
RC22101 (W0106-031) June 26, 2001
Computer Science

IBM Research Report

Locating Application Data Across Service Discovery Domains

Paul Castro, Benjamin Greenstein, Richard Muntz
University of California, Los Angeles

Los Angeles, CA 90095-1596

Chatschik Bisdikian, Parviz Kermani
IBM T.J. Watson Research Center

30 Saw Mill River Road
Hawthorne, NY 10532

Maria Papadopouli
Columbia University
1214 Amsterdam Ave

Mail Code: 0401
New York, NY 10027-7003

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Locating Application Data Across Service Discovery
Domains

Paul Castro*, Benjamin
Greenstein, Richard Muntz

University of California, Los Angeles
Los Angeles, CA 90095-1596

{castrop,ben,
muntz}@cs.ucla.edu

Chatschik Bisdikian, Parviz
Kermani

IBM T.J. Watson Research Center
30 Saw Mill River Road
Hawthorne, NY 10532

{bisdik,parviz}@us.ibm.com

Maria Papadopouli*
Columbia University

1214 Amsterdam Ave
Mail Code: 0401

New York, NY 10027-7003
maria@cs.columbia.edu

ABSTRACT
The bulk of proposed pervasive computing devices such as PDAs
and cellular telephones operate as thin clients within a larger infra-
structure. To access services within their local environment, these
devices participate in a service discovery protocol which involves
a master directory that registers all services available in the local
environment. These directories typically are isolated from each
other. Devices that move across service discovery domains have no
access to information outside their current local domain. In this
paper we propose an application-level protocol called VIA that
enables data sharing among discovery domains. Each directory
maintains a table of active links to other directories that share
related information. A set of linked directories forms a data cluster
that can be queried by devices for information. The data cluster is
distributed, self-organizing, responsive to data mobility, and robust
to failures. Using application-defined data schemas, clusters orga-
nize themselves into a hierarchy for efficient querying and network
resource usage. Through analysis and simulation we describe the
behavior of VIA under different workloads and show that the pro-
tocol overhead for both maintaining a cluster and handling failures
grows slowly with the number of gateways.

1. INTRODUCTION
Researchers in industry and academia commonly propose to man-
age pervasive computing devices such as Personal Digital Assis-
tants (PDA), cellular telephones, hand-held computers, and
embedded sensing devices with service discovery architectures.

Examples of such architectures include SLP [11], Jini [13], Saluta-
tion [21], and Universal Plug and Play (UPnP) [22]. These archi-
tectures rely on service discovery protocols that have similar
features. The main component of most protocols is a "master direc-
tory" or "master channel" located at a well-known network
address. Devices register their services by contacting the master
directory and clients can "discover" all the registered services by
consulting the same directory. For example, a PDA that enters a
new environment can use the master directory to locate a printer
that is capable of printing a color photograph.

Master directories limit their scope to devices within a local ser-
vice discovery domain. The boundaries of a service discovery
domain can be administratively defined such as an IP subnet, or
they can be the result of a physical property such as the range of a
wireless network. For example, an office equipped with a Blue-
tooth [3] network can be its own service discovery domain. There
can be many such domains for a single building. While this pro-
vides applications with a flexible, responsive, and robust means to
find and use local services, many applications require a more glo-
bal context for their operation. Consider a PDA outfitted with a
camera that can take high-resolution photographs. Rather than
store the pictures in its limited memory, the PDA off loads the pic-
tures to storage elements it has previously discovered. As the PDA
moves from domain to domain, it discovers and uses different stor-
age elements to store its pictures. Later, we would like to retrieve
all the pictures taken by the PDA. If we assume that the PDA
keeps track of where it’s been and what storage elements it has
used, then it is relatively straightforward to retrieve the data. How-
ever, relying on a client participation model is unsatisfactory since
a client is forced to maintain a history of its actions. This history is
easily invalidated if a storage element moves from one domain to
another after the PDA stores a picture on it. Also, users who do not
have access to the history cannot retrieve the data. For example,
suppose a user "discovers" a picture taken by the PDA on a local
storage element and would like to see other pictures taken by the
PDA. It would be very difficult to find these pictures without
access to the history. Given the limitations of the client participa-
tion model we prefer to rely on an infrastructure approach to keep
track of data.

A naive solution is to use a centralized index of all data on the net-
work. Clearly, this solution does not scale well since the index is a
bottleneck and a single point of failure. We can improve on this by
employing a distributed index. Researchers have looked at using

The work reported in this paper was partially supported by NSF
grants 0086116, 0085773, and 9817773 as well as an IBM Faculty
Partnership Award.
*Part of this work was done while the authors were visiting IBM
Research.

1

distributed indices in the context of wide-area service discovery.
The goal of wide-area service discovery is to globally disseminate
service information in master directories across service discovery
domains. Rosenberg, et al developed the WASRV extensions to
SLP that use multicast to disseminate information across discovery
domains in a two-tier hierarchy [19]. Czerwinski, et al propose the
Service Discovery Service (SDS), a secure descendant of SLP
where service information is partitioned by semantics into a multi-
tier hierarchy of distributed servers [6]. Multiple hierarchies can be
maintained in SDS though the construction of these hierarchies is
currently left to administrative policy. While not specifically for
WAN applications, Adjie-Winoto, et al developed the Intentional
Naming System (INS) that replicates a tree index among multiple
server nodes to share service information [2].

As computers become more pervasive, data will be fragmented and
distributed over many devices on the network. Service discovery
domains enforce a cellular topology where data is inaccessible
between cells. Finding the right data across domains will be of fun-
damental importance for many applications. While distributed
index approaches such as those proposed for wide area service dis-
covery can be employed, there are many issues that must be
addressed. In general, replication does not scale well in the wide
area. Both disseminating replicas of an index and keeping all the
replicas of that index synchronized is problematic. While hierar-
chical schemes scale better, the reliance on policy to construct
these indices places too much burden on administrators to centrally
manage and coordinate the construction of the hierarchy. It is also
unclear what an optimal hierarchy should be. Ideally, we would
like a scheme that scales well, imposes low-overhead on the net-
work, is self-organizing, and is robust to failures.

We have developed an application-level protocol for Verified

Information Access (VIA1) to address some of these issues. We are
focused on supporting data sharing across service discovery
domains for specific applications. We are interested in applications
that need to recover specific data items that could be located any-
where in the network such as the previously described PDA cam-
era example. We are also interested in supporting applications that
need to share data to a wide audience such as a distributed sensor
system. Our approach is also applicable to other data sharing appli-
cations such as the increasingly popular Internet peer-to-peer file
sharing architectures.

The design of VIA was guided by the following observations about
sharing data across service discovery domains:

• An index should be tailored to the pattern of queries and the
content of the underlying data sources. Instead of creating a
general index to handle all queries we can create a smaller
index optimized for a few applications. Application specific
indices may be more appropriate and have the advantage of
being practical to implement. For example, we can construct a
distributed sensor system that detects congestion points on the
highway. If applications are only interested in the "trouble

spots" on the highway we can create a specific data-centric
structure that allows applications to find that data quickly.

• Rather than break apart and distribute the index by content as
is done in hierarchical server schemes, we can distribute the
index so that each server only manages "local" information.
For example, a Carnegie Hall server is only responsible for
tracking data left on devices within the Carnegie Hall discov-
ery domain. While this distributes semantically related parts
of the index over many servers, changes to the index outside
of Carnegie Hall have minimal impact on the local server. To
reconstruct the fragmented index, servers are connected by
"links" to each other in a peer-to-peer overlay network.

The remainder of this paper is as follows. In Section 2 we provide
an overview of VIA and describe our self-organizing, data-centric,
hierarchical indexing scheme. Section 3 provides details about spe-
cific operations in the VIA protocol. We develop equations in Sec-
tion 4 which predict the overhead of VIA under certain conditions
and discuss optimality considerations. In Section 5 we report mea-
surements from a PARSEC [17] simulation of two operations in
VIA as well as workload measurements for a VIA testbed under
different distributions of queries and data. In Section 6 we discuss
related work. Finally, we summarize this paper and describe
planned work in Section 7.

2. VIA OVERVIEW
In this section we provide an overview of VIA. Our goal is to
design an overlay network maintained by an application-level pro-
tocol based on the principles of robustness, self-organization, scal-
ability, simplicity, and local autonomy.

• Robustness - pervasive computing environments are popu-
lated by a dynamic array of information devices. These
devices can be mobile and are subject to various types of fail-
ure. Services built on these devices will exhibit similar prop-
erties. VIA should be resilient to these effects while
remaining efficient.

• Self-organization - to minimize administration overhead we
would like our distributed index to be self-organizing. Dis-
covery domains can add and remove themselves from the
index as the data changes. A self-organizing approach can
also adapt to dynamic conditions.

• Scalability - while it is difficult to achieve a complete solution
for wide-area data dissemination, VIA should maximize scal-
ability while bounding the resources needed to implement it.
Ideally, VIA should support a large number of discovery
domains and devices as well as a large number of data dis-
seminating applications.

• Local autonomy - participation in a wide-area scheme neces-
sarily relies on entities outside local control. Discovery
domains should have the ability to control the amount of
resources they are willing to spend for participating in VIA.

We provide an overview of VIA in this section. Details of the VIA
protocol follow in Section 3.0.1. Also Latin for "way."

2

2.1 Gateways
Figure 1a shows the expected topology of discovery domains on
the network. In the figure, we assume that the master directory ser-
vice resides on a "gateway" that connects a discovery domain to a
"main channel" allowing communication between gateways. Gate-
ways act as mediators between devices in a discovery domain and
resources available in other domains. The main channel acts as a
broadcast mechanism between gateways and can be a implemented
in many different ways, e.g. an IP-multicast channel or a set of
cooperating servers. We assume that the main channel provides
Internet-like connectivity between gateways.

Applications describe data they produce through metadata tags. A
metadata tag can function as a description of data or it could be the
data itself. In VIA, we assume that a metadata tag is an ordered list
of attributes with a finite set of values. Applications can initiate
data sharing by sending a metadata tag to the local gateway in a
special share message. A query is also a list of attributes with a
finite set of values. An attribute in a query can be "wildcarded"
indicating "don’t care" for an attribute.

Clients direct all queries for data to the main channel. In the
absence of any other mechanism, all gateways listening on the
main channel receive the query, process it against the set of meta-
data tags they have recorded, and only return non-null results to
the client. This is analogous to popular peer-to-peer file sharing
mechanisms that rely on controlled flooding to query and dissemi-
nate data [9]. In general, flooding is not a good solution since it can
saturate the capacity of the main channel. Flooding also maximizes
the number of queries each gateway must process since a gateway
is forced to listen to all queries on the main channel.

Ideally, only the set of gateways that have non-null responses to a
query should receive it. We can approach this ideal in two ways: 1)
modify the main channel to more selectively deliver queries to the
relevant gateways; 2) organize the gateways to cooperatively filter
queries to minimize the number of queries each must process and
reduce the requirements on the main channel. Both these
approaches are complementary. VIA focuses on the second

approach by creating an application-level overlay network. While
an application-level protocol may be less efficient than a network
layer approach, it does not require modifications to existing net-
work protocols or hardware.

Researchers have investigated application-level peer-to-peer over-
lay networks to address perceived flaws in IP multicast. Yoid [8]
and Narada [5] propose end system application-level multicast
alternatives in which end systems self-organize into broadcast
groups without any router support beyond supporting IP. Scatter-
cast is similar in concept except it relies on special proxies in the
network to support the formation of groups [18].

Figure 1b depicts an application-level overlay network of gate-
ways with hierarchical semantics for the PDA camera scenario. In
the figure, only one gateway listens to the main channel while
other gateways have elected to "get behind" selected gateways that
cooperatively filter queries for them. The top-level gateway (on the
main channel) performs the least-restrictive filtering by passing on
all queries that are relevant to the PDA camera application. At the
next level, gateways filter on the name of the photographer that
took the picture. The final level of filtering is done at the bottom
layer where gateways check the ID of the camera that took the pic-
ture. Gateways benefit from this hierarchical scheme since it
reduces the number of irrelevant queries they receive. The main
channel benefits from reduced capacity requirements. As in any
hierarchical scheme, workload distribution is not equal as top-level
nodes act as "martyrs" for the benefit of nodes deeper in the hierar-
chy. Relieving these top-level nodes is outside our current consid-
eration though this can be accomplished by load balancing
schemes or changes to the main channel (for example, cooperating
multicast channels [20]).

VIA’s contribution is the ability for gateways to self-organize into
a hierarchy based on the types of queries in the main channel as
well as the actual data items being shared on the network. This is
accomplished through "linking" operations in which a gateway
joins a cluster of other gateways that have similar data. These link-
ing operations can be repeated to form clusters of clusters. Clusters

Figure 1: a) Topology of discovery domains. b) Hierarchy of clusters.

3

aggregate as needed to create a cluster hierarchy. Only gateways
that require filtering join a cluster hierarchy while other gateways
remain on the main channel. Of course, the benefits of moving a
gateway off the main channel are offset somewhat by the cost of
placing the gateway into a hierarchy. VIA attempts to create an
advantageous balance between the two (see Section 4).

2.2 Self-organization
Gateways operate autonomously from other gateways and only
have partial knowledge about the state of other gateways on the
network. Gateways on the main channel may receive many irrele-
vant queries; it is advantageous for them to join a cluster to mini-
mize the number of irrelevant queries they must process. While
there is some cost associated with being a member of a cluster, this
cost can be considerably lower than the cost of processing many
irrelevant queries.

In VIA, a gateway must determine if it is doing too much wasted
work. This can be done by monitoring the number of relevant and
irrelevant queries it receives. If it is processing too many irrelevant
queries, the gateway attempts to join a cluster on the network. Note
that there can be several clusters on the network and a gateway
must determine the "best" cluster to join based on its limited
knowledge about the state of the system. The "best" cluster is one
one that will forward the least number of irrelevant queries to the
gateway. To join a cluster, a gateway locates the members of the
cluster and links to the "closest" member.

The number of queries that are irrelevant to a gateway are a func-
tion of the metadata tags on the gateway and the query distribution.
In VIA, the metadata tags encode information about the expected
query distribution through the ordering of the attributes. From this
ordering, a gateway can find the best cluster to join for a particular
metadata tag purely through generalizing that tag. Generalization
is an iterative process where a metadata tag is transformed into an
increasingly less restrictive filter. Ideally, this transformation
should consider all other metadata tags on the network. However, a
gateway generally cannot know the state of the other gateways so
generalization is a greedy transformation based on local informa-
tion. This approach is somewhat of a gamble since a gateway does
not know if a cluster for the generalized metadata tag exists.
Though not discussed in this paper, a better but more complex
strategy would employ a less greedy transformation that consid-
ered the clusters already on the network; we are investigating this
as part of our research.

Aggregates of clusters form a cluster hierarchy. A cluster hierarchy
represents a logical filtering hierarchy where nodes higher in the
hierarchy reduce the workload of nodes lower in the hierarchy by
filtering out irrelevant queries. The filtering power of a hierarchy is
determined by the metadata tags on each gateway. In VIA, meta-
data tags can be employed as filters to process queries. We say a
metadata tag M* subsumes another metadata tag M (written as M*

> M) if . We can also say that two metadata tags are equal
(M*=M) if they describe the same set of data.

In general, a gateway G with metadata tag M can get behind any
gateway with metadata tag M* if M*>M. Given a set of possible

gateways to get behind, G would like one that results in the least
number or irrelevant queries. Ideally, G would like to be behind a

gateway G', with filter M* such that M*>M and is mini-
mal. The generalization process in VIA attempts to find the mini-
mal filter M* for a given metadata tag M.

Consider the following situation depicted in Figure 2. Three dis-
covery domains are on the main channel via gateways G1, G2, and
G3. Devices in each domain produce data described by the meta-
data tags F1, F2, and F3. We commonly think of these tags as
descriptions of the content of data in the discovery domain, but
they could also be the actual data (for example, sensor readings). A
device sends a tag to a gateway in order to share this data outside
of the local domain. Initially, G1, G2, and G3 receive every query
that clients send to the main channel.

Suppose all queries are directed for data managed by G3. G1 and
G2 must process these queries even though they cannot respond to
them. To correct this egregious situation, G1 attempts to get behind
another gateway by generalizing its current metadata tag F1 to F1*
and then joining a cluster with a matching filter to F1*. At the first
iteration F1 = F1* and G1 uses the main channel to find another
gateway with a matching metadata tag.

Unfortunately for G1, there are no other gateways it can get
behind. G1 assigns itself as the "root" of a cluster described by F1*
and will perform filtering for any gateway that joins its cluster. It
should be noted that G1 does not do any more work than it did
before it generalized. While it does not benefit from its actions, G2
does. G2 also realizes that it is doing too much work and general-
izes its tag F2 to F2*. When G2 goes to the main channel it discov-
ers that F1* and F2* match. G2 leaves the main channel and sets
up a communications link to G1. G1 will now forward all queries
that match F1* to G2. G1 and G2 form a cluster described by F1*.
This process can be repeated as long as the metadata tags can be
generalized. For example, G1 can make a second attempt to join a
cluster by generalizing F1* to F1**. G1 goes to the main channel
and discovers from G3 that F1**= F3. G1 can now leave the main
channel and get behind G3.

The reverse can also happen. Suppose the content of the queries
change and now most of them are directed at G2. In the final topol-

M M∗⊆

M∗ M⁄

Figure 2: Filtering.

4

ogy of our previous example, queries are forwarded along the path
G3 - G1 - G2. This indirection increases the query response
latency perceived at the client and causes extra work for G1. If this
situation occurs, G2 can break out of the current cluster hierarchy
and return to the main channel.

VIA forms hierarchies by allowing clusters to cluster together
under a common root. If a gateway G is a cluster root then it can
repeat the cluster process with other roots. For example, assume a
cluster rooted by G1 has metadata tag M* and the cluster rooted by
G2 has metadata tag F*. G1 and G2 generalize their metadata tags
to M** and F**, respectively. If M**=F** then G1 can link to
with G2 to form a new level on the cluster hierarchy with only G1
as the root of the new cluster. Although this higher level cluster
does not filter out all irrelevant queries, the G2 will have some fil-
tering done for it by G1.

Gateways create a cluster hierarchy in a bottom-up fashion. Meta-
data tags provide the semantics for clustering and aggregation. A
cluster hierarchy is a distributed index of these tags that can effi-
ciently process some queries. This can be restrictive since the
index must be based only on the data contained within each dis-
covery domain. This may result in an index that performs poorly
for the queries in the main channel. A top-down approach would
partition the data based on the content of the queries. We consider
VIA to be a hybrid approach. Metadata tags describe a data schema
for an application that can be organized for an expected query
workload. This data schema acts like "DNA," guiding the bottom-
up formation of cluster hierarchies. Thus, VIA can be used to cre-
ate many different hierarchies by just specifying different data
schemas for each application. More details can be found in Section
3.

VIA creates a filtering hierarchy which behaves differently than
other hierarchical schemes. In a more conventional hierarchy, par-
ent nodes have knowledge about the content of their children and
will not forward irrelevant queries. Filtering is weaker in VIA
since parent nodes do not know the contents of their children and
will pass on any query that makes it through its filter to all its chil-
dren. However, what we lose in query processing efficiency we
gain in protocol simplicity since there is no need to keep data con-
sistent between parents and children. This is ideal in a service dis-
covery architecture where data is dynamic and update costs need to
be minimized.

3. VIA PROTOCOL DESCRIPTION
VIA consists of operations broadly classified into two categories.
At its most basic, VIA allows gateways to create, discover, and
maintain clusters of themselves on the network through spanning
tree operations. In addition, VIA aggregates clusters into cluster
hierarchies for efficient query processing through aggregation
operations.

Gateways locally decide whether or not they should aggregate.
Since gateways only have partial knowledge about other parts of
the network, these local decisions are based partly on heuristics
which result in globally beneficial behaviors for aggregation.

We simulated VIA using the Parallel Simulation Environment for
Complex Systems (PARSEC), a C-based discrete event simulation
language [17]. We have also implemented prototype VIA gateways
in our laboratory as part of our on-going research in pervasive
computing infrastructures. Details about our simulations and work-
load experiments are presented in Section 5.

3.1 XML Data Schema
In our implementation, we rely on the eXtensible Markup Lan-
guage (XML) to specify metadata tags. XML metadata tags are
necessarily hierarchical and are used to guide the aggregation pro-
cess. All photographs in our PDA camera example would have a
metadata tag such as:

<application name=”PDA color camera”>
<photographer name = “Mani”>

<picture time=”12 Aug 2000,1220 GMT”
cameraID=”AAA” fileLoc=”$/12”/>

<picture time=”12 Aug 2000,1223 GMT”
cameraID=”AAA” fileLoc=”$/22”/>

<picture time=”12 Aug 2000,1245 GMT”
cameraID=”AAA” fileLoc=”$/145”/>

</photographer>
</application>

From this data schema we could have a data cluster for "photogra-
pher name =’Mani’" and a cluster for "photographer name
=’Ajmera’." We could also have a cluster for the more general
"photographer" type with the "name" attribute set to a wildcard.
This cluster subsumes the previous clusters where photographer
name is specified.

Queries are partially instantiated versions of the XML metatags.
For example, a query for all pictures taken by Mani would be:

<application name=”PDA color camera”>
<photographer name=”Mani”>

</picture time=”*” cameraID=”*”>
</photographer>

</application>

In the query, the picture attributes for time and cameraID use the
"*" wildcard to indicate "don’t care" on time and any cameraID.
Note that the query above represents a Boolean "AND" of the
attributes in the query. We can achieve Boolean "OR" semantics by
chaining together queries like the one above separated by the spe-
cial delimiter "||".

The design of VIA supports the construction of application spe-
cific indices. All attribute names in VIA are local to a single appli-
cation. To construct an index over a set of applications, we would
need to define an ontology that maps attribute names from one
application to another. However, for this paper we restrict our dis-
cussion to supporting a single, application specific index.

A client sends all queries to the main channel. We model the main
channel as an IP-multicast group. These queries are received by
root gateways of other clusters. These clusters return their non-null
responses to the client. Though beyond the scope of this paper, we

5

can adopt an incremental response scheme prevent message implo-
sion at the client-side.

Gateways generalize metadata tags by adding "don’t care" condi-
tions to values in the tag. This process is application dependant and
should be done in a manner that optimizes the partitioning of the
data for an expected query workload. In our current implementa-
tion, generalization occurs by systematically placing wildcards on
all values at the deepest level in the schema that is not already
wildcarded.

For example, a generalized version of the metadata tag for the
PDA camera example would be:

<application name=”PDA color camera”>
<photographer name = “Mani”>

<picture time=”12 Aug 2000,1220 GMT”
cameraID=”*” fileLoc=”*”>

<picture time=”12 Aug 2000,1223 GMT”
cameraID=”*” fileLoc=”*”>

<picture time=”12 Aug 2000,1245 GMT”
cameraID=”*” fileLoc=”*”>

</photographer>
</application>

This generalized metadata tag represents all pictures taken by
Mani regardless of the cameraID or file location but distinguished
by a timestamp.

3.2 VIA Spanning Tree Operations
VIA has four distinct spanning tree operations: growth, non-root
failure, root failure, and merging. Growth and non-root failure are
the basic operations. Root failure and merging are variants of these
operations

3.2.1 Basic Operations: Growth
Gateways participate in VIA by maintaining a cluster table that
specifies information about the cluster and links to other gateways
in the cluster. Each individual gateway can limit their participation
in VIA by specifying the number of links they are willing to pro-

cess in their cluster table. If a gateway is willing to accept b links
(b ≥ 2) and the gateway currently has L links then we define the
edge set of a cluster to be any gateway where (L < b). New mem-
bership to the cluster is only accepted by the edge set of the cluster.
We also define the rootside link of a gateway as the link that con-
nects the gateway to the partition of the cluster that contains the
root node; this is normally the first link a gateway forms when it
joins the cluster.

All clusters have a unique ID created when the cluster first forms.
In our current implementation, the ID is a 128-bit randomly gener-
ated ID which is assumed to be unique across the network. This is
the same scheme adopted by Jini service identifiers [7]. A combi-
nation of the ID, the doctype, and a metadata tag should uniquely
identify every cluster on the network.

The following algorithm is used where G is a gateway seeking to
join a cluster:

1. G multicasts a JOIN message containing the metadata tag of
the data it is sharing and a token count. G sets an "edge timer"
and waits for responses. If G does not receive any responses
before the edge timer expires then G assigns itself as the root
of a new cluster and waits for JOIN, LINK, QUERY, or FAIL
messages.

2. If a matching cluster exists, G will receive EDGE
RESPONSE messages from the edge set of the cluster. The
number of responses is limited by a token count scheme (see
below). EDGE RESPONSE messages contain the network
address of the responding gateway, the DTD identifier, the
metadata tag of the cluster for which it received the JOIN
request, and a 128-bit ID for this cluster. When the edge timer
expires, G probes the gateways from which it received the
edge responses. Probing consists of "pinging" the gateway
and measuring the round trip delay. In the current implemen-
tation, G will link to the gateway that has the lowest round
trip delay for the ping. Ties are broken arbitrarily.

3. To set up a link with another gateway, G sends a LINK mes-
sage to the gateway. If the gateway returns an ACCEPT mes-
sage, then G adds an entry into its link table for the gateway
and sends out a REFRESH message for the link. The
REFRESH message is the heartbeat message that maintains
the soft state between the two gateways. Currently, links must
be refreshed at least every 60 seconds. The link is now estab-
lished and heartbeat messages should be exchanged between
the gateways for that particular cluster. Heartbeat messages
are unicast using UDP.

4. After the link is set up, G will send a CHANGE ID message
to all other links it has for this cluster. This only happens if G
is recovering from a failure.

The edge set for an arbitrary cluster could be quite large and we
need to be sure that a gateway does not get overwhelmed by
responses to a JOIN message. When a gateway multicasts its JOIN
message, it includes a token count that represents the maximum
number of responses it would like to receive. Gateways use this

Figure 3: Growth state diagram.

6

token count to limit the number of responses to a JOIN message
and also as a means to keep the topology of the cluster roughly bal-
anced.

When the root of a responding cluster receives the request, it
checks its link table to see if it has an open entry. If it does, it con-
sumes one of the tokens in the token count, sends an EDGE mes-
sage to the requester, and probabilistically distributes the
remaining tokens to its peers. If it does not have an open link, it
just probabilistically distributes all the tokens to its peers. Subse-
quent nodes repeat this process. In this scheme it is more likely
that a node closer to the root will respond to the JOIN. VIA relies
on randomization to add new members to the cluster in a more bal-
anced manner. Ideally, we would like to minimize the network
diameter of the cluster since this is related to the length of the path
a query must travel.

3.2.2 Non-root Failure
A non-root failure occurs when a gateway fails or a link is broken
between gateways. Links can fail because of network partitions,
congestion, gateway failures, etc. Failures create multiple parti-
tions of a cluster and it is up to VIA to restore cluster connectivity.
In general, at least two gateways will detect a failure (except in the
case where a "leaf" gateway fails). Only one of these gateways will

be in the partition that contains the root. We use this fact to coordi-
nate the repair process; in VIA, gateways only need to repair root-
side failures. Consider two gateways that detect a link failure. Groot

is the gateway in the root partition while Gpartition is the root in the

non-root partition. For Groot, the failure is in a non-rootside link.

The opposite is true for Gpartition.

1. When Groot detects a failure on a non-rootside link, it updates

the entry in its link table and does nothing.

2. When Gpartition detects the failure, it attempts to join the parti-

tion that contains Groot since the failure is on a rootside link. It

does so in the manner specified by the Growth operation (see
Section 3.2.1)

Note that this procedure will work for an arbitrary number of fail-
ures. For any number of failures, there will be several partitions
but only one will contain the root. The gateways in the remaining
partitions that detect the failure will attempt to rejoin the root parti-
tion.

3.2.3 Root Failure
Root failures are handled similarly to non-root failures. The main
difference is that a root failure will create multiple non-root parti-
tions. To combat this, each peer of the root records that it is a root
peer in the cluster entry in its link table. If it detects a failure in the
root, then it assigns itself as root. Each gateway generates a new ID
and sends a CHANGEID message to its peers. The new ID is prop-
agated to all members of its partition. After this, the new roots
attempt to merge with the other trees as specified in the next sec-
tion.

3.2.4 Merge
Multiple clusters that share the same data types but are not con-
nected can be formed due to failures or delays in the network. For
example, a gateway could set a short edge timer and assign itself as
the root of a new cluster prematurely. To handle this situation root
nodes periodically multicast EXIST messages to other roots.
EXIST messages contain an identifier for the document type of the

Figure 4: Non-root failure state diagram

Figure 5: Root failure state diagram Figure 6: Merge state diagram

7

cluster, the metatag, and the cluster ID. If a root node G1 discovers

the existence of another cluster (rooted by G2) that has a matching

document type and metatag but a different cluster ID, then it does
the following:

1. G1 uses a backoff protocol to merge with the other tree. G1

sets a random timer and waits for a MERGE message from
G2. If a MERGE message arrives, then G1 does nothing. Oth-

erwise, G1 sends a MERGE message to G2.

If G1 has open links for the cluster, then G1 joins as specified by

the growth operation. If G1 does not have an open link, then it ran-

domly selects a link and breaks it by sending a MERGE BREAK
message. The resultant clusters now join as specified in the growth
operation.

3.3 Aggregation Operations
The aggregation operations enhance the spanning tree operations
to allow the formation of cluster hierarchies. VIA has two distinct
aggregation operations: aggregate and split. An analysis of VIA
(see Section 4) indicates that there is a break point in network cost
between VIA and flooding. With complete knowledge about the
system, gateways could determine perfectly when they should
aggregate. However gateways operate on partial knowledge and
VIA relies on a hit ratio and filtering coefficient based heuristics to
determine when a gateway should join and leave a cluster.

The hit ratio H of a cluster is defined as: where Qres= #

non-null responses for that cluster and Q= # queries received for
that cluster. A gateway maintains a hit ratio for every cluster it par-
ticipates in. Aggregation is triggered when H < T1 where T1 is a

user defined threshold.

The filtering coefficient F of a cluster is defined as

where Qc= # queries received for that cluster and Qroot= # queries

received by the root on the main channel. F represents the amount
of filtering done by a cluster hierarchy for a given gateway. Split-
ting is triggered when H > T1 and F > T2, where T1 and T2 are user

defined thresholds.

H is a measure of how much irrelevant work a gateway is doing for
a particular cluster. A gateway is motivated to reduce the irrelevant
workload. F is a measure of the benefit of being in a cluster. Gate-
ways receive the most benefit from a cluster if it filters out many
irrelevant queries. Under this scheme, if there are many relevant
queries on the main channel, the gateway prefers to be on the main
channel. If the opposite is true, the gateway prefers to join a cluster
hierarchy to filter out irrelevant queries.

The aggregation operation is almost the same as the growth opera-
tion. To form an aggregate cluster, the root of the cluster monitors
its hit ratio for that cluster. If the hit ratio is too low, the root cre-
ates an additional metadata tag that is a generalized version of the
original cluster metadata tag. It then follows the same steps to join
a cluster as in the growth operation only it uses the generalized
metadata tag.

The split operation is similar. A gateway monitors its filtering
coefficient for a given cluster. If the filtering coefficient is above a
threshold, then the gateway can break out of that cluster and return
to the main channel.

4. ANALYSIS OF VIA

Aggregation provides us with potentially a bh savings over flood-
ing where b is the average number of links per gateway and h is the
height of the hierarchy. If the number of gateways in a cluster is N,

cluster hierarchies have potentially an Nbh reduction in message
overhead on the main channel compared to flooding schemes.
Clearly, this is not the realized savings since there is an implicit

tension between maximizing the Nbh factor and minimizing the
overhead of maintaining VIA clusters. The content of the data
managed by clusters and the content of the queries have a tremen-
dous effect on the performance of the protocol. In this section we
present a "back of the envelope" overhead analysis of VIA.

4.1 Overhead Analysis

We first characterize the overhead as a function of these
parameters. Define:

Qr = queries/second

R = # roots subscribed to multicast
Ur = updates/second
Sr = heartbeats/second

N = average # gateways in cluster
C = average # clusters
K = edge message overhead due to joins
Ω = # gateways in the network
ω = # gateways sharing data
α = # query selectivity coefficient (0 ≤ α ≤ 1)
β = # cluster selectivity coefficient (0 ≤ β ≤ 1)
bh = aggregation savings (data schema dependant)

The selectivity coefficients α, β summarize the effect of different
queries and cluster hierarchies. The more general a query the more
likely it is to intersect with the data managed by the clusters. Along
the same lines, the more general the cluster types, the more likely
they are to intersect with queries asking for data. Both these factors
are dependent on the actual data captured by the clusters as well as
the actual requests from clients. We say that more general queries
and cluster types generate more overhead.

The overall overhead for VIA is the sum of the multicast (flooding
on the main channel) traffic and unicast (cluster hierarchy) traffic.
Multicast traffic is generated by queries and JOIN messages. We
are mainly concerned with queries since this has a larger impact on
the network resources consumed by VIA. Gateways send JOIN
messages when the cluster topology needs to be changed. We
assume that every "update" requires a change in the cluster topol-
ogy and that unicast traffic is dominated by heartbeat messages. In
this case, the overall overhead V is:

Qres Q⁄

Qc Qroot⁄

8

(1)

The first term QrR is the multicast traffic generated by queries. The

second term, Ur (R+K), is the multicast traffic generated by

updates. The third term SrNC is the unicast traffic generated by

REFRESH messages. The fourth and fifth terms represent the
overhead of responding to queries based on the selectivity of the
query and the application data schema.We can compare this to a
flooding approach to finding data. In this case, the total overhead is
just the multicast overhead to broadcast a query and the cost of
some gateways responding to the query

(2)

We now have a description of the overhead of VIA in terms of the
query workload, update workload, and the percentage of gateways
that participate some cluster. If we assume R << NC << Ω then
VIA offers advantages over flooding as the query rate increases.
Clearly, if R/Ω, Ur/Ω and NC/Ω is small then V < M. This makes

sense intuitively. If a client needs to find data that is only managed
by a small number of gateways compared to the total number of
gateways then it is better to have VIA. If the client needs data that
is managed by a large number of gateways compared to the total
number of gateways then flooding can be more efficient since it
incurs no protocol overhead for updates and REFRESH messages.

From the equations above, we can find the benefit M-V of VIA
over flooding on the main channel (multicast). Ideally, the soft-
state rate should be set equal to the update rate in order to provide
minimum response time for cluster topology changes. In the case
where Sr= Ur we have:

(3)

The intent is to maximize M-V. The multiplicand of Qr is the "win"

we get for filtering at the multicast level. The multiplicand of Ur is

the "loss" we incur for having to maintain the clusters. Note that

the selectivity of the queries is not a factor here since the number
of gateways that have to respond to a given query is the same in
either the multicast scheme or VIA. From the equation we see that
the VIA protocol overhead can be dominated by the REFRESH
message rate. We must chose Sr judiciously to achieve a reason-

able balance between detecting topology changes and the cost of
detecting these changes.

4.2 Towards Optimal Hierarchies
It is unlikely that VIA, which relies on a greedy generalization
function and imprecise measures of network distance, will form an
optimal hierarchy. However, we are able to characterize the fea-
tures of an optimal topology. For example, flooding is an upper
bound on cost since we should not do any worse than that. An ideal
lower bound on the cost for a given query is the number of gate-
ways that have a non-null response to the query since we must at
least send a query to those gateways.

If we assume that the cost of maintaining a VIA hierarchy is mini-
mal (e.g. we set the refresh rate to be very low), then VIA mainly
needs to optimize on the cost of processing queries. Consider the
case when all gateways are on the main channel. The cost associ-
ated with processing a single query is related to the number of
gateways that receive it. For flooding, all gateways receive the
query, which represents the maximum cost. VIA reduces the over-
all cost of processing a query by partitioning gateways into clus-
ters. Since the root of a cluster can filter out irrelevant queries, the
overall query processing cost is less. To find the minimal cost, we
can search over all possible partitions of the gateways and measure
the cost for a given query workload. Clearly, the query workload
and the data on the gateways are strong determinants of the actual
cost.

The total number of possible partitions of gateways can be very
large. Searching this space is prohibitive and not possible in prac-
tice; gateways generally do not have knowledge about other gate-
ways on the network. To approach an "optimal" configuration,
VIA relies on the tuning of the heuristics used by the aggregation
operations so that gateways will cluster until it is no longer advan-

V QrR Ur R K+() SrNC QrβNC QrαNC+ + + +=

M Qrω QrβNC+=

M V– Qr R Nb
h

1–() αNC–() Ur R K NC+ +()–=

Message Overhead (per cluster) vs Number of Gateways

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200

Number of Gateways

per cluster message overhead

Message Overhead (per Gateway) vs Number of Gateways

0

0.02

0.04

0.06

0.08

0.1

0.12

0 200 400 600 800 1000 1200

Number of Gateways

Growth
Fail

Figure 7: a) Message overhead per cluster vs. number of member gateways for the growth operation.
b) Message overhead per gateway vs. number of gateways for the growth and fail operations. The decrease in the overhead is due to
averaging of the overhead for idle nodes and active nodes. In general, as the cluster size increases, the number of idle nodes grows

faster than the number of active nodes.

9

tageous. Gateways make decisions based on local state information
that potentially result in a good "global" behavior for the system.

5. MEASUREMENTS
In this section we describe our simulation experiments and mea-
surements of our prototype implementation. The simulation is used
to explore scalability issues and other scenarios that are difficult to
control in the prototype.

5.1 PARSEC Simulation
We simulated the growth and fail operations in PARSEC. We
chose these operations since other operations are based on the
growth and fail operations. In our simulations we grew a single
logical cluster of sizes 10, 100, 200, 500, and 1000 gateways.
Gateways joined the cluster sequentially every 8 seconds until the
cluster membership was complete. We set the REFRESH message
rate to be constant at once per minute and gateways detected fail-
ures if they did not receive a REFRESH message after two min-
utes. We did not simulate query or update workloads since we are
currently interested in a baseline overhead for the VIA protocol.
However, we did perform workload experiments with our proto-
type gateway testbed.

We simulated the fail operation for fully grown clusters. In our
experiments up to 3 gateways could fail simultaneously or in
sequence. We measured the message overhead for failures and also
verified that the partitions caused by failures would eventually
rejoin to create a single cluster.

In this simulation, we "grew" clusters of size 10, 100, 200, 500,
and 1000. It should be noted that the run times were greater for
larger clusters. As will be shown later, one of the major culprits in
increased message traffic are the soft-state REFRESH messages
sent between gateways.

Figure 7a shows the message overhead per cluster. The message
overhead is the bandwidth consumed by a cluster. We can see that
the overall bandwidth consumed by the cluster is linear with the
size of the cluster. It should be noted that the bandwidth consump-
tion is somewhat amortized over the network and that the overhead
is the maximum overhead any one link might see. As can be seen
from Figure 7b, the overhead of each gateway is relatively inde-
pendent of the size of the cluster. We also simulated a failure in a
gateway close to the root after the entire cluster grew. Failure
recovery does not generate much additional traffic and the over-
head is roughly equivalent to growth with no failure.

Join Message Overhead vs Number of Gateways

0

0.05

0.1

0.15

0.2

0.25

0 200 400 600 800 1000 1200

Number of Gateways

Root
Node = 2
Node = N/2
Node = N

Refresh Message Overhead vs Number of Gateways

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 200 400 600 800 1000 1200

Number of Gateways

Root
Node = 2
Node = N/2
Node = N

Figure 8: a) Join message overhead vs. number of gateways. b) Refresh message overhead vs. number of gateways.

Join Message Overhead vs Maximum Link Table Entries (100 Gateways)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5 10 15 20 25 30

Maximum Link Table Entries

Node
Node = 2
Node = N/2
Node = N

Refresh Message Overhead vs Maximum Link Table Entries (100 Gateways)

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

Maximum Link Table Entries

Root
Node = 2
Node = N/2
Node = N

Figure 9: a) Join message overhead vs. maximum number of link table entries for a 100 gateway cluster.
b) Refresh message overhead vs. maximum number of link table entries for a 100 gateway cluster.

10

The graph in Figure 7b shows a counter-intuitive result in that
overhead seems to decrease as the size of the network increases.
This occurs because the overhead measure is an average measure
taken from idle gateways and active gateways. In general, only a
few gateways will be active in VIA at any one time, and the most
active gateways are closer to the root. Most other gateways are
only responsible for sending out REFRESH messages. As the clus-
ter size grows, the ratio of idle gateways to active gateways grows
and this causes the average overhead to decrease.

To illustrate the heterogeneous activity of gateways at different
distances from the root, we measured the message traffic for the
root gateway, a peer gateway, a "middle gateway," and a leaf gate-
way. We selected the peer gateway to be the third gateway that
joined the collective. The middle gateway is the N/2 gateway to
join where N is the eventual cluster size. The leaf gateway is the
last gateway to join.

Figure 8a and Figure 8b are measures of the JOIN and REFRESH
message overhead for gateways at different distances from the
root. In these cases the message overhead approaches a constant
dependant on the number of links a gateway has. When a gateway
has allocated all its link table entries for a cluster it just forwards
JOIN requests to its peers. REFRESH messages are also dependant
on the number of links a gateway has set up. This is a bit more
erratic as you increase the distance from the root but approaches a
constant.

Clearly, there is a time component also; the later you join the clus-
ter, the less messages you will send out. However, over a long
period of time, the number of messages a gateway must send is
more dependant on the number of links it has with other gateways.
We simulated a 100 gateway cluster and measured the message
overhead as a function of the maximum number of links a gateway
allocates in its link table per cluster. For our runs each gateway
was set to accept 2,3, 4, 5, 10, and 25 entries per cluster in their
link tables. As in the previous simulations we measured the over-
head for nodes at different distances from the root. Figure 9a and
Figure 9b show the results for JOIN and REFRESH messages,

respectively. From the figures, it is clear that as the probability of
having an open link decreases JOIN and REFRESH messages
approach a constant.

In all cases nodes closer to the root have a higher overhead then
nodes farther away. The total overhead approaches a constant
dependent on the number of links a gateway allocates to participate
in a cluster. If gateways in a cluster allocate a high number of link
entries per cluster, then the overall number of messages generated
by the cluster decreases.

5.2 CLUSTER TESTBED
One way to measure the performance of a cluster hierarchy is the
level of stress on each gateway and link in the hierarchy for a given
workload. If we assume that the protocol has low overhead then
the workload is driven mainly by queries. The stress on links arises
from the number of queries that are distributed through the hierar-
chy and the network distance these queries must travel. The stress
on a gateway arises from the number of queries it must process.
Ideally, the cluster hierarchy is a minimal spanning tree and dis-
tributes a minimal number of irrelevant queries down each link.

There are three distributions that affect the overall performance of
a cluster hierarchy and form the basis of a general workload
model:

• Query distribution - workload is driven by the queries. If
many gateways have a non-null response to a query, then the
cluster hierarchy will do more work. If most gateways have
null responses, then the cluster hierarchy should do less work.
In VIA, we assume that the query distribution is known, and
the topology of the cluster hierarchy is defined by an applica-
tion data schema.

• Data content distribution - related to query distribution is the
distribution of the content of the data on the network. Cluster
hierarchies form based on similarity measures defined by the
query distribution. Most of the cost reduction is achieved by
"good" partitions of data. A cluster hierarchy (and an index in

Message Workload vs Query Distribution (30 Gateways)

0

500

1000

1500

2000

2500

3000

3500

4000

impulse normal uniform bad

Query Distribution

1 cluster

1 cluster (ideal)

8 clusters

8 clusters (ideal)

14 clusters

14 clusters (ideal)

Flooding

Message Workload vs Query Distribution (50 gateways)

0

1000

2000

3000

4000

5000

6000

7000

impulse normal uniform bad

Query Distribution

1 cluster

1 cluster(ideal)

8 clusters

8 clusters (ideal)

14 clusters

14 clusters (ideal)

Flooding

Figure 10: Message Workload vs. Query Distribution for a) 50 gateways. b) 30 gateways.

11

general) performs best when these partitions exist since we
can easily filter out irrelevant queries. If these partitions do
not exist then the cluster hierarchy will be less effective.

• Data object distribution - clearly, the topology of the spanning
tree is dependent on how data is physically distributed on
gateways in the network. Gateways that form a cluster and are
"close" to each other will induce less stress on the network
than gateways that form a cluster and are "far" from each
other. Data distribution has a direct effect on the network dis-
tances of the links in the cluster hierarchy.

We expect VIA to form good hierarchies when the data object dis-
tribution, query distribution, and data content distribution are
skewed to create obvious partitions. For example, an ideal case is
when similar data is clustered close together on the network and
queries are directed for specific clusters. As these skews become
more uniform, the cluster hierarchy performs worse because, like
all indices, it is optimized for specialized situations rather than
general ones.

We have implemented prototype VIA gateways to run preliminary
workload tests. We intend to employ VIA as a component of our
on-going research in pervasive computing infrastructures. In our
infrastructure work, sensor data is collected and deposited on dis-
tributed data repositories that exist in different discovery domains.
The goal is to locate the data of interest by querying the reposito-
ries running VIA. To generate sample distributions, we have cre-
ated a data item generator that seeds gateways with metadata tags
and a workload generator that issues queries to gateways under
different content distribution assumptions.

We have run experiments to investigate the performance of VIA
for representative query distributions and three different cluster
hierarchies representing increasing levels of data fragmentation in
the data content distribution. We do not consider data object distri-
bution in these experiments. In our experiments, we seeded gate-
ways using our data item generator with sensor metadata tags and
grew different numbers of clusters with 30 and 50 gateways. We
then used our workload generator to create query workloads under
four different distributions assumptions. In the "impulse" distribu-

tion, all queries were directed at a single cluster. In the "normal"
distribution, all queries were directed at three different clusters
under Gaussian assumptions. We also performed experiments for
"uniform" distribution of queries where queries were directed uni-
formly against all clusters, and a "bad" (also called "negative") dis-
tribution where the queries were not directed at any cluster. Each
of these distributions: "impulse," "normal," "uniform," and "bad"
should generate decreasing amounts of work for the system since
the queries become less relevant. Figure 10a and Figure 10b show
the results of our experiments for different levels of data fragmen-
tation. In our experiments we measured the estimated workload of
each gateway by counting the number of incoming messages it had
to process. The sum of all these counts is the system workload. We
compare the experimental cases with "ideal" cases. In the ideal
case, only gateways that have a non-null response to a query
receive the query. We also compared the experimental cases with
flooding.

As can be seen in the ideal cases, the overall workload of the sys-
tem should decrease as the workload distribution approaches the
"bad" distribution. VIA curves match this decrease in the ideal
curves closely though they are "shifted" up due to the overhead of
VIA. Flooding performs poorly since the workload is constant
even as the queries become completely irrelevant. In Figure 10a,
VIA performed worse than flooding for the impulse distribution
for a single large cluster in our simulation because we grew the
cluster first and then simulated the workload. In a real network,
this overhead will not be as severe since cluster growth and query
processing will occur simultaneously. Overall, VIA performs
much better in all other cases. As presented in our analysis section,
at its worst, VIA approaches flooding but performs much better
overall.

Work is distributed unevenly in a cluster hierarchy. Figure 11a and
Figure 11b show the distribution of workload for 24 gateways
aggregated into 6 different clusters under "bad" and "uniform"
workloads. Both figures show the message workload before the
query workload (growth only) and the message workload after the
query workload (growth and query workload). Under the "bad"
workload, all clusters eventually aggregated into a 3 level hierar-
chy and one root did most of the work. Under the uniform distribu-

Workload Distribution ("Bad" workload)

0

20

40

60

80

100

120

140

160

180

200

Gateway ID

Growth Only
Growth and Query Workload

Workload Distribution ("Uniform" workload)

0

20

40

60

80

100

120

140

160

180

Gateway ID

Growth
Growth andQuery Workload

Figure 11: Workload distribution for 24 gateways, 6 cluster system under a) "bad" workload b) "uniform" workload

12

tion, gateways did not aggregate completely and more work was
done by the roots of each cluster. It should be noted that most gate-
ways are well below the amount of work they would have done in
flooding.

A general workload model for VIA is very complex and we did not
consider the complete set of parameters in our experiments. We are
currently implementing a more complete workload model and sim-
ulation as part of our research.

6. RELATED WORK
VIA provides a flexible means to locate application specific data
across service discovery domains. Our primary mission was to
develop a robust, scalable, and simple means to share data among
multiple discovery domains connected by a network. VIA is data
centric. VIA constructs clusters in a bottom up fashion and uses
clear semantics for self-organizing peer-to-peer overlay networks
and hierarchies of these networks. These hierarchical clusters can
adapt their configuration based on query demand and network
resources.

Past extensions to service discovery architectures have attempted
to solve the problem of sharing service information. For example,
the WASRV extensions to SLP use advertising agents to multicast
local service information to the wide area. This information is fil-
tered by broker agents who in turn share this information with their
local discovery domain. Jini lookup services can be chained
together so clients can "crawl" from one lookup service to another
lookup service to find information [7]. Additionally, lookup ser-
vices can share service information by setting up tunnels between
them. These tunnels can act like the links used in VIA but each
tunnel must be configured manually.

INS and SDS are more general architectures for sharing service
information beyond the local domain [2][6]. The basic scheme of
INS is to replicate a "name tree" among a spanning tree of Inten-
tional Name Resolvers (INRs) which manage their own local ser-
vice information. Both VIA and INS spanning trees are maintained
with a soft state mechanism. VIA clusters rely on global multicast
to bootstrap the cluster creation process while INS relies on a well-
known entity called the Domain Service Resolver that has infor-
mation about all INRs on the network. In INS, the name tree acts
as a global index for services in each local discovery domain. The
INR spanning tree is similar to a cluster except that the index is
replicated and shared by all nodes. Propagating name tree updates
through the network and processing the name tree can be difficult.
Lilley extends INS with the concept of "virtual spaces" to reduce
the work any one INR must perform to manage the name tree [14].
VIA spanning trees differ from INR trees in that they directly cor-
respond to the contents of the gateways. There is no notion of a
globally replicated and shared index. While this potentially leads
to higher latency when querying the network, it avoids the need to
propagate update information to each node. Adjie-Winoto devel-
ops a distributed algorithm so the INR trees will eventually con-
verge to a minimum spanning tree [1]. We do not attempt to create
a minimum spanning tree in VIA but rather rely on randomization
to create adequate topologies.

SDS is part of the UC Berkeley NINJA project [6][10]. SDS uses a
hierarchical arrangement of special SDS servers to distribute ser-
vice information and includes facilities for security and privacy. At
the "bottom" of the hierarchy are SLP discovery domains. On top
of these discovery domains, multiple hierarchies of SDS servers
can exist. In the current implementation, SDS relies on administra-
tive policy for both specifying which hierarchies should exist and
also how SDS servers should be configured within the hierarchies.
This differs from VIA, which uses a data centric methodology to
automatically create clusters and hierarchies.

Distributing information over the wide area is not a new problem.
The Domain Name System (DNS) is an example of a highly suc-
cessful global data dissemination scheme [16]. However DNS is
not directly applicable to wide area data sharing since it achieves
its scalability from the constrained semantics of the IP hierarchical
addressing scheme. Other schemes for web caching are more about
data replication and movement to reduce data retrieval latency. For
example, Michel, et al proposes a self-organizing scheme of adap-
tive web caches that replicate and migrate data closer to the
requesters of that information [15]. However, it is assumed that the
client already knows where the source of the data is.

Chandra, et al developed the Gryphon publish/subscribe system as
a communications medium for applications in a distributed envi-
ronment [4]. Clients can subscribe to messages based on content,
and these messages are delivered using cooperating "brokers" that
share routing information about subscriptions. Gryphon focuses on
the timely delivery of data and the cost of computation at each
node; a client expresses an interest in data (by content) and Gry-
phon provides a means to disseminate this data. VIA sets up clus-
ter hierarchies before clients express interest. In some sense, VIA
is a dual of Gryphon.

Researchers in ad hoc sensor networks have looked at ad hoc rout-
ing as a means to move data from sources to sinks. Like web cach-
ing, these applications are more concerned about data movement.
Often, some type of controlled flooding constrained by the range
of on-board wireless communication is used. Ad hoc routing
approaches are flexible and self-organizing but operate under
much more severe conditions than what we assume. For example,
Intanagonwiwat, et al proposes a "data diffusion" approach where
information sinks can diffuse their interests in a wireless sensor
network [12]. These interests create "gradients" that information
sources can use to forward their information to the sinks. It is com-
monly assumed that nodes in the sensor network can only see their
neighbors, and that power and processing resources are severely
constrained. In VIA, we assume Internet-like connectivity between
gateways.

Sturtevant, et al propose a novel self-organizing Information Dis-
covery Graph (IDG) to locate multimedia information on the wide
area [20]. Using a set of topic managers, multicast groups are set
up on the fly to manage specific types of information. The multi-
cast groups arrange themselves in a hierarchical fashion. The
semantics of the hierarchy are determined by administrative policy.
IDG uses a top down approach to create a self-organizing topic
hierarchy. VIA uses a data centric bottom up approach to create

13

self-organizing application data hierarchies. The two approaches
are complementary since IDG can "pick up" where VIA leaves off.

Application level overlay networks are of growing interest in the
Internet community [5][8][18]. Gnutella is a peer-to-peer file shar-
ing network of GnutellaNet clients [9]. A GnutellaNet client can
act as both a client and a server. To bootstrap into the Gnutella net-
work, a GnutellaNet must first know the IP address of another
GnutellaNet client already on the Gnutella network. When a client
queries the network (using keywords) for shared files, this query is
broadcast to all other GnutellaNet clients in the querying servers
"horizon." A horizon is used to scope the query to only a portion of
the global Gnutella network to limit the amount of traffic. How-
ever, since all queries must be broadcast the Gnutella scheme can
consume a lot of bandwidth. VIA limits the need to broadcast que-
ries through the use of forwarding links and self-organizing hierar-
chies.

7. CONCLUSIONS
We have proposed VIA as a means to locate application specific
data across service discovery domains. Under certain assumptions
about the cellular structure of discovery domains connected by a
wider area network VIA is a robust, scalable, and simple means to
locate application specific data. We do not try to solve the problem
of locating general data since it may not be necessary. We also do
not claim that VIA can be directly applied to the wide area service
discovery problem. It is our goal to support specific applications
that require some amount of autonomy within a discovery domain
but need a global context to locate and access data. One compel-
ling application is a global sensor system such as a smart highway.
In such a scheme, local authorities can set up heterogeneous sensor
infrastructures. VIA can be used to tie together the data collecting
activities of the local sensor infrastructures so that global queries
can be issued. For example, we could query the system to find all
the traffic accidents in Los Angeles.

VIA has both multicast overhead and inter-gateway communica-
tions overhead. There is a strong relationship between these two
overheads. For example, if each gateway was the root and only
member of its own cluster, then VIA is just a global multicast
scheme. If each gateway is part of a single super collective, then
VIA is simply a peer-to-peer network overlay scheme. The ques-
tion is then, what is the proper balance between multicast and
inter-gateway communications overhead? Clearly, this is depen-
dent on the topology of the clusters as well as the query demand
for certain types of data. If there is a high query demand for a cer-
tain type of information then it may be more efficient to rely on a
specific cluster to manage this information. If the query demand
for the information is low, it may be more efficient to use global
multicast since the overhead in maintaining the cluster for a certain
period of time exceeds a single broadcast to all gateways. We
intend to look at these issues more closely.

In our current implementation, we assume that queries are simply
multicast and individual gateways respond to the client. This
scheme does not scale to large size clusters since the client can eas-
ily be flooded by too many responses. We are investigating a
method in which the probabilistic token consumption scheme used

in the growth operation can be extended to control the flow of
responses to the client. For example, the client can incrementally
request information from the cluster based on the distance of the
gateway from the cluster root. This mechanism would require each
gateway to maintain the state of the query for an individual client.

As in any wide area scheme, scalability is an important concern. In
this paper we assume that individual metadata tags can be treated
independently from others. For a large number of metadata tags
this could result in a high density of links at a single gateway. To
address this issue, we could aggregate metadata tags to reduce the
number of links. However, there is an implicit tension between
aggregating metadata tags to improve the physical topology of the
cluster (i.e. minimize the communication links between gateways)
and having the flexibility to form an efficient filtering hierarchy.
We plan to investigate the optimal partitioning of metadata tags as
well as lossy aggregation methods to address scalability in VIA.

8. ACKNOWLEDGMENTS
The authors would like to thank Murali Mani and Akash Nanavati
for useful discussions regarding filtering trees. We would also like
to thank Ted Kremenek for listening to our arguments. Finally, we
thank the anonymous reviewers for helpful comments regarding
this paper.

9. REFERENCES
[1] W. Adjie-Winoto. A Self-configuring resolver architecture for

resource discovery and routing in device networks. Master's
thesis, Electrical Engineering and Computer Science, Massa-
chusetts Institute of Technology, May, 2000.

[2] W Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley.
The design and implementation of an intentional naming sys-
tem. Operating Systems Review, 35(5):186-201, December,
1999.

[3] C. Bisdikian, A. Edlund, and B. Miller. Bluetooth Revealed:
the insider's guide to an open specification for global wireless
communications. Prentice Hall, 2000.

[4] T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom, D. Stur-
man, and G. Banavar. An efficient multicast protocol for con-
tent-based publish subscribe systems. International
Conference on Distributed Computing, 1999.

[5] Y. Chu, S. Rao, H. Zhang. A Case for End System Multicast.
Performance Evaluation Review, 28(1):1-12, ACM SIGMET-
RICS 2000, June 2000.

[6] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. Katz. An
architecture for a secure service discovery service. Proceed-
ings of the fifth Annual ACM/IEEE International Conference
on mobile computing and networking:24-35, 1999.

[7] W. Keith Edwards. Core Jini. Prentice Hall, 1999.

[8] P. Francis. Yoid: extending the multicast internet architecture.
http://www.aciri.org/yoid/, September 1999.

14

[9] Gnutella. http://gnutella.wego.com.

[10] S. Gribble, M. Welsh, R. von Behren, E. Brewer, D. Culler, N.
Borisov, S. Czerwinski, R. Gummadi, J. Hill, A. Joseph, R.
Katz, Z.M. Mao, S. Ross, and B. Zhao. The Ninja architecture
for robust internet-scale systems and services. Special Issue of
Computer Networks on Pervasive Computing, to appear.

[11] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service
Location Protocol, Version 2. RFC 2608.

[12] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Dif-
fusion: A scalable and robust communications paradigm for
sensor networks. Computer Networks and ISDN Systems,
August, 2000.

[13] JINI(tm) Connection Technology. http://www.sun.com/jini.

[14] J. Lilley. Scalability in an Intentional Naming System. Mas-
ter's thesis, Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, May, 2000.

[15] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd, and
V. Jacobson. Adaptive Web Caching: Towards a new global
caching architecture. Computer Networks and ISDN Systems,
30:2169–2177, November, 1998.

[16] P.V. Mockapetris and K. Dunlap. Development of the Domain
Name System. Proceedings of SIGCOMM'88, August, 1988.

[17] UCLA Parallel Computing Laboratory and R. Meyer. Parsec
User's Manual 1.0. February, 1998. http://may.cs.ucla.edu/
projects/parsec.

[18] S. Ratnasamy, Y. Chawathe, and S. McCanne. A Delivery
based Model for Multicast Protocols using Scattercast.
Unpublished, UC Berkeley, July 1999.

[19] J. Rosenberg, E. Gutman, R. Moats, and H. Schulzrinne.
WASRV Architectural Principles. Internet Draft, Internet
Engineering Task Force, Feb. 1998. Work in progress.

[20] N. Sturtevant, N. Tang, and L. Zhang. The Information Dis-
covery Graph: Towards a Scalable Multimedia Resource
Directory. Proceedings of the IEEE workshop on internet
applications (WIAPP)'99, July, 1999.

[21] The Salutation consortium. http://www.salutation.org.

[22] Universal plug and play. http://www.upnp.org.

15

