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Abstract 

Sourcing addresses critical decisions of what to 
buy, how much to buy, whom to buy from, and how 
to manage relationship with suppliers. Decision 
making in sourcing can involve a few hundred of-
ferings each of which is described by several dozen 
attributes. When using traditional decision analysis 
techniques, sourcing specialists are often having 
difficulties in assigning appropriate weights to 
attributes and feel uncomfortable with decided 
results. In this paper, we present an innovative 
approach, where the decision makers only provide 
ordinal rankings over subsets of offerings. From 
the information implied by these ordinal rankings, 
the system derives a set of weights and an overall 
ranking of all the given offerings. With additional 
information from the decision maker, these results 
are iteratively refined. The paper describes the 
basic concepts and algorithms used as well as the 
implementation. 

1. Introduction 

Sourcing relates to the procurement of direct inputs 
used in the manufacture of a firm’s primary out-
puts. E-sourcing is an internet-based business proc-
ess for identifying, evaluating, negotiating, and 
configuring optimal groupings of buyers and sup-
pliers into a supply chain that responds to changing 
market demands. Figure 1 depicts the sourcing 
process flow starting with the sourcing strategy and 
ending with acceptance or rejection of particular 
offers. 

Efficient selection of bids and product offer-
ings is a core activity in this sourcing process. 
Sourcing professionals have to make selections 
among hundreds of alternatives considering several 

dozens of criteria. Accountability is crucial when 
making such complex decisions particularly for 
business buyers whose decisions always need to be 

justified in terms of savings in time and cost (e.g., 
why certain suppliers won and others lost).  

Selection problems like this are challenging, 
because they require the balancing of multiple, 
often conflicting objectives. Traditional approaches 
to multi-attribute decision making (MADM) are 
often insufficient in situations with a large number 
of attributes and alternatives, which are typical in e-
sourcing. In particular, traditional forms of weight 
elicitation do not work well under these circum-
stances. 

ABSolute is an application framework provid-
ing buyer-side decision support for e-sourcing. The 
framework enhances traditional approaches to 
MADM by advanced visualization capabilities and 
WORA, a new weight assessment methodology 

'HYHORS�6RXUFLQJ�6WUDWHJ\�
,GHQWLI\�6RXUFLQJ�*URXSV�
(YDOXDWH�6RXUFLQJ�7UHQGV

*HQHUDWH�DQG�
'LVWULEXWH�5)4V

$QDO\]H�5)4V

)RUPXODWH�2IIHUV

1HJRWLDWLRQ�3URFHVV

%X\HU

6XSSOLHU

$QDO\]H�6XSSOLHU�5HVSRQVHV�
6FRUH�	�5DQN�2IIHUV��,GHQWLI\
2SWLPDO�2IIHU�&RPELQDWLRQV

$JUHH�8SRQ�
$UUDQJHPHQWV

$FFHSWDEOH
'HDO

5HMHFW
1RQFRPSHWLWLYH

2IIHUV

<HV 1R

&RXQWHU�2IIHUV�
$GGLWLRQDO�,QIR

&RXQWHU�2IIHUV�
$GGLWLRQDO�,QIR

5
H
T
X
LU
H
P
H
Q
WV

1
H
J
R
WL
D
WL
R
Q

6
H
OH
F
WL
R
Q

Figure 1: Sourcing Process Flow 



based on ordinal rankings of alternatives. WORA 
was designed to alleviate the shortcomings of tradi-
tional weight assessment techniques. 

In this paper we will focus on the basic deci-
sion analysis techniques implemented and the 
WORA methodology for weight assessment. The 
next section provides a brief overview of existing 
approaches to bid selection in e-sourcing. Then, 
section 3 surveys MAUT as well as some of the 
traditional approaches to weight assessment.  Sec-
tion 4 describes the core components of the ABSo-
lute application framework, and section 5 explains 
the details of WORA and summarizes the results of 
a numerical simulation. Finally, section 6 concludes 
with some summarizing remarks. 

2. Existing Approaches to Bid Selec-
tion in E-Sourcing 

There are only a few bid analysis products cur-
rently available from companies such as Emptoris 
(www.emptoris.com), Frictionless Commerce 
(www.frictionless.com), Perfect 
(www.perfect.com), and Rapt (www.rapt.com). All 
of these products depend on a single decision 
analysis method and are limited in their capabilities 
for supporting the decision-making processes.  

One approach used in commercial bid analysis 
products is optimization such as integer program-
ming, and/or constraint programming. Bid analysis 
products from Emptoris and Rapt belong to this 
category. These products recommend a set of bids 
from multiple suppliers and optimize one or more 
objectives. A drawback of this approach is that its 
capability for recommending complex product of-
ferings is limited. While this approach can be effec-
tive for simple objectives such as minimizing the 
total cost, it does not work well if the objectives 
involve complicated business rules over multiple 
attributes and are therefore only applicable in case 
of simple commodities.  

Bid analysis products from Frictionless Com-
merce and Perfect are based on traditional decision 
analysis techniques, which have been actively stud-
ied in MADM, an area of operations research. The 
primary techniques in the field are Multi-Attribute 
Utility Theory (MAUT) [1], Simple Multi-Attribute 
Rating Technique (SMART) [2] and the Analytic 
Hierarchy Process (AHP) [3], all of them imple-

mented in several software applications. The es-
sence of all these widely used decision aids is 
breaking complicated decisions down into small 
pieces that can be dealt with individually and then 
recombined in an additive manner. The key differ-
ence among the various methods is the way the 
scores on individual attributes and their weights are 
assessed.  

3. Traditional Decision Analysis 

Most commercial bid selection tools such as Perfect 
and Frictionless Commerce are based on MAUT. 
They request a user to assign relative weights to 
individual attributes of alternatives (i.e., bids), and 
then use an additive value function in order to 
compute the scores of the alternatives. The systems 
then rank the alternative bids by score, and the user 
selects the winning bids among the top-rankers. 

3.1. MAUT 

The basic hypothesis of MAUT is that in any deci-
sion problem, there exists a real valued function U 
defined along the set of feasible alternatives, which 
the decision maker wishes to maximize. This func-
tion aggregates the criteria x1 ... xn. Besides, indi-
vidual (single-measure) utility functions U1(x1), ..., 
Un(xn) are assumed for the n different attributes. 
The utility function translates the value of an at-
tribute into ”utility units”. The overall utility for an 
alternative is given by the sum of all weighted utili-
ties of the attributes. For an outcome that has levels 
x1, …, xn on the n attributes, the overall utility for 
an alternative is given by 
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Consequently, the additive utility function as-
signs values of 0 and 1 to the worst and best con-
ceivable outcomes, respectively. A basic precondi-
tion for the additive utility function is preferential 



independence of all attributes, which has been the 
topic of many debates on multi-attribute utility 
theory [2, p. 328]. Even in cases with interdepend-
encies, the additive utility function is often used as 
a rough-cut approximation for a more complex non-
linear utility function. MAUT is a theoretically 
widely accepted technique, and there have been 
many reported applications of multi-attribute utility 
theory in government and business decision-
making.  

3.2. Traditional Weight Assessment  

The assessment of appropriate weights is key to 
MAUT and is what makes a “good” preference 
model. Assigning weights means determining trade-
offs between different attributes of a decision. A 
fundamental weakness of the bid selection pack-
ages described in the last section is that they pro-
vide little guidance for weight assessment. Conse-
quently, the resulting bid scores may not be reli-
able. When a user assigns weights to attributes for 
the first time, s/he might not understand their effect 
well. Assigning weights in the presence of several 
dozens of attributes, which is typically the case in 
procurement, is even more difficult.  

Several techniques have been proposed to help 
users assign reasonable weights. One approach is 
called pricing out because it involves determining 
the value of one objective in terms of another (e.g. 
dollars). For example, one might say that 5 days 
faster delivery time is worth $400. The idea is to 
find the indifference point, i.e. determining the 
marginal rate of substitution between two attrib-
utes. Although this concept seems straightforward, 
it can be a difficult assessment to make.  

The swing-weighting approach requires the 
decision maker to compare individual attributes 
directly by imagining hypothetical outcomes. Start-
ing with a hypothetical alternative that has the 
worst outcome in all attributes, the decision maker 
writes down other hypothetical alternatives, which 
have the best outcome in only one of the attributes. 
The various hypothetical alternatives are then 
ranked. The worst alternative gets 0 points, the best 
alternative gets 100 points. From this one can com-
pute the weights by dividing the points by the sum 
of all points. 

Since many decision makers feel unable to pro-
vide exact weights, some of the more recent ap-
proaches only ask for uncertain estimates. For ex-
ample, methods from fuzzy decision analysis use 
fuzzy sets for weights and individual scoring func-
tions and fuzzy operators for the aggregation of 
those fuzzy sets [4]. 

AHP uses a different approach to weight de-
termination. Cognitive psychology has found that 
people are poor at assimilating large quantities of 
information on problems. A principle used in AHP 
is that comparative judgments are applied to con-
struct a symmetric matrix of pairwise comparisons 
of all combinations of attributes. The method is 
based on the mathematical structure of consistent 
matrices and their associated right-eigenvector’s 
ability to generate true or approximate weights. The 
right eigenvector of the matrix results in the 
weights for the different objectives. 

A variation of AHP is the Geometric Mean 
Technique. Several researchers pointed out that the 
geometric mean is more appropriate in order to 
obtain the relative importance of the elements being 
compared [5] [6]. REMBRANDT is a software 
package implementing this technique. The advan-
tage of both AHP and the Geometric Mean Tech-
nique is that pairwise comparisons are relatively 
easy to understand for the decision maker. The 
disadvantage is the exponential increase of pairwise 
comparisons in case of larger numbers of attributes 
and alternatives. 

When it comes to hundreds of alternatives and 
dozens of attributes, most traditional forms of 
MADM and weight elicitation do not work well. 
Procurement specialists are often facing difficulties 
in assigning appropriate weights, and feel uncom-
fortable with the decided results.  

4. ABSolute Sourcing Framework 

ABSolute is an application framework providing 
buyer-side decision support for e-sourcing. It pro-
vides an integrated approach to support complex 
purchasing decisions and an opportunity to satisfy 
analysis capabilities required in large-scale pur-
chasing processes. ABSolute integrate methods 
from multi-attribute decision analysis with ad-
vanced visualization techniques. The core compo-



nents of the ABSolute decision analysis framework 
are  
• a user interface for  visual analysis,  
• MAUT – a traditional and widely used decision 

aid, and 
• WORA – a new methodology designed to de-

termine weights in the presence of a large num-
ber of criteria. 
The first steps in the ABSolute sourcing proc-

ess are the development of a sourcing strategy as 
well as RFQ creation (see Figure 1). RFQ creation 
involves also the modeling of preferences, i.e. the 
relevant attributes as well as individual utility func-
tions for them need to be chosen. For example, 
considering price a purchasing specialist might 
conclude that a lower price is preferable to a higher 
price and that the range of acceptable prices lies 
between $40 and $60 per unit. Based on the RFQ 
bids are solicited from the suppliers. 

The following section we will concentrate on 
the next step in the sourcing process flow, namely 
the analysis of supplier responses, i.e. bids. This 
step consists of a number of finer grained process 
steps involving visual analysis of bids, dominance 
analysis, and finally MAUT enhanced by the 
WORA technique. 

4.1. Interactive Visual Analysis 

The ABSolute user interface combines the features 
of different analysis methods, and allows the users 
to selectively utilize alternative methods for differ-
ent analysis needs. The visual analysis provides an 
effective means to navigating through the informa-
tion space, intuitively understanding the properties 
of given options, and perceiving interesting patterns 
in the subject data set. In several ways, the visual 
analysis mechanism is designed to assist users in 
the RFQ/bid analysis process: It presents the entire 
information space of submitted RFQs/bids in a 
single page. This compact display makes it easy to 
navigate through the information space and visually 
compare all the RFQs/bids s/he is interested. It also 
helps users by visually showing them concrete 
comparison data that might otherwise be only ab-
stractly in their heads or on paper in non-visual 
form.  

4.2. Dominance Analysis 

When many alternatives are present, it is common 
to reduce the choice set to a more manageable size 
by first eliminating ”inferior” alternatives. Domina-
tion and the conjunctive rule are both mechanisms 
for the identification of ”good” alternatives. In AB-
Solute it is easy to determine alternatives that do 
not meet the aspiration levels preset in the RFQ in 
at least one of the dimensions. This feature is also 
called conjunctive procedure. A drawback of the 
conjunctive rule is that it is non-compensatory. If 
an alternative barely fails in a given dimension, it 
cannot be compensated for with surplus elsewhere.  

Domination procedures entail the identification 
of alternatives that are equal to or worse than some 
other alternative on every single dimension. Let's 
analyze two bids A and B and the associated conse-
quences  

x' = (x1', ..., xi', ..., xn') and  
x'' = (x1'', ..., xi'', ..., xn'') 

x' dominates x'' whenever xi' ≥ xi'', for all i and 
xi' > xi'' for some i. The set of consequences that is 
not dominated is called the efficient frontier or 
Pareto optimal set. ABSolute provides functions 
and a graphical user interface to easily determine 
dominance relationships in the bids. 

4.3. Decision Analysis 

Many complex decision problems involve multiple 
conflicting objectives. It is often true that no domi-
nant alternative that is better than all other alterna-
tives will exist in terms of all of these objectives. In 
fact, simulation shows that the Pareto optimal set 
increases with the number of attributes [7].  

One cannot maximize benefits and at the same 
time minimize costs. In essence, the decision maker 
is faced with a problem of trading off the achieve-
ment of one objective against another objective. 
Consequently, after sorting out the inferior alterna-
tives, preference models must be established, i.e. 
utility functions in order to find the best alternative 
for a subject. These utility functions should allow 
explicit comparisons between alternatives differing 
in many ways.  

ABSolute uses MAUT (see section 3.1) as the 
basic decision analysis technique to rank the set of 
alternatives. Although MAUT was used with large 



numbers of attributes, previous analyses suggest 
that the predictive validity of multi-attribute models 
was adequate only when there were fewer than five 
attributes [8]. The main problem in the presence of 
many attributes is the assessment of appropriate 
weights. Hierarchical structuring of attributes pro-
vides one mechanism to allow the decision maker 
focusing on specific subsets of these attributes se-
quentially, but it doesn’t solve the problem of get-
ting reasonable weights.  

Often purchasing managers have a natural pref-
erence of one alternative over another, but they are 
having difficulties expressing these preferences as 
precise weights. Several MADM experts also called 
for consideration of the ability of multi-criteria 
methods to aid decision maker learning [9]. The 
contention is that decision makers may often start 
off with only an initial impression of what they 
want from alternatives. As the analysis proceeds, 
decision makers can more accurately form their 
preferences. MAUT, AHP and REMBRANDT do 
not directly consider learning. They assume a clear 
underlying preference function to be elicited from 
the decision maker [10, p. 170].  

WORA (Weight determination based on Ordi-
nal Rankings of Alternatives) is a new method, 
which utilizes the information contained in ordinal 
rankings of bids in order to estimate the decision 
maker’s true weights. It provides an interactive 
weight elicitation procedure, which helps the user 
learn and continuously refine his/her own prefer-
ences in MAUT. The following section describes 
the principles of the WORA technique. 

5. The WORA Technique 

The visual interface of ABSolute helps users exam-
ine and select subsets of offers, and create and ar-
range ordinal rankings over these subsets. From the 
information implied by these ordinal rankings, the 
system derives a set of weights of attributes, and 
then an overall ranking of all the given offers using 
optimization techniques. With additional informa-
tion from the decision maker, these results can be 
refined. This basic process is illustrated in Figure 3. 
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Figure 2: The WORA Process 

In a first step the decision maker provides 
some sample rankings of bids of the type of B1  B2 

 B3. ABSolute checks these sample rankings for 
intransitive preferences and dominance violations. 
Intransitive preferences describe situations where a 
decision maker prefers bids B1  B2  B3  B1. A 
utility function for these preferences would have to 
consist of U(B1) > U(B2) > U(B3) > U(B1) which is 
impossible. It turns out that detecting intransitive 
preferences in multiple sample rankings is similar 
to the problem of detecting cycles in a directed 
graph, which can be solved using algorithms such 
as a depth first search. The sample rankings are 
also checked for dominance violations. In these 
cases a user provides B1  B2, although bid B2 
dominates B1. Both types of inconsistencies are 
displayed to the user in order to be resolved. The 
sample rankings provided by the decision maker are 
then transformed into constraints to the following 
linear program (LP), which generates estimates for 
the decision maker’s weights.  

5.1. LP Formulation 

Suppose we have a subset of bids B = {B1, B2, …, 
Bk} which we can rank. Assume that B1  B2  B3 

 … Bk , that is, in the set B, the object B1 is most 
preferable; B2 is next and so on. The score Si of 
each bid Bi is computed as 

 
Si = ∑j wj f(aij) for i = 1, …, k 

 
where the weights wj are unknown, and j is the 

number of an attribute. These weights should sat-



isfy the relationship B1   B2  B3  … Bk. We 
formulate the following LP: 

 
Maximize 0  
Subject to: 

S1 ≥ S2 
S2 ≥ S3 
. 
. 
Sk-1 ≥ Sk 
∑j wj = 1 
wj ≥ 0 for each j 
 

Since the weights should be non-negative and 
add up to 1, we add the non-negativity constraint 
(wj ≥ 0), and the normalization constraint (∑j wj = 
1). A feasible solution to all these constraints can 
be obtained by solving the LP.  

In this formulation we have not given any ob-
jective function to the LP, since any feasible solu-
tion will satisfy our requirements. But it is certainly 
possible to specify any linear objective function.1 If 
the decision maker can rank several subsets B, we 
have to write the constraints for each such subset. 
This way, the solution to the LP is guaranteed to 
satisfy all the information we know about such 
subsets.  

5.2. Numerical Experimentation 

A basic research question in this context is, how 
many sample rankings it takes to get to a good es-
timate of the decision makers weights. In a com-
puter simulation we analyzed this question as well 
as potential strategies, which help reduce the num-
ber of sample rankings that need to be provided by 
the decision maker. 

In the simulation we assume the decision 
maker’s “true” weights to be known in advance. 
This means there is no decision maker learning  
involved and the task is to elicit these “hidden” 
preferences. Based on the “true” weights the simu-
lation calculated the decision maker’s “true” rank-

                                                      
1 Numerical experimentations such as the ones de-

scribed in section 5 have shown that the feasible region 
in most cases is very small and the type of objective 
function does not have a significant impact. 

ing of bids Btrue,. Before every simulation round a 
set of bids was generated with random attribute 
values between 0 and 1. In an iterative procedure 
the simulation revealed an additional binary sample 
ranking of the type  

Loop 1: B1   B2,  

Loop 2: B1   B2  B3,  

Loop 3: B1   B2  B3   B4 

… 
In every loop a set of estimated weights {wi}est 

was calculated, and based on these weights an es-
timated ranking of all bids, Best. The simulation 
calculated the Bravais Pearson correlation coeffi-
cient of Btrue and Best, which was used as an indica-
tor for the quality of the estimated weights. 

Figure 4: Speed of Convergence 

Figure 4 shows the average correlation coeffi-
cients after 40 simulation runs given 70 random 
bids and different numbers of attributes. The num-
ber of revealed binary rankings needed to get a very 
good estimate (i.e. a correlation coefficient >0.9) 
was a little higher than the number of attributes. 
Each iteration revealed additional information and 
the estimate was getting gradually better. If more 
binary rankings were revealed in each iteration, 
then of course, less iterations were needed to get a 
high correlation. Additional simulations showed 
that the number of bids does not have a significant 
impact on the speed of convergence.  

One particularity of the above simulation is 
that all ranked samples are chained, i.e. one bid of 
sample i is also contained in sample i+1. The 
chained sample ranking B1  B2  B3, reveals also 

the transitive preference B1  B3,. In fact, when we 
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compare the revelation of connected and uncon-
nected samples it can be shown that connected 
samples achieve high correlations faster than un-
connected ones. Figure 5 shows the results of two 
simulation runs, each with 10 attributes. In every 
iteration a sample ranking of 4 bids is revealed.  

 

Figure 5: Chained and Unchained Samples 

Further simulation has shown that revealing in-
formation from dominance relationships can be 
used to reduce the number of iterations. These 
strategies can be used in order to suggest samples 
to the decision maker. 

6. Conclusions  

ABSolute provides advanced decision analysis 
capabilities for bid selection. The interactive visu-
alization enables to easily navigate through a large 
information space. MAUT provides the strength of 
a traditional decision analysis technique, which has 
already been applied to numerous real-world situa-
tions.  

The traditional weight assessment techniques 
used with MAUT are not sufficient in the presence 
of large numbers of criteria. WORA provides an 
innovative approach to utilize the information con-
tained in ordinal rankings of alternatives. In an 
iterative process it aids the decision maker in learn-
ing about their own preferences and assessing rea-
sonable weights. This way, WORA makes the 
thought process explicit and leads to more informed 
decisions. In purchasing situations with many alter-
natives and many attributes WORA can be an im-
portant complement to conventional techniques.  
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