1316789 Fluid dynamics
rmalQ 416835 2374001 Fluid dynamics
tib 18510 145149 Circuit simulation
twotone 120750 1224224 Circuit simulation
venkat5b0 62424 1717792 Fluid dynamics
wang3 26064 177168 Circuit simulation
wangd 26068 177196 Circuit simulation

Table 1. Test matrices with their order {N), number of nonzeros (NNZ), and the application area
of origin. )

1999; Amestoy et al. 2000}, WSMP [Gupta 2001; Gupta 2000] and UMFPACK Version
3.0 [Davis and Duff 1997b] on a set 25 public-domain unsymmetric sparse matrices
derived from real applications. The table features two versions each of SuperLU and
UMFPACK because the two versions employ very different algorithms in some or all of
the important phases of the solution process (see Section 3 for details). Some other
well-known packages do not feature in this table; however, their comparisons with one
or more of the packages included here are easily available in literature and would not
alter the inferences that can be drawn from the results in this table. Davis and Duff
compare UMFPACK with MUPS [Amestoy and Duff 1989] and MA48 [Duff and Reid
1993]. MUPS is a classical multifrontal code and the predecessor of MUMPS. MA48
is a sparse unsymmetric factorization code from the HSL package [HSL 2000] based
on conventional sparse data structures. Grund [Grund 1998] presents an experimental
comparison of GSPAR [Grund 1998] with a few other solvers, including SuperLU and
UMFPACK: however, this comparison is limited to sparse matrices arising in two very
specific applications. A comparison of the S+ package [Shen et al. 2001} from University
of California at Santa Barbara with some others can be found in [Cosnard and Grigori
2000: Gupta and Muliadi 2000; Shen et al. 2001). We have excluded another recent
software PARDISO [Schenk et al. 2000] because it is designed for unsymmetric matrices
with a symmetric structure, and therefore, would have failed on many of our test
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Year — 1994 1997 1998 1999 1999 2000 2001
Matrices | UMFP 2.2 | SupLU | SPLS | SupLU; | MUMPS | WSMP | UMEP 3.0
af23560 45.5 31.9 10.5 14.7 6.31 6.34 10.5
av41092 186. 772, FAIL FAIL 18.7 7.09 220.
bayer01 1.76 2.40 FAIL 3.23 1.17 1.10 1.26
bbmat 682. 214. 97.7 FAIL 72.3 371 136.
comp2c 120. 3403 287. 42.0 23.5 4.45 1268
ed40r5600 299 43.9 395. 2.08 1.18 1.10 7.10
ecl32 FAIL FAIL 562. FAIL 116. 37.7 320.
eph3 29.7 242 5.00 5.67 3.02 2.09 6.59
fidap011 168. 39.9 122 16.9 12.7 6.53 23.9
fidapm11 944, 88.9 15.1 FAIL 16.3 10.4 63.2
invextrl 1110 FAIL 1351 FAIL 69.1 16.3 204.
lhr3de 3.46 6.22 FAIL 11.5 3.563 1.32 5.81
mixtank FAIL FAIL 346. FAIL 86.7 36.5 757.
nasasrb 81.8 102. 25.0 FAIL 22.0 11.0 73.6
onetonel 122 184. 113. 10.7 5.79 3.52 7.33
onetone2 1.79 28.3 20.7 3.55 1.95 0.94 0.88
pre2 FAIL FAIL FAIL FAIL FAIL 223. FAIL
raefsky3 39.0 146. 10.0 6.86 6.09 5.04 19.1
raefsky4 109. 1983 157. 28.1 28.5 7.93 36.9
rmal0 15.7 FAIL 10.7 5.78 5.92 3.92 11.1
tib 0.52 266, 1.756 1.47 0.53 0.27 48.9
twotone 30.0 FAIL 724, 637. 79.4 26.6 47.3
venkat50 16.2 FAIL 11.6 8.11 9.70 4.39 13.8
wang3 106. 3226 62.7 36.9 25.3 10.7 63.7
wangd 97.3 318. 16.2 23.7 18.6 10.9 85.2
[ Pthresh - [T 025 ] 001 | 001 | 0.00 0.01 ] 001 | 020

Table 2. LU factorization times on a single CPU (in seconds} for UMFPACK Version 2.2, Su-
perLU, SPOOLES, SuperLUgy;e;, MUMPS, WSMP, and UMFPACK Version 3.0, respectively.
The best pre-2000 time is underlined and the overall best time is shown in boldface. The last row
shows the approximate smallest pivoting threshold that yielded a residual norm close to machine
precision after iterative refinement for each package.

matrices unless they were padded with zero valued entries to structurally symmetrize
them.

In addition to each package's factorization time, Table 2 also lists the year in which
the latest versions these packages became available. A “FAIL" entry in Table 2 indicates
that the solver either ran out of memory or crashed. The best factorization time for
each matrix using any solver released before year 2000 is underlined and the overall
best factorization time is shown in boldface.

The most striking observation in Table 2 is the range of times that different packages
available before 1999 would take to factor the same matrix. It is not uncommon to
notice the fastest solver being faster than the slowest one by one to two orders of
magnitude. Additionally, none of them yielded a consistent level of performance. For
example, UMFPACK 2.2 is 13 times faster than SPOOQLES on e40r5000 but 14 times
slower on fidap0I1. Also noticeable is the marked increase in the reliability of the
softwares released in 1999 or later, There are 22 failures in the first four columns of
Table 2 and only two in the last three columns. MUMPS is clearly the fastest and
the most robust amongst the solvers released before 2000. However, the latest solver
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WSMP is about twice as fast as MUMPS on this machine based on the average ratio
of the factorization time of MUMPS to that of WSMP. WSMP also has the most
consistent performance. It has the smallest factorization time for all but two matrices
and is the only solver that does not faj| on any of the test matrices.

3. KEY ALGORITHMIC FEATURES OF THE SOLVERS

In this section, we list the key algorithms and Strategies that solvers listed in Table 2 use
in the symbolic and numerical phases of the computation of the LU factors of a general

(1) UMFPACK 2.2 [Davis and Duff 1997b; Davis and Duff 1997a]

—Fill reducing ordering: Approximate minimum degree [Davis et al. 1996] on
unsymmetric structure, combined with suitable numerical pivot search during
LU factorization.

—Task dependency graph: Directed acyclic graph.

—Numerical factorization: Unsymmetric-pattern multifrontal.

—Pivoting strategy: Threshold pivoting implemented by row-exchanges.

{2} SuperLU [Demmel et al. 1999]

—Fill reducing ordering: Multiple minimum degree (MMD) [George and Liu 1981]
on the symmetric structure of AAT or A+ AT, where A is the original coefficient
matrix.

—Task dependency graph: Tree.

—Numerical factorization: Superncdal Crout.

—Pivoting strategy: Threshold pivoting implemented by row-exchanges.

(3) SPOOLES [Ashcraft and Grimes 1999]

—Fill reducing ordering: Generalized nested dissection/multisection [Ashcraft and
Liu 1996] on the symmetric structure of A + AT

— Task dependency graph: Tree based on the structure of 4 + AT,

—Numerical factorization: Supernodal Crout.

—Pivoting strategy:  Threshold rook pivoting that performs row and column
exchanges to control growth in both L and I/,

SuperLU4;, [Li and Demmel 1998; Li and Demmel 1999]

—Fill reducing ordering: Multiple minimum degree [George and Liu 1981] on the
symmetric structure of A + AT,

— Task dependency graph: Directed acyclic graph.

—Numerical factorization: Supernodal right-looking.

—Pivoting strategy: No numerical pivoting during factorization. Rows are pre-
ordered to maximize the magnitude of the product of the diagonal entries [Duff
and Koster 1999].

(5) MUMPS [Amestoy et al. 1999: Amestoy et al. 2000] . X

—Fill reducing ordering: Approximate minimum degree [Davis et al. 1996] on the
symmetric structure of 4 + A7, .

—Task dependency graph: Tree based on the struc'fure of A+ A%,

—~Numerical factorization: Symmetric-pattern multifrontal.

(4

S
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supernodes,

(6) WSMP [Gupta 2001; Gupta 2000]
—Fill reducing ordering: Nested dissection
ture of 4 4+ A7,
— Task dependency graph: Minimal directed acyclic graph [Gupta 2001).
—Numerical factorization: Unsymmetric-pattern multifrontal,
—~Pivoting strategy: Preordering rows to maximize the magnitude of the product
o_f the diagonal entries [Gupta and Ying 1999], followed by unsymmetric partial
Pivoting within supernodes and symmetric pivoting between supernodes. Rook
pivoting {which attempts to contain growth in both L and U} is an option.
(7) UMFPACK 3.0 {Davis and Duff 1997b; Davis and Duff 1997a]
—Fill reducing ordering:  Column approximate minimum degree algorithm [Davis
et al. 2000] to compute fill-reducing column preordering,
—Task dependency graph: Tree based on the structure of AAT,
—Numerical factorization: Unsymmetric-pattern multifrontal.
—Pivoting strategy: Threshold pivoting implemented by row-exchanges.

[Gupta 1997] on the symmetric struc-

The performance of the solvers calibrated in Table 2 is greatly affected by the al-
gorithmic features outlined above. We now briefly describe the relationship between
some of these algorithms and the performance characteristics of the solvers that employ
these algorithms. We discuss how WSMP achieves superior levels of performance by
incorporating the best ideas of the previous solvers into one package and by introducing
new techniques in the symbolic and numerical phases.

3.1 OQverall Ordering and Pivoting Strategy

The basic ordering and pivoting strategy used in different solvers seems to be one of
the most important factors that distinguish MUMPS and WSMP from the others and
allow these two to deliver consistently good performance.

3.1.1 The Conventional Strategy. In [Gilbert and Ng 1993}, Gilbert and Ng showed
that the fill-in as a result of LU factorization of an irreducible square unsymmetric sparse
matrix A, irrespective of its row permutation, is a subset of the fill-in that a symmetric
factorization of AT 4 would generate. Guided by this result, many unsymmetric sparse
solvers developed in 1990's adopted variations of the following ordering and pivoting
strategy. An ordering algorithm would seek to compute a fill-reducing permutation of
the columns of A based on their sparsity pattern, because a column permutation of A
is equivalent to a symmetric permutation of AT A. The numerical factorization ph.:ase
of these solvers would then seek to limit pivot growth via threshold pivoting involving
row interchanges. o

A problem with the above strategy is that the upper-bound on the fill in the'thJ
factorization of A predicted by Gilbert and Ng's result can be very ‘095"?‘_3‘5’)8('"3 y
in the presence of even one relatively dense row in A._ As a resuit, the initial column

i i i M er, two different column orderings, both
ordering could be very meffecltw.e. oreover, : rent FATA. could entoy
equally effective in reducing fill in the symmetric factorization o ,
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very different degrees of success in reducing the fill in the LU factorization of A. There
is some evidence of this being a factor in the extreme variations in the factorization
times of different solvers for the same matrices in Table 2. The matrices that have a
symmetric structure and require very little pivoting, such as nasasrb, raefsky3, rmal0,
venkat50, and wang4 exhibit relatively less variation in the factorization times of differ-
ent solvers. On the other hand, consider the performance of WSMP and UMFPACK
3.0 on matrices compZ¢ and tib, which contain a few rows that are much denser than
the rest. Both WSMP and UMFPACK 3.0 use very similar unsymmetric-pattern multi-
frontal factorization algorithms. However, since the column ordering in UMFPACK 3.0
seeks to minimize the fill in a symmetric factorization of AT A rather than directly in
the LU factorization of A, it is more than two orders of magnitude slower than WSMP
on these matrices. Qur experiments (Section 2) have verified that WSMP did not have
a significant advantage over UMFPACK 3.0 for these matrices due to other differences
such as the use of a nested-dissection ordering or a pre-permutation of matrix rows.

3.1.2 The Strategy Used in MUMPS and WSMP. We now briefly describe the
ordering and pivoting strategy of MUMPS and WSMP in the context of a structurally
symmetric matrix. Note that pivoting in MUMPS would be similar even in the case
of an unsymmetric matrix because it uses a symmetric-pattern multifrontal algorithm
guided by the elimination tree [Liu 1990] corresponding to the symmetric structure
of A+ AT. On the other hand, WSMP uses an unsymmetric-pattern multifrontal
algorithm and an elimination DAG (directed acyclic graph) to guide the factorization.
Therefore, the pivoting is somewhat more complex if the matrix A to be factored has
an unsymmetric structure. However, the basic pivoting idea and the reason why it is
effective remain the same.

Both MUMPS and WSMP start with a symmetric fill-reducing permutation computed
on the structure of A+ AT . Just like most modern sparse factorization codes, MUMPS
and WSMP work with supernodes—adjacent groups of rows and columns with the
same or nearly same structures in the factors L and U. An interchange amongst
the rows and columns of a supernode has no effect on the overall fill-in, and is the
preferred mechanism for finding a suitable pivot. However, there is no guarantee that
the algorithm would always succeed in finding a suitable pivot within the pivot block; i.e,
an element whose row as well as column index lies within the indices of the supernode
being currently factored. When the algorithm reaches a point where it cannot factor
an entire supernode based on the prescribed threshold, it merges the remaining rows
and columns of the supernode with its parent supernode in the elimination tree. This
is equivalent to a symmetric permutation of the failed rows and columns to a location
with higher indices within the matrix. By virtue of the properties of the elimination
tree [Liu 1990], the new location of these failed rows and columns also happens to be
their “next best” location from the perspective of the potential fill-in that these rows
and columns would produce. Merged with a parent supernode, the unsuccessful portion
of the child supernode has more rows and columns available for potential interchange.
However, should a part of the new supernode remain unfactored due to a lack of suitable
intra-supernode pivots, it can again be merged with its parent supernode, and so on.

The key point is that, with this strategy, pivot failures increase the fill-in gracefully
rather than arbitrarily. Moreover, the fewer the inter-supernode pivoting steps, the
closer the final fill-in stays to that of the original fill-reducing ordering. Although,
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unlike the conventional strategy, there is no proven upper-bound on the amount of fill-
in that can be potentially generated, the empirical evidence clearly suggests that the
extra fill-in due to pivoting stays reasonably well-contained. To further aid this strategy,
it has been shown recently [Amestoy et al. 2000; Duff and Koster 1997; Li and Demmel
1998] that permuting the rows or the columns of the matrix prior to factorization so
as to maximize the magnitude of its diagonal entries can often be very effective in
reducing the amount of pivoting during factorization. Both MUMPS and WSMP use
this technique to reduce inter-supernode pivoting and the resulting extra fill-in.

Like MUMPS and WSMP, SPOOLES too uses a symmetric fill-reducing permuta-
tion followed by symmetric inter-supernode pivoting. However, SPOOLES employs a
pivoting algorithm known as rook pivoting that seeks to limit pivot growth in both L
and U. Other than SPOOLES, in all solvers discussed in this paper, a pivot is consid-
ered suitable as long as it is not smaller in magnitude than pivot threshold times the
entry with the largest magnitude in that column. The pivoting algorithm thus seeks
to control pivot growth only in L. The more stringent pivot suitability criterion of
SPOOLES causes a large number of pivot failures and the resulting fill-in overshadows
a good initial ordering. Simple threshold partial pivoting yields a sufficiently accurate
factorization for most matrices, including all our test cases. Therefore, rook pivoting is
an option in WSMP, but the default is the standard threshold pivoting.

3.2 Ordering Algorithms

In addition to the decision whether to compute a fill-reducing symmetric ordering or
column ordering, the actual ordering algorithm itself affects the performance of the
solvers. Section 4 of this paper and [Amestoy et al. 2000] present empirical evidence
that graph-partioning based orderings used in SPOOLES and WSMP are generally more
effective in reducing the fill-in and operation count in factorization that local heuristics,
such multiple minimum degree (MMD) [Liu 1985] used in SuperLU and SuperlLUg;s:,
approximate minimum degree (AMD) {Davis et al. 1996] used in UMFPACK 2.2 and
MUMPS, and column approximate minimum degree (COLAMD) [Davis et al. 2000]
used in UMFPACK 3.0.

In their ordering phase, UMFPACK 2.2 and WSMP perform another manipulation
of the sparse coefficient matrix prior to performing any other symbolic or numerical
processing on it. They seek to reduce it into a block triangular form [Duff et al. 1990],
which can be achieved very efficiently [Tarjan 1972]. Solving the original system then
requires analyzing and factoring only the diagonal block matrices. Reduction to a block
triangular form results in a relatively minor overhead for matrices that turn out to
be irreducible, but can offer potentially large savings when it is effective. Moreover,
some of the symbolic algorithms employed in WSMP [Gupta 2001} are valid only for
irreducible sparse matrices.

3.3 Symbolic Factorization Algorithms

The task- and data-dependency graph involved in the factorization of a symmetric ma-
trix is a tree, known as the elimination tree [Liu 1990]. In [Gilbert and Liu 1993], Gilbert
and Liu describe elimination structures for unsymmetric sparse LU factors and give an
algorithm for sparse unsymmetric symbolic factorization. These elimination structures
are two directed acyclic graphs {DAGs) that are transitive reductions of the graphs of
the factor matrices L and [/, respectively. The union of these two directed acyclic
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graphs is the minimal task-dependency graph of sparse LU factorization; i.e., it is a
task-dependency graph in which all edges are necessary. Using a minimal elimination
structure to guide factorization is useful because it avoids overheads due to redun-
dancy and exposes maximum parallelism. However, some researchers have argued that
computing an exact transitive reduction can be too expensive [Davis and Duff 1997b;
Eisenstat and Liu 1993] and have proposed using sub-minimal DAGs with more edges
than necessary. Traversing or pruning the redundant edges in the elimination structure
during numerical factorizations, as is done in UMFPACK and SuperLU, can be a source
of overhead. Alternatively, many unsymmetric factorization codes, such as SPOOLES
and MUMPS adopt the elimination tree corresponding to the symmetric structure of
A+ AT as the task- and data-dependency graph to the guide the factorization. This
adds artificial dependencies to the elimination structure and can lead to diminished
parallelism and extra fill-in and operations during factorization.

WSMP uses a modified version of the classical unsymmetric symbolic factorization al-
gorithm [Gilbert and Liu 1993] that detects the supernodes as it processes the rows and
columns of the sparse matrix and enables a fast computation of the exact transitive re-
ductions of the structures of L and U to yield a minimal task-dependency graph [Gupta
2001]. Unlike the symmetric case, the edge set of the minimal data-dependency graph
for the factorization of a structurally unsymmetric sparse matrix is, in general, a super-
set of the edge set of the minimal task-dependency graph. In [Gupta 2001], we also
present a fast algorithm for the derivation of a near-minimal data-dependency DAG
from the minimal task-dependency DAG. The data-dependency graph produced by our
algorithm is such that it is valid in the presence of any amount of inter-supernode
pivoting and yet has been empirically shown to contain only between 0 and 14% (4%
on an average) more edges than the minimal task-dependency graph on a suite of large
unsymmetric sparse matrices. The powerful symbolic algorithms used in WSMP enable
its numerical factorization phase to proceed very efficiently spending minimal time on
non-floating-point operations.

3.4 Numerical Factorization Algorithms

The multifrontal method [Duff and Reid 1984; Liu 1992] for the solving sparse systems
of linear equations offers a significant performance advantage over more conventional
factorization schemes by permitting efficient utilization of parallelism and memory hier-
archy. Our detailed experiments in [Gupta and Muliadi 2000] show that all three mul-
tifrontal solvers—UMFPACK, MUMPS, and WSMP—run at a much higher Megaflops
rate than their non-multifrontal counterparts. The original multifrontal algorithm pro-
posed by Duff and Reid [Duff and Reid 1984] uses the symmetric-pattern of 4+ A” to
generate an elimination tree to guide the numerical factorization, which works on sym-
metric frontal matrices. This symmetric-pattern multifrontal algorithm used in MUMPS
can incur a substantial overhead for very unsymmetric matrices due to unnecessary de-
pendencies in the elimination tree and extra zeros in the artificially symmetrized frontal
matrices. Davis and Duff [Davis and Duff 1997b] and Hadfield [Hadfield 1994] intro-
duced an unsymmetric-pattern multifrontal algorithm, which is used in UMFPACK and
overcomes the shortcomings of the symmetric-pattern multifrontal algorithm. However,
UMFPACK does not reveal the full potential of the unsymmetric-pattern multifrontal
algorithm. UMFPACK 2.2 used the approximate minimum degree (AMD) fill-reducing
ordering algorithm, which has now been shown to be less effective than nested dis-
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section [Amestoy et al. 2000]. Moreover, the merging of the ordering and symbolic
factorization within numerical factorization in UMFPACK 2.2 slowed down the latter
and excluded the possibility of using a better ordering while retaining the factorization
code. UMFPACK 3.0 separates the analysis {ordering and symbolic factorization) from
numerical factorization, but, as discussed earlier, suffers from the pitfalls of permut-
ing only the columns based on a fill-reducing ordering rather than using a symmetric
fill-reducing permutation.

As described in detail in [Gupta 2001], the unsymmetric-pattern multifrontal LU
factorization in WSMP is aided by powerful algorithms in the analysis phase and uses
efficient dynamic data structures to perform potentially multiple steps of numerical
factorization with minimum overhead and maximum parallelism. It uses a technique
similar to the one described in [Hadfield 1994] to efficiently handle any amount of
pivoting and different pivot sequences without repeating the symbolic phase for each
factorization.

4. ROLE OF WSMP ALGORITHMS IN ITS LU FACTORIZATION PERFORMANCE

As discussed earlier, we believe that the speed and the robustness of WSMP's sparse LU
factorization stems from (1) its overall ordering and pivoting strategy, (2} permutation
of high-magnitude coefficients to the diagonal, (3) the use of nested-dissection ordering,
and (4) an unsymmetric-pattern multifrontal numerical factorization algorithm guided
by a minimal task-dependency DAG. In Section 3, we presented arguments based on
empirical data that a symmetric fill-reducing ordering followed by a symmetric inter-
supernode pivoting is a major distinguishing feature of MUMPS and WSMP from most
other sparse unsymmetric solvers. The role that this strategy plays in the performance
of sparse LU factorization is evident from the results in Table 2. In this section, we
present the results of some targeted experiments on MUMPS and WSMP to highlight
the role of each one of the other three key algorithmic features of WSMP in its LU
factorization performance.

The experiments described in this section were conducted on one and four processors
of an IBM RS6000 model 270 workstation. Each of its four 375 Mhz Power 3 processors
have a peak theoretical speed of 1.5 Gigaflops. The peak theoretical speed of the
workstation is therefore 6 Gigaflops, which is representative of the performance of a
high-end workstation available in 2001. The four CPUs of this workstation share a 4
MB level-2 cache and have a 64 KB level-1 cache each. 2 GB of memory was available
to each single CPU run and the 4-CPU runs of WSMP. MUMPS, when run on 4
processors, had a total of 4 GB of memory available to it. MUMPS uses the message-
passing paradigm and MPI processes for parallelism. However, it was run in mode in
which MPI was aware of (by setting the MP_SHARED_MEMORY environment variable to
‘ves') and took advantage of the fact that the multiple processes were running on the
same machine. The current version of WSMP is designed for the shared-address-space
paradigm and uses the Pthreads library.

We first give the serial and parallel sparse LU factorization performance of MUMPS
and WSMP, including fill-in and operation count statistics, in Table 3. Figure 1 shows
bar graphs corresponding to the factorization time of MUMPS normalized with respect
1o the factorization time WSMP for each matrix. The relative performance of WSMP
improves on the 375 MHz Power 3 machine as it is able to extract a higher Megafiops
rate from it. WSMP factorization is, on an average, about 2.3 times than MUMPS on
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WSMP factor time
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Fig. 1. Ratios of the factorization time of MUMPS to that of WSMP with defualt options in
both. This graph reflects the relative factorization performance of the two softwares that users
are likely to observe in their applications.
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MUMPS WSMP
Matrices nnzyg Ops 71 Ty S nnz; Ops T Ty E]
x100 | x10° | (s) | (& | (B) || x108 | x10° | (8) | (8 | (P

af23560 8.34 2.56 4.05 | 2.27 1.8 9.58 3.27 3.96 | 1.83 2.2
av41092 14.1 8.42 12.0 | 6.98 1.7 9.10 2.14 4.59 | 2.65 1.8
bayer01 2.82 125 1.10 | 0.63 1.7 1.57 040 0.956 | 0.95 1.0
bbmat 46.0 41.4 48.0 | 20.7 2.3 31.9 20.1 22.9 | 8.26 2.8
comp2c 7.05 4.22 10.2 | T.33 1.3 2.98 0.78 1.64 | 0.67 2.4
e4(r0000 1.72 172 0.83 | 0.61 1.3 2.06 250 0.56 | 0.28 2.0
ecl32 42.9 64.6 64.7 | 31.5 2.0 25.8 21.0 23.1 | 7.41 3.1
epb3 6.90 1.17 2.70 | 1.39 1.9 4.99 452 1.66 | 1.23 1.4
fidap011 12.5 7.01 8.73 | 7.64 1.1 8.69 3.20 3.03 | 1.78 2.2
fidapml1 14.0 9.67 11.6 | 7.38 1.6 12.8 5.21 6.50 | 2.60 2.5
invextrl 30.3 35.6 38.9 | 23.6 1.6 15.1 6.90 9.93 | 4.87 2.1
Ihr34c 5.58 .641 2.21 | 1.15 1.9 2.91 163 0.92 | 0.93 1.0
mild53 75.9 31.8 42.8 | 16.6 2.5 58.9 14.4 23.0 | 10.6 2.2
mixtank 38.5 64.4 64.8 | 31.0 2.1 23.2 19.5 21.9 | 8.32 2.6
nasasrb 24.2 9.45 13.1 | 10.2 1.3 18.9 5.41 6.98 | 3.37 2.1
onetonel 4.72 2.29 3.66 | 2.67 1.4 3.54 1.25 2.25 | 1.52 1.5
onetone2 2.26 510 1.17 | 0.82 1.4 1.41 .191 0.72 | 0.70 1.0
pre2 358. Fail Fail | Fail - 79.2 96.3 127. | 55.3 2.3
raefsky3 8.44 2.90 4.56 | 3.45 1.3 8.09 2.57 3.16 | 1.40 2.3
raefsky4 15.7 10.9 13.0 | 8.97 1.4 10.3 4.11 4.91 | 2.34 2.1
rmall 8.87 1.40 4.13 | 2.98 1.4 9.58 1.48 2,47 | 0.99 2.5
twotone 22.1 29.3 43.5 | 26.1 1.6 10.8 9.46 13.5 | 9.05 1.5
venkat50 12.0 2.31 4,87 | 2.74 1.8 11.4 1.75 2.83 | 1.13 2.5
wang3d 13.8 13.8 15.1 | 6.48 2.3 9.66 5.91 6.656 | 3.50 1.9
wangd 11.6 10.5 11.8 } 5.84 2.0 9.93 6.09 6.84 | 3.08 2.2

Table 3. Number of factor nonzeros (nnzy), operation count {Ops}, LU factorization time, and
speedup (5) of MUMPS and WSMP run on one {T1) and four (T4) 375 Mhz Power 3 processors
with default options.

a single CPU and 2.8 times faster on four CPUs.

The relative performance of sparse LU factorization in MUMPS and WSMP shown
in Table 3 and Figure 1 corresponds to what the users are likely to observe in their
applications. However, the factorization times are affected by the preprocessing of the
matrices, which is different in MUMPS and WSMP. WSMP always uses a row per-
mutation to maximize the product of the magnitudes of the diagonal entries of the
matrix. MUMPS does not use such a row permutation for matrices whose nonzero
pattern has a significant symmetry to avoid destroying the structural symmetry. Addi-
tionaly, WSMP uses a nested dissection based fill-reducing ordering, whereas MUMPS
uses the approximate minimum degree {AMD) [Davis et al. 1996] aigorithm. In order
to eliminate the impact of these differences on LU factorization performance, we ran
WSMP with AMD ordering and with a selective row permutation logic similar to that
in MUMPS.

1The average serial and parallel MUMPS factorization time to WSMP factorization time ratios
change to 2.1 and 2.5, respectively, if we exclude comp2¢, for which the ratios are uncharacteris-
tically high.
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WSMP factor time {with same ordering and permuting options as MUMPS)
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Fig. 2. Ratios of the factorization time of MUMPS to that of WSMP run with the same ordering
and row-prepermutation option as MUMPS. This graph enables a fair comparison of the LU
factorization components of the two packages.
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Figure 2 compares the relative serial and parallel factorization performance of
MUMPS with that of the modified version of WSMP. Although, for most matrices,
the ratio of MUMPS factor time to WSMP factor time decreases, the overall averages
remain more or less the same due to a significant increase in this ratio for the matrix
twotone. Since both codes are run with similar preprocessing and use the same BLAS
libraries for the floating point operations of the factorization process, it would be fair to
say that Figure 2 captures the advantage of WSMP's unsymmetric-pattern multifrontal
algorithm guided by a minimal task dependency DAG over MUMPS' symmetric-pattern
multifrontal algorithm guided by a tree. Other than the sparse factorization algorithm,
there is only one minor difference between the way MUMPS and WSMP are used to
collect the performance data for Figure 2. WSMP attempts a decomposition into a
block-triangular form, while MUMPS doesn’t. However, other than /hr34c, that does
not play a significant role in determining the factorization performance on the ma-
trices in our test suite. In [Amestoy and Puglisi 2000], Amestoy and Puglisi present
a mechanism to reduce the symmetrization overhead of the conventional tree-guided
multifrontal algorithm used in MUMPS. If incorporated into MUMPS, this mechanism
may reduce the performance gap between MUMPS and WSMP.

Next, we look at the role of the algorithm used to compute a fill-reducing ordering on
the structure of A 4+ AT Figure 3 compares the LU factorization times of WSMP with
AMD and nested dissection ordering. The bars show the factorization time with AMD
ordering normalized with respect to a unit factorization time with nested-dissection
ordering for each matrix. On the whole, factorization with AMD ordering is roughly
one and a half times slower than factorization with WSMP's nested-dissection ordering.

Finally, we observe the impact of a row permutation to maximize the product of the
diagonal magnitudes [Duff and Koster 1999; Gupta and Ying 1999] on the factorization
performance of WSMP. Figure 4 shows the factorization times of WSMP with this
row permutation switched off normalized with respect to the factorization times in the
default mode when the row permutation is active. This figure shows that factorization of
about 40% of the matrices is unaffected by the row-permutation option. These matrices
are probably already diagonally-dominant or close to being diagonally dominant. So
the row order does not change and the same matrix is factored, whether the row-
permutation option is switched on or not. In a few case, there is a moderate decline and
in two cases, there is a significant decline in performance as the row permutation option
is switched off. On the other hand there are a few cases in which there is a moderate
advantage and there is one matrix, fwotone, for which there is a significant advantage in
switching off the row permutation. This can happen when the original structure of the
matrix is symmetric or nearly symmetric and permuting the rows destroys the structural
symmetry (although, twotone is an exception and is quite unsymmetric). The extra fill-
in and computation resulting from the disruption of the original symmetric pattern may
more than offset the pivoting advantage, if any, gained by moving large entries to the
diagonal. On the whole, it appears that permuting the rows of the matrix to maximize
the magnitude of the product is a useful safeguard against a fill-in explosion due to
pivoting, as in the case of raefsky4 and wang3.

5. A PRACTICAL COMPARISON OF MUMPS AND WSMP

In Section 2, we empirically demonstrated that MUMPS and WSMP contain the fastest
and the most robust sparse LU factorization codes among the currently available general
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WSMP with default (nested dissection) ordering
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Fig. 3. A comparison of the factorization time of WSMP run with AMD ordering and with its
default nested-dissection ordering. The bars correspond to the relative factorization time with
AMD ordering compared to the unit time with nested-dissection ordering. This graph shows the
role of ordering in WSMP.
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WSMP with row pre-permutation (default)
A
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Fig. 4. A comparison of the factorization time of WSMP run without pre-permuting the rows to
move matrix entries with relatively large magnitudes to the diagonal. The bars correspond to the
retative factorization time without row pre-permutation compared to the unit time for the default
option.
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sparse solvers. In this section, we review the relative performance of these two packages
in further detail from the perspective of their use in a real application.

In Table 3, we compared the factorization times of MUMPS and WSMP on one
and four CPU’s of an RS6000 model 270 workstation. A noteworthy observation from
this table (the Ty column of WSMP) is that out of the 25 test cases, only six require
more than 5 seconds on a mere workstation and all but one of the matrices can be
factored in less than 11 seconds. Moreover, the factorization times reported in Table 3
use the default options of WSMP. Many of the large test matrices, such as fidapmi1,
mil053, mixtank, nasasrb, raefsky3, etc. have a symmetric structure and would need
even less factorization time if the user switches off the optional pre-permutation of rows
to maximize the diagonal magnitudes. Some of the matrices, such as fidapm11, mif053,
venkat50, wang4, etc. do not require partial pivoting to yield an accurate factorization.
Therefore, if the user familiar with the characteristics of the matrices, switches off the
pivoting for these matrices and, in general, tailors the various options [Gupta 2000] to
her application, many of the test matrices can be factored even faster.

In reat applications, although factorization time is usually of primary importance, users
are concerned about the total completion time, which includes analysis, factorization,
triangular solves, and iterative refinement. In Figure 5, we compare the total time that
MUMPS and WSMP take to solve our test systems of equations from beginning to
end on four CPUs of an RS6000 model 270. For each matrix, the WSMP completion
time is considered to be one unit and all other times of both the packages are measured
relative to it. The analysis, factorization, and solve times are denoted by bars of different
shades. The solve time includes iterative refinement steps necessary to bring the relative
backward error down to the order of magnitude of the machine precision.

Two new observations can be made from Figure 5. First, the analysis phase of
MUMPS is usually much shorter than that of WSMP. This is not surprising because
the AMD ordering algorithm used in MUMPS is much faster than the nested-dissection
algorithm used in WSMP. In addition, AMD yields a significant amount of symbolic
information about the factors that is available to MUMPS as a byproduct of ordering.
On the other hand, WSMP must perform a full separate symbolic factorization step
to compute the structures of the factors and the task and data dependency DAGs.
Secondly, the solve phase of MUMPS is significantly slower than that of WSMP. This
is mostly because of a slower triangular solve in MUMPS, but partly also because
MUMPS almost always requires two steps of iterative refinement to reach the desired
degree of accuracy, whereas a single iterative refinement step suffices for WSMP for
roughly half the problems in our test suite.

A majority of applications of sparse solvers require repeated solutions of systems with
gradually changing values of the nonzero coefficients, but the same sparsity pattern.
In Figure 6, we compare the performance of MUMPS and WSMP for this important
practical scenario. We call the analysis routine of each package once, and then solve
100 systems with the same sparsity pattern. We attempt to emulate a real application
situation as follows. After each iteration, 20% randomly chosen coefficients are changed
by a random amount between 1 and 20% of their value from the previous iteration, 4%
of the coefficients are similarly altered by at most 200% and 1.6% of the coefficients
are altered by at most 2000%. The total time that each package spends in the analysis,
factor, and solve phases is then used to construct the bar chart in Figure 6. Since the
speed of the factorization and solve phases is relatively more important than that of
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Total WSMP Time
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Fig. 5. A comparison of the total time taken by WSMP and MUMPS to solve a system of
equations once on four CPUs of an RS6000 model 270. All times are normalized with respect
to the time taken by WSMP. Furthermore, the time spent by both packages in the Analysis,
Factorization, and Solve {including iterative refinement) phases is denoted by regions with different
shades.
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Fig. 6. A comparison of the total time taken by WSMP and MUMPS to solve 100 sparse linear
systems with the same nonzero pattern and evolving coefficient values on a 4-CPU RS6000 model
270,
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the analysis phase, WSMP performs significantly better, as expected.

Recall that both MUMPS {for very unsymmetric matrices only) and WSMP (for all
matrices) permute the rows of the coefficient matrix to maximize the product of the
diagonal entries. This permutation is based on the values of the coefficients, which are
evolving. Therefore, the row-permutation stowly looses its effectiveness as the iterations
proceed. For some matrices, for which the row permutation is not useful anyway (see
Figure 4), this does not affect the factorization time. However, for others that rely on
row permutation to reduce pivoting, the factorization time may start climbing as the
iterations proceed. WSMP internally keeps track of growth in the time of the numerical
phases over the iterations and may automatically trigger a re-analysis when it called to
factor a coefficient matrix with a new set of values. The frequency of the re-analysis
is determined based on the analysis time relative to the increase in the time of the
numerical phases as the iterations proceed. The re-analysis is completely transparent
to the uvser. So although the analysis phase was explicitly called only once in the
experiment yielding the data for Figure 6, the actual time reported includes multiple
analyses for many matrices. As Figure 6 shows, this does not have a detrimental effect
on the overall performance of WSMP because the re-analysis frequency is chosen to
optimize the total execution time.

6. CONCLUDING REMARKS

In this paper, we show that recent sparse solvers have significantly improved the state
of the art of the direct solution of general sparse systems. For instance, compare the
first four columns of Table 2 with the second last column of Table 3. This compar-
ison would readily reveal that a state-of-the-art solver running on today’s single-user
workstation is easily an order of magnitude faster than the best solver-workstation com-
bination available prior to 1999 for solving sparse unsymmetric linear systems. This is
a remarkable rate of progress. Moreover, the new solvers offer significant scalability of
performance that can be utilized to solve these problems even faster on parallel super-
computers [Amestoy et al. 2000]. Judging by the size of the available real test cases, it
appears that the applications that require the solution of such systems have not kept
pace with the recent rapid improvements in the software and hardware available to
solve these systems. We hope that the new sparse solvers will encourage scientists and
engineers to develop bigger models with larger sparse systems so that the full potential
of the new generation of parallel sparse general solvers can be exploited.
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