
RC 22047 (98944) April 27, 2001 Computer Science

IBM Research Report

Enhancing Linux Scheduler Scalability

Mike Kravetz
IBM Linux Technology Center

Hubertus Franke, Shailabh Nagar, Rajan Ravindran
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Enhancing Linux Scheduler Scalability

Mike Kravetz
IBM Linux Technology Center

Hubertus Franke, Shailabh Nagar, Rajan Ravindran
IBM Thomas J. Watson Research Center
{mkravetz,frankeh,nagar,rajancr}~us.ibm.com

http://lse.sourceforge.net

Abstract

This paper examines the scalability of the Linus
2.4.x scheduler as the load and number of CPUs
increases. We show that the current scheduler de-
sign involving a single runqueue and lock can suffer
from lock contention problems which limits its scal-
ability. We present alternate designs using multiple
runqueues and priority levels that can reduce lock
contention while maintaining the same functional
behavior as the current scheduler. These implemen-
tations demonstrate better overall scheduling per-
formance over a wide spectrum of loads and system
configurations.

1 Introduction

Linux has seen tremendous growth as a server op-
erating system and has been successfully deployed
in enterprise environments for Web, file and print
serving. Often, the increased demand in such en-
vironments can be met by horizontally scaling the
system with clustering. For such applications, the
operating system needs to efficiently support SMPs
consisting of only a small number of CPUs.

More demanding applications, such as database, e-
business or departmental servers, tend to be de-
ployed on larger SMP systems. To support such ap-
plications, Linus must scale well vertically as more
CPUs are added to an SMP. It must also scale
with the increased number of processes and threads
that such SMPs are expected to handle. In both
these situations, the scheduler can be a key factor
in achieving or limiting operating system scalabil-

ity. The current Linus scheduler (2.4.x kernel) has
two defining characteristics. First, there is a sin-
gle unordered runqueue for all runnable tasks in
the system, protected by a single spinlock. Second,
during scheduling, every task on the runqueue is
examined while the runqueue lock is held. These
have a two-fold effect on scalability. As the num-
ber of CPUs increases, there is more potential for
lo& contention. As the number of runnable tasks
increases, lock hold time increases due to the linear
examination of the runqueue. Independent of the
number of CPUs, increased lock hold time can also
cause increased lock contention, depending on the
frequency of scheduling decisions. For spinlocks, in-
creased lock hold time and lock contention result in
a direct increase in lock wait time which is a waste
of CPU cycles. These observations are reinforced
by recent studies. Measurements using Java bench-
marks (21 show that the scheduler can consume up
to 25% of the total system time for workloads with
a large number of tasks. Another study [3] has ob-
served run queue lock contention to be as high as
75% on a 32.way SMP.

Lock contention problems can generally be ad-
dressed in two ways. First, the protected data struc-
ture can be reorganized so that it can be traversed
faster with a corresponding decrease in the aver-
age lock hold time. Second, the data structure can
be broken up or partitioned into smaller parts, each
protected by its own separate lock. This reduces the
probability of lock contention overall. Additionally,
it allows multiple examinations of the subparts to
proceed in parallel, reducing lock wait time for the
data structure as a whole.

The main contribution of this paper is the design,
implementation and evaluation of two new Linux
schedulers which improve scalability using these two

/

