
RC22100 (W0106-030) June 25, 2001
Computer Science

IBM Research Report

Enterprise JavaBean Response Time Analysis

Te-Kai Liu, Santhosh Kumaran
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1. Introduction

The Enterprise JavaBeans (EJB) architecture
combines the merits of distributed object technologies
and traditional transaction processing monitors (TP
monitors). EJB is a server-side component model,
which greatly simplifies the development and
deployment of enterprise business applications that
are transactional, secure, and scalable. EJB
capitalizes on the success of Java and is adopted by
the industry at a rapid pace. Today there are more
than 25 commercial EJB servers [EJB1] and 4
OpenSource EJB servers available. EJB 1.0 and 1.1
specifications are already released and EJB 2.0
specification is currently in the final draft review stage
[EJB2].

The present study is motivated by the desire to
understand the Enterprise JavaBeans (EJB)
technology and its performance characteristics so that
one can further develop performance models for
performance prediction and capacity planning. Being a
newly developed technology, the performance of an
EJB based system is not well understood yet. Thus,
one objective of the present study is to identify the
major components in the response time of a method

call on an EJB. Another objective is to extract the
resource (i.e. CPU and disk) demands of EJB method
calls in order to develop capacity planning models.

The rest of the paper is organized as follows. Section
2 gives a brief introduction to EJB. Section 3 identifies
the major components in the response time of a
method call on an EJB, and the method for estimating
these parameters. Section 4 describes a method for
estimating the resource demands of EJB method calls
from the response time. Section 5 reports on the
experimental setup, the measurement data, and the
analysis results. Section 6 concludes the paper.

1. Enterprise JavaBeans

The idea behind the EJB architecture is to have
application developers make use of the beans that are
provided by bean developers thereby speeding up the
development cycle. The completed applications can
then be deployed on any application server that
supports the EJB specification (called EJB servers).
EJB servers provide the development and run-time
support for transaction, security, and resource
management. 1.

ENTERPRISE JAVABEAN RESPONSE TIME ANALYSIS

Te-Kai Liu and Santhosh Kumaran
IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598
tekailiu@us.ibm.com

This paper presents two methods for analyzing the response time of
method calls of Enterprise JavaBeans (EJB). The first method breaks
response time measured by a single client into two sets of parameters:
one set relating to the beans themselves, and the other set characterizing
the EJB run time environment including the EJB container, the underlined
persistent store, and the remote method calling overhead. A system of
linear equations can be used to solve for the values of the parameters.
The second method involves measuring the response time of EJB method
calls under different workload intensities and estimating the CPU and disk
demands of a method call. As examples, the response time of method
calls of several primitive EJBs deployed on an EJB server is measured
and analyzed. The two methods are useful in understanding how much
time is spent in the major components of the EJB run time environment
and in estimating the resource demands of EJB method calls for further
developing capacity planning models.

There are two basic types of EJBs: entity beans and
session beans. Entity beans model data objects; these
objects usually correspond to persistent records in a
database. Session beans model business objects;
they typically work with entity beans or other resources
to implement the business logic. The EJB technology
has a notion of remote interfaces and home
interfaces. A remote interface defines the exposed
business methods of an EJB, whereas a home
interface defines the life cycle methods of the bean
typically used by the EJB container for locating,
creating, and removing the beans.

In the EJB architecture, session beans are further
divided into two classes: stateless and stateful beans.
Stateful session beans keep a session context
throughout a client’s session, whereas stateless
session beans do not keep a session context from
method calls to method calls. Entity beans are also
classified into 2 types: container managed persistence
(CMP) and bean managed persistence (BMP). The
difference between the two lies in who takes care of
the persistent fields of the entity beans. From the
viewpoint of an application developer, CMP beans are
simpler to use since the container synchronizes the
persistent fields with the database, which is
transparent from bean developers.

EJB architecture uses distributed object protocols
such as Java RMI and CORBA IIOP for the
communication between distributed objects. These
protocols provide infrastructure services such as error
and exception handling, parameter passing, and the
passing of transaction and security context. To hide
the complexity of the underlined distributed object
protocols, client-side stubs and server-side skeletons
are typically generated by EJB tool vendors
automatically.

Before a client can invoke a call on the business
methods of an EJB, it needs to first get a remote
reference (stub) to an EJBObject (skeleton), which
intercepts the call and invokes the corresponding
method of a bean instance inside the container. The
EJBObject works with the EJB container to execute
resource management strategies such as instance
pooling and provides the support for transaction,
persistence, and security.

The way a client gets a remote reference to an
EJBObject is by first looking up the home interface of
the EJB via JNDI (Java Naming and Directory
Interface) and then invoking the create method
defined in the home interface. If the bean the client
wants to call already exists, which is possible for entity
beans, the client can invoke one of the find methods
defined in the home interface (typically the
findByPrimaryKey method), after the JNDI lookup. An

EJB server typically provides a naming server for
clients to look up the EJBs deployed on it. A good
introduction to the EJB technology can be found in
[MONS00].

1. Contention-Free Response Time
Analysis

This section identifies two sets of parameters, one
intrinsic to the beans and the other related to the
container and the persistent store. The method for
estimating those parameters is also described.

When a client application invokes a business method
call on a session bean of an EJB application deployed
on an EJB server, the client actually invokes a
corresponding method call on a local proxy (i.e., a stub
in Java RMI terms) of the session bean deployed at
the EJB server. The local proxy serializes the
parameters of the call and sends them to a server side
proxy (i.e., a skeleton or an EJBObject). The
EJBObject, implemented by the container, will
collaborate with the container to provide middleware
services such as persistence support, transaction
concurrency control, and EJB instance pooling.
Subsequently the call will be delegated to a bean
instance, which completes the method call and returns
the results back to the EJBObject, the stub, and to the
client eventually. While a session bean instance
processes a call, it is quite likely that it will invoke the
method calls of other entity beans for reading or
updating business data persistent in databases. Figure
1 illustrates the above calling sequence with stubs and
skeletons not shown explicitly.

In Figure 1, a client application running on one JVM
invokes a method call on a remote session bean,
which in turn calls an entity bean deployed on the
same JVM as that of the session bean. Suppose the
entity bean is a CMP bean that has simple getter and
setter methods for its persistent fields. Further
assuming that its deployment descriptor specifies a
transaction attribute of “transaction required”, the
container will access the requested data from the
database or its cache, depending on the database
access attribute (i.e., “shared” or “exclusive”). The
attribute of “shared” means that the database is
shared with other applications that also have access to
the persistent fields of entity beans. The attribute of
“exclusive”, on the other hand, means that the
database is used exclusively by the container. In such
a case, beans’ persistent fields cached by the
container are always up-to-date.

The total response time is broken down into several
elapsed time parameters as follows:

I. t1 = elapsed time for the client to call the null 2.

method of the session bean, which simply returns
immediately.

II. t2 = elapsed time the session bean to process the
method call requested by the client, excluding the
time waiting for the response from the entity bean.

I. t3 = elapsed time for the session bean to call the
null method of the entity bean, which returns
immediately.

I. t4 = elapsed time for the container to access (read
or update) the requested data from the database.

I. t5 = elapsed time for the container to access (read
or update) the requested data from its cache.

I. t6 = elapsed time for the entity bean to process
the call from the session bean, excluding the time
spent by the container managing its persistent
data. t6 is typically close to zero for getter and
setter methods.

From the above definition, we see that t2 and t6 are
independent of the container and are determined by
bean developers (and of course by the processor
speed in part). On the other hand, t1, t3, t4 and t5 are
parameters characterizing the runtime environment of
the beans. Both t1 and t3 include the time spent by the
stub, skeleton, and the container’s overhead for
executing its instance pooling strategy. Moreover, t1
may further include the network delay if the client JVM
is running on a different machine than the server JVM.

Figure 2 shows a client application calling an entity
bean deployed on a separate JVM directly. The figure
and the elapsed time parameters are similar to Figure
1, except for the absence of t2 and t3. Figure 3 shows
a client application calling a session bean, which is the
same session bean as in Figure 1 except that it does
not call any entity bean.

To facilitate the discussion, we designate the
scenarios in Figures 1, 2, and 3 as the two-bean,
single-entity, and single-session scenarios,
respectively. Let Ttb, Tse and Tss be the total
response time of the two-bean, single-entity, and
single-session scenarios, respectively. We have

Ttb = t1 + t2 + t3 + t4 + t6, when data is accessed
from database, or

t1 + t2 + t3 + t5 + t6, when data is accessed
from container’s cache.

Tse = t1 + t4 + t6, when data is accessed from
database, or

t1 + t5 + t6, when data is accessed from
container’s cache.

Tss = t1 + t2.

The above system of linear equations has 6 unknowns
and 5 equations which has a degree of freedom of 4.
In general, the system of equations has no unique
solution. However, by deploying a primitive session
bean that does nothing but call the entity bean, t2
becomes zero. For simple getter and setter method
calls of the entity bean, t6 can be approximated by
zero. We thus can solve for t1, t3, t4, and t5. Note that
after t1 is obtained, t2 of another session bean of
interest can be estimated by (Tss - t1). In Section 5 we
will present the experiments for measuring the total
response time for the 3 scenarios, and the numerical
results obtained.

1. Estimating Resource Demands from
Response Time

This section describes a method for estimating the
resource demands of EJB method calls from response
time measurements. Slightly different from Section 3,
this section deals with response time of a method call
measured in a contention mode.

We assume that the CPU and disk demands for a
method call of an EJB are Dc and Dd, respectively. In
the contention-free mode (i.e., single client scenario),
the response time of the method call is the sum of Dc
and Dd. When there are multiple client making the
method call concurrently, the response time can be
obtained by solving the queueing system in Figure 4,
which shows a closed queueing network with N
customers and two servers (i.e. CPU and disk). The
response time of a method call is the sum of the time
a customer spends in the two servers.

Let Rn be the response time of the method call when
there are n customers in the system. We have R1 =
Dc + Dd. Now using analytical methods such as MVA
[MENA94] one can predict R2, R3, R4, etc. for a given
Dc in the range of (0, R1). By matching against the
measured R2, R3, R4, etc., a reasonably good value
of Dc and Dd can be obtained. Alternatively, one can
perform regression analysis to find the optimal values
for Dc and Dd.

1. Measurements and Results

We have deployed three simple EJBs on one test
application server, which runs on a Windows 2000
machine with a 700MHz Pentium III processor and
256MB RAM. A database server, functioning as the
persistent store of the application server, is also
installed on the same machine. Among the 3 EJBs,
the first one is a CMP entity bean, which has a getter
and a setter method for accessing an integer instance
variable. The second bean is a stateful session bean, 3.

which also has a getter and a setter. But the getter
and setter of the session bean simply call the getter
and setter of the entity bean. The third bean is a
stateful session bean with a null method, which does
nothing and but returns immediately. The entity bean
has the transaction attribute of “transaction required”,
whereas the two session beans have the transaction
attribute of “transaction not supported”. The entity
bean further has the isolation-level attribute of “read
committed” in its deployment descriptor. “Read
committed” means that a transaction will not read
uncommitted data used in other concurrent
transactions.

For each scenario described in Section 3, a test client
was used to measure the total elapsed time for
making 10,000 calls from the client. The total elapsed
time was measured by taking the difference of the
returned values of two System.currentTimeMillis()
calls inserted at the beginning and ending of a loop
wherein 10,000 calls are made by the client. In the
present study, the client is running on another JVM,
which runs on the same machine as the EJB server.

The following shows the measured average response
time Ttb, Tse and Tss, and the obtained elapsed time
t1, t3, t4, and t5. Note that t2 and t6 are zero as
explained in Section 3.

Ttb = 4.84 ms
Tse = 4.52 ms
Tss = 1.83 ms
t1 = 1.83 ms
t3 = 0.32 ms
t4 = 2.69 ms
t5 = 1.50 ms

From the result that t1 is 5 times more than t3, we see
that EJB method calls across two JVMs take much
longer than calls within a JVM (i.e. t1 >> t3). This
effect is expected to be even more salient when the
two JVMs are running on different machines
connected by a network. By comparing t4 and t5, we
see that the response time of a call on an entity bean’s
accessors (getter or setter) is shorter if the container
can bypass the database in loading a bean’s instance
fields in the beginning of each transaction. But this
benefit is only possible when the container is the only

application that has access to the database, i.e.,
exclusive access.

To illustrate the method described in Section 4,
another experiment is performed. The response time
of calling the create() method of an entity bean’s home
interface experienced by n concurrent clients is
measured for n = 1, 2, and 4. The measured (R1, R2,
R4) in milliseconds is (6.49, 12.49, 24.99). The
measured R1 is broken down into 4 cases whose
predicted response time curves are plotted in Figure 5.
It can be seen that (Dc = 6.24, Dd = 0.25) gives the
best match among the 4 cases.

1. Conclusion

We have demonstrated two methods for analyzing the
response time of EJB method calls. The first method
involves measuring the response time of method calls
of EJBs in different scenarios and solving a system of
linear equations for the model parameters. The values
of the parameters help us understand where the time
is spent in the system when a method call is invoked
by a client. The second method uses response time
data to estimate CPU and disk demands of EJB
method calls. The method will help in constructing
capacity planning models for EJB applications. Work
is underway to develop a capacity planning model for
a real world EJB application.

1. References

[EJB1] Industry momentum on EJB.
http://java.sun.com/products/ejb/tools1.html.

[EJB2] EJB specifications 1.0, 1.1, and 2.0.
http://java.sun.com/products/ejb/docs.html.

[MONS00] R. Monson-Haefel, Enterprise JavaBeans,
2nd Ed., O’Reilly, 2000.

[MENA94] D. A. Menasce, V. A. F. Almeida, and L. W.
Dowdy, Capacity Planning and Performance Modeling,
Prentice Hall, 1994. 4.

