RC 22103 (99082) 29 June 2001 Computer Science

|BM Resear ch Report

A Human-Computer Cooper ative System For Effective
High-Dimensional Clustering

Charu C. Aggarwal
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Y orktown Heights, NY 10598

== =— Research Division
Almaden - Austin - Beijing - Haifa - India- T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of 1BM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Y orktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.comv/library/CyberDig.nsf/home .

A Human-Computer Cooperative System For Effective
High-Dimensional Clustering

Charu C. Aggarwad
IBM T. J. Watson Research Center
Y orktown Heights, NY 10598
charu@watson.ibm.com

Abstract

Clustering problems are well known in the database literature for their use in numerous
applications such as customer segmentation, classification and trend analysis. High dimensional
data has always been a challenge for clustering algorithms because of the inherent sparsity of
the points. Recent research results have shown that it is often not meaningful to find clusters in
high dimensional data with traditional measures of proximity: since such measures themselves
become questionable in high dimensionality. Therefore, techniques have recently been proposed
to find clusters in hidden subspaces of the data. However, since the behavior of the data may
vary considerably in different subspaces, it is often difficult to define the notion of a cluster
with the use of simple mathematical formalizations. In fact, the meaningfulness and definition
of acluster is best characterized with the use of human intuition. In this paper, we propose a
system which performs high dimensional clustering by effective cooperation between the human
and the computer. The complex task of cluster creation is accomplished by a combination of
human intuition and the computational support provided by the computer. The result is a
system which leverages the best abilities of both the human and the computer in order to create

very meaningful sets of clustersin high dimensionality.

1 Introduction
The clustering problem is formally defined as follows: Given a set of points in multidimensional

space, find a partition of the points into clusters so that the points within each cluster are similar to
one another. Various distance functions may be used in order to make a quantitative determination
of similarity. In addition, an objective function may be defined with respect to this distance function
in order to measure the overal quality of a partition. The clustering problem is used for similarity
search, customer segmentation, pattern recognition, trend analysis and classification. The method
has been widdly studied by both the satistics and database communities for different domains of
data [10, 11, 13, 18, 22, 23]. Detailed surveys on clustering methods can be found in [16].

Most clustering algorithms do not work efficiently in higher dimensional spaces because of the
inherent sparsity of the data. This problem has been traditionally referred to as the dimensionality
curse. Recent theoretical results [8] have shown that in high dimensional space, the distance between
every pair of pointsis amost the same for a wide variety of data distributions and distance functions.
Under such circumstances, even the meaningfulness of proximity or clustering in high dimensional
data is questionable. An interesting fact about high dimensional data is that even though the data
is sparse in full dimensionality, certain projections of the data reveal clearly separated clusters {3].
Most real data contains different kinds of skews in which some subsets of dimensions are related

[P Xy
X X XX z
X X Q X 0 Z
%
v| ° g x Atribue1 | © T %
x e
P B
x* x x z oz
X x x z
i x" x ¥ Small High-Density Clusters in
” ” - Low to Moderate Density Noise
Autribute 2
Cross Section on X-Y axis Cross Section on X-Z axis
@ &
4 S
R s ,{V?X/ \x\\‘é
x4 X X
X T x XXX Afttribute 3
X2 x RxAx X X g
X
¥ x x z x : x* LLarge Clusters of
X
= XX Low to Moderate Density
X
X - X = Atribute 4

() (d) TNlustration of two disjoint subspaces

Figure 2: Variation in cluster shape, size and

Figure 1: Illustrations of Lower Dimensional
density across data localities and subspaces

Clusters

to one another. Furthermore, these subsets of correlated dimensions may vary with data locality

[2, 9]. Correlated sets of dimensions lead to points getting aligned along arbitrary shapes in lower
dimensional space. Such distributions create clusters in lower dimensional projections and are
referred to as projected clusters. Techniques for finding projected clusters in lower dimensional
spaces have been discussed in [1, 2, 3]. Such clusters may exist either in projections of the original
set of attributes or in arbitrary lower dimensional subspaces. In Figures 1{a) and (b), we have
illustrated a data set in which two clusters P and Q exist in projections of the data which are
parallel to the original set of attributes. In Figures 1{c) and (d), we have illustrated a different case
in which the clusters R and S exist in completely arbitrary projections of the data. We note that
the formalization for finding clusters in projections of the original set of attributes provides greater
interpretability [3], whereas that of picking arbitrary projections is more flexible in discovering
clusters created by inter-attribute correlations [2].

It may often be the case that the density, distribution, and shapes of the clusters may be quite
different in different data localities and subspaces. We have illustrated examples of such cases in
Figure 2. In many cases, a region of low density can be clearly distinguished as a separate cluster in
one subspace, but regions with similar density correspond to noise in another subspace. Often, even
within a subspace, the clusters can be distinguished from one another only on a case-by-case basis.

Such clusters are difficult to isolate using fully automated methods in which simple mathematical

formalizations are used as the only criterion in order to define all clusters. Since there is so much

variation across different data localities and projections, it is difficult to reconcile these differences

without the use of human intervention. At the same time, since there are a very large’ number of
subspaces in the high dimensional case, human involvement necessitates the exploration of only a
small fraction of the subspaces. Thus, computational support is required in order to minimize the
effort in finding clusters in optimally chosen subspaces. Clustering of massive high dimensional data
sets is a problem which requires both computational power and intuitive understanding; therefore,
a natural solution is to divide the clustering task in such a way that each entity performs the
task that it is most well suited to. In the system thus devised, the computer performs the high
dimensional data analysis which is used in order to provide the user with summary feedback; this
feedback is given in a way so that the human is facilitated in his intuitive task of characterizing the
clusters. The result of this cooperative technique is a system which can perform the task of high
dimensional clustering better than either a human or a computer.

In recent years, considerable progress has been made on the incorporation of human interaction
and exploration into the data mining process. Several methods for interactive classification, visu-
alization, and high dimensional data exploration and mining have been developed [6, 7, 15, 19, 24].
Other recent work deals with the problem of incorporating user constraints into various data mining
problems [12, 21]. We especially note the interesting technique in [15], which describes a graphical
tool for users to interact with clusters in lower dimensional views of the data. The job of picking

these views is largely left to the user; a task which becomes more difficult (and time-constrained)

with increasing dimensionality.

In this paper, we describe a human-computer cooperative system for high dimensional clustering.
The difficult process of determining the subspaces in which the clusters are best revealed is per-
formed by the computer, and presented visually to the user. The user then applies his intuitive
judgement in separating out the clusters in this subspace. This process is repeated iteratively until
it is determined that most points have been covered in one or more clusters. The reactions of the
user are utilized in order to determine and quantify the meaningfulness of the final set of clusters
which are highly interpretable in terms of the user-reactions.

This paper is organized as follows. In the remainder of this section, we will introduce the notations
and definitions and a formal description of the contributions. In section 2, we will describe the
interactive system for high dimensional clustering. The performance of the algorithm on several
real data sets is discussed in section 3. Section 4 contains the conclusions and summary.

1.1 Basic Definitions
In order to describe our algorithm further, we shall introduce a few notations and definitions. Let

N denote the total number of data points. Assume that the dimensionality of the overall space
is d. We assume that the data set is denoted by D and the full dimensional space by U. Let

C = {Z7,%3,...,T¢} be the set of points in a cluster.

Let T = (y1,- - ¥d) be a point in the d-dimensional space, and let £ = {& ... &} be a set of | <d

orthonormal vectors in this d-dimensional space. These orthonormal vectors define a subspace.

We note that the set of vectors &7...& may be drawn either from the original set of atrribute
directions, or they may be arbitrary vectors. The advantage of finding clusters in pro jections of

IThere are infinitely many if arbitrary subspaces of the data are picked.

the original attributes is better interpretability, whereas that of choosing arbitrary projections is
greater flexibility. In this paper. we will discuss methods for determining clusters of both kinds.

The projection P(F,£) of point 7 in subspace £ is an I-dimensional point (7-er...7-€). Here
7 -&; denotes the dot-product of 7 and &. Let 77 and 2 be two points in the original d-dimensional
space. Then, the projected distance between the points F7 and 7z in subspace £ is denoted
by Pdist(77,75,£) and is equal to the euclidean distance between the projections P(7,£) and
P(y3,£) in the J-dimensional space represented by £. The subspace momentum of the cluster
C = {71,%3,..., Tt} in subspace £ about the point 7 is denoted by R(C,€ ,7) and is given by the
mean square distance of the points to ¥, when all points in C are projected to the subspace £. Thus,

we have:

t
R(C,£,7) = Y {Pdist(@.5.6)}* /t (1)
i=1

Note that the momentum of the cluster C about a given point 7 is less in a subspace £ than that in
the full dimensional space. When the data is polarized tightly around ¥, this momentum is likely
to be significantly lower. For example, for the case of Figures 1(c) and (d), if the data point 7 was
chosen from the cluster R, then the subspace momentum for the points in R is likely to be low
when projected onto the 2-dimensional plane normal to the arrow illustrating R in the same figure.
In this paper, we will see that such subspaces are very helpful to the user in separating out the
prominent clusters.

1.2 Contributions of this paper

In this paper, we discuss a method for high dimensional clustering which works by effective caop-
eration between the human and the computer. Methods are discussed for finding projections of
the data in which certain clusters are clearly distinguished from the rest of the data. The user
is provided with well chosen visual cross-sections of the data using these projections. He is then
provided the ability to visually isolate the clusters in these cross-sectional views. The views may
be arbitrary projections or be chosen from a combination of the original set of attributes in the
interests of greater interpretability. We note that although these views are 2-dimensional because
of the inherent limits of human visual perception, the final clusters are created by a combination of
different views. Therefore, clusters are discovered in higher dimensional projections as well. Meth-
ods are proposed to use the entire set of user reactions in order to construct a set of clusters which
exist as distinctly separated sets in multiple projections. The meaningfulness of the final clusters is
quantified using the statistical behavior of the number of views in which a set of points is classified
by the user into the same cluster. Thus, even the final effectiveness of clustering is measured purely
from the user perspective. This approach has the added advantage that since the user is directly
involved in the process of visualizing and creating the clusters, he has a clear understanding of the

significance and interpretability of the final set of clusters.

2 The Interactive Clustering Algorithm

We will first provide a high level overview of the clustering algorithm; in a later section, we will
provide a detailed description of the various steps. The idea behind the Interactive Projected
Clustering algorithm (JPCLUS) is to provide the user with a set of meaningful visualizations in

Algorithm IPCLUS(Data Set: D, Minimum Support: s, Number of Polarization Points: k);
begin
{ The Id Vector Z = {I1, ... In} has one entry string
for each record in the database and is initialized to null }
while not(termination_criterion) do
begin
Randomly sample & points y1 ... yx from the database;
£ = ComputePolarizedProjection(D, y1 .. . yx, $);
K = InteractiveClusterSeparation(D, €, y1-.. ¥);
I = UpdateldStrings(Z, K);
end;
(cr...Ck,Q1...Qk) =FinalClusterCreation(L, s);
(IRy,...IRx) =EvaluateMeaningfuiness(Z, cF..cE, Qv...Qxr);
return(IR; ... IRx,CT ...Ck, Q1. Qk);
end;

Figure 3: The IPCLUS Algorithm

lower dimensional projections together with the ability to decide how to separate the clusters.
We assume that as input to the system we provide a user-defined support, which is the minimum
fraction of database points in a cluster for it to be considered statistically significant.

The interactive clustering algorithms works in a series of iterations in each of which a projection
is determined in which there are distinct sets of points which can be clearly distinguished from
one another. We refer to such projections as well polarized. In a well polarized projection, it is
easier for the user to clearly distinguish a set of clusters from the rest of the data. In order to
create the polarizations, we pick a set of k records from the database which are referred to as the
polarization anchors. A subspace of the data is determined such the data is clustered around each of
these polarization anchors. The data is repeatedly sampled for polarization anchors in an iterative
process, so that the most dominant subspace clusters containing these anchors are discovered.

In each iteration, when the projection subspace has been found, kernel density estimation techniques
[20] can be used in order to determine the data density at each point in this projection. A visual
profile of the data density is provided to the user, who uses this aid in order to find the most
intuitive separation of the data into clusters. The cluster separation by the user is then recorded
in the form of a set of N Identity Strings (IdStrings), where N is the total number of records
in the database. These set of identity strings are denoted by Z = (I1... [~). We assume that
the rth string I, corresponds to the rth data record. In the nth iteration, the value of the nth
position in the identity string is recorded. If the rth data point does not belong to any of the
clusters corresponding to the polarization points, then this position value is set at * {don’t care),
otherwise, we set the value to the index of the corresponding cluster in that particular projection.
We will provide a more detailed discussion on this slightly later. As the termination criterion, we
ensure that most points in the data are included in a cluster in some view. Specifically, we define
the coverage of the data set as the average number of views I which a data point occurs in some
cluster. The algorithm is terminated when the average coverage of each data point is above a

user-defined threshold.

Algorithm ComputePolarizedProjection(Data Set: D, Polarization Anchors: i ... yx, Minimum Support: s);

begin
l.=d/2 £ =U;
while /. > 2 do
begin

for each data point ¢ € D and polarization anchor y; compute Pdist(y;, x, £);
Let the set of N - s data points closest to polarization anchor y; be denoted by Mj;
N=MiU...UMy
Let z; be the centroid of M;;
for i = 1 to k let (%;{z;) be computed by subtracting
z; from each point in M;;

Let ¢;; be the covariance between any pair of dimensions (i, 7) for set Uk O, (2,);
Let A be the d * d matzix [ci;] for [i, 7] € [dXd); }
Determine the eigenvectors 27. .. g of matrix A;
£. = Set of I, vectors from &7...%7 with least eignevalues;
. = max{2, [l./2]};

end

return({£.);

end

Figure 4: Computing Polarized Projections

Algorithm InteractiveClusterSeparation{Data Set: D, Projection Subspace: £, Polarization Anchors: y ..

begin
t=1;
while (iflag==true) do
begin
Let the 2-dimensional hyperplane corresponding to the subspace £ be H;
Compute the density profile of the data along the hyperplane H using kernel density estimation;
Display the density profile along the hyperplane #;
User visually sets the value of the noise threshold # or sets iflag=false;
Superpose the density profile with an axis-parallel hyperplane at user-defined noise threshold of 7;
User decides whether current value of noise threshold 7 should be
stored as x; and increments ¢ by 1 in that case;
end
K = All values of noise threshold specified by user = {x1...%:};
return(X);
end

Figure 5: Interactive Separation of Clusters

BTYE

Algorithm UpdateldStrings(IdStrings: I, Density Thresholds: K J;
{ We assume that K contains r noise thresholds {k1...K:} }
begin
fori=1tordo
begin
Find the sets of data points C1 ... Ck, for noise threshold of ki;
{ Detailed Description of the separation process in section 2.3 };
for each data point z do
if = belongs to some cluster (say C,) then
concatenate g at the end of Iy;
else concatenate * at the end of Iy;
end;
end

Figure 6: Updating the Identity Vector from User Interaction

Algorithm FinalCluster Creation(IdStrings: Z, Support: s);

begin
Determine all maximal subpatterns of non-* alphabets with support at least s;
{ We assume that there are a total of K itemsets (1 ... Qx at support of 5; }
Let CF be the set of points supported by the itemset o 5
return{C¥ ...CE, Q1 ... QK);

end;

Figure 7: Creation of final set of clusters

Algorithm EvaluateMeaningfulness(1dStrings: T, Clusters: CF...CE, Cluster Templates: Q:
begin
for i=1to K do
begin
Let S = (; be the itemset corresponding to cluster ¢t
Let the [items in S be denoted by {ms...mi};
for each j € {1,...1} set 3; to the support of m;;
Set @ to the fractional support of cluster cr:
IR; =8/B1-Bz... By
end;
return(IRi1,... IRk}
end

Figure 8: Evaluation of cluster meaningfulness

v Qi s

1

. =
- . a - » -
o9 . ni * L
. v s
. .
. * . - -y
. . s % . -
al o LT, ‘. oaf .. © o e Mk i
. . L] - . . . aea” ™ *a
L e . . ", .
08 - » P " P .
S, e . LT L] L 0st * . *
- . . L L h"mPo'n - -
05+ .. ?‘3",' ':an . . " . T "
- . e AT “es .
. LI D4 - L . LI
. * . "ot -.': hd ' *e
. aw - . o -+ -
- - ool ooy
- - . L s . - . b
. . . - . . -
G2r . . ‘. . . "
.
ok
- - . L]
(1S * * . .
. - L4 L]
a ! b L L] L L L " _ 02 L 1 L I '
n 0.1 0.2 03 04 0.5 08 o7 03 09 1 =P a 0.2 0.4 0& 08 1

Figure 9: Determination of a well polarized pro- Figure 10: Determination of a well Polarized
jection (one polarization point) Projection (two polarization points)

At this stage all the user responses have been encoded in the identity strings which are postprocessed
in order to create the final set of clusters. The final quality of the clustering is guantified in terms
of the consistency of the user behavior across different projections. The overall framework of the
algorithm is discussed in Figure 3. We note that the algorithm can be divided into two parts;
the first part is iterative which involves the repeated user-interaction; the later step involves the
determination of the final clusters and the quantification of the meaningfulness of these clusters. In
the next few sections, we will describe the various components of the algorithm in detail, including
the following iterative steps:

(1) Determination of subspaces in which the data is well polarized.

(2) User Interaction in order to visually separate the clusters in different views.

(3) Storing the user interactions in the form of IdStrings;

After the description of the iterative steps, we will also explain the final creation of the clusters
from user responses and the quantification of meaningfulness from these responses.

5.1 Determination of Polarization Subspaces

The procedure for determination of the polarization step is described in the ComputePolarizedPro-
jection procedure of Figure 4. The motivation of the procedure is to find sets of projections in which
the data is well clustered and can be perceived in a clear visual way by the user. To this effect, in
each iteration we sample a small number & of points from the database. The points are denoted
.. %k, and are the polarization points around which we would like to find clusters. Since

by 41
many of them may lie in a well defined cluster in a carefully chosen

y1 ...y are sampled randomly,
projection of the data. If a small number of polarization points are chosen, then it is reasonable

that a projection can be found in which the data shows distinct clusters containing a majority of
the polarization points. Of course, clusters may also exist in that projection which do not contain
any of the polarization points. However, once a good projection is determined, all relevant clusters
are used by the algorithm.

Tt is an interesting problem to find the projection subspace £ in which the data shows this polarized

- . i .
L] . . - - L4 -
. . * . ! - » . . .
nar . . * . 08l " . - * Polarizalion Poim
- - ' e R . . -
e - LI
0sF e ave *e " o8k . . .
. "Pnﬁﬂzaid‘PM" * ¢
07+ . . ® - - - 0_7—' . . . - -. - - - .
. . P Tt e ‘e d« ot
08 . . 06w ..
. ' a e :-." e, . . * Priagzation Pant. -- . .
05| * . bl * * o5 - .. vt Lot .- .
vl LN o Ju ., . * oap : et ., I
03f . '. “-. .:°' '. + Polasization Poirt . 03" * . e . - «
o e C : S
e S LI . . " .
o1 s e ., b ot * . . . 0
O ST ThZ oa Ba 05 08 07 08 28 % iz s a1 05 06 or 08 08 ¥
Figure 11: Partially Polarized Projection Figure 12: Poorly Polarized Projection

behavior. In Figures 9, 10, 11 and 12, we have illustrated a number of different possibilities for the
relationship between the data and chosen polarization points in different projections. In Figures 9
and 10 the data is nicely separated out into different clusters using one and two polarization points
respectively. On the other hand, in Figure 12, the projection is poorly chosen; so the data does
not show clustered behavior around any polarization point. We note that it is often possible that
no projection may contain well defined clusters around the data points which have been picked for
the purpose of polarization. The larger the number of polarization points, the more likely that
such a situation may occur. We have illustrated an example in Figure 11 in which there are three
polarization points, but there are well defined clusters in the vicinity of only two points. In general,

if high dimensional data shows projected clusters of the kind illustrated in Figure 1, then it is

expected that most views will reveal only one or two of the clusters effectively as illustrated in
Figure 9. This tends to suggest that it may be valuable to use only a small number of polarization
points. We emphasize that the main purpose of randomly sampling the data for polarization
points is to discover projected clusters (if any) which contain these points. If enough number of

points are sampled, it is expected that the user would have the opportunity to visualize the most

prominent projected clusters in the data. Furthermore, even if some clearly separated clusters have

low density in all possible projections, the corresponding subspaces would still be discovered when

a polarization point from the cluster is sampled.

In order to actually find the projection subspace we use an iterative process in which we start off
with the universal d-dimensional subspace . In each iteration, we maintain a current subspace
£, of dimensionality I, which is gradually reduced to a 2-dimensional projection. In each iteration,
we find the set of data points M; which is closest to the polarization anchor y; based on the
distance measurements in the subspace £.. We assume that the centroid of M; is z;. The number
of data points in each subset M; is determined by the user-defined threshold s. In turn, the data
points in U%_; M; are used to determine the subspace in which these points form well distinguished
clusters around the polarization points. This can be done only be finding the subspace in which
the momentumn of these sets about their centroids is minimal. Some principal component analysis

techniques exist [17] which can find the optimum subspace in which the momentum of a single set
of points about their centroid is minimal. However, here we have k sets M ... My, and we need to
minimize Zgzl R(Mg, £, z;) over all subspaces £. Therefore, we will use a simple transformation
trick in order to use the method in [17].

Let O(z) be the set of points obtained by subtracting z from each point in M;. Thus, each of
the sets O(z;) is now centered at the origin 0. Since this transformation is a simple translation,
the covariance and momentum about the centroid is preserved by the transformation. Therefore,
we can show that R(M;, &, z) = R(Oi(z),£,0). But we also know that Yk R(O;i(2),&,0) =
R(UE_, 0;(%), €, 0). Now all we need to do is to use the method of [17] in order to find the subspace

in which the momentum of the single set of points UE_,0;(z;) about their centroid is minimal.

In order to do, we first determine the covariance matrix A of the data points in Ub_, 0;(z). Specif-
ically, the covariance matrix is a d * d matrix, in which the entry (3, §) is equal to the covariance
between the dimensions i and j of the points in U, O0;(z;). This matrix is positive semi-definite
and can be diagonalized in order to determine a set of eigenvectors which will be orthogonal to one
another. It has been shown in [17] that the eigenvectors carresponding to the smallest eigenvalues
define the subspace with the least momentum about the centroid. Therefore, the subspace £, cor-
responds to the eigenvectors for the I, smallest eigenvalues. Correspondingly, this means that the
data points in M; are likely to be clusters in the projection &..

The process of determining the data points A and the subspace £, of dimensionality . is con-
tinued iteratively while reducing the value of I, by a factor of 2 in each iteration, until the final
2-dimensional projection & is determined. We note that the data set A~ and the subspace &, are
alternately determined from one another in this iterative process. The motivation behind this iter-
ative approach is the gradual refinement of the projection subspace and corresponding cluster, so
that the sparse subspaces are gradually eliminated. As our empirical section will show, this results
in well distinguished clustets, many of which are centered at the polarization points. We have so far
discussed the case when the data is visualized in arbitrary projections of the data. In some cases,
it may also be desirable to find the clusters in combinations of the original set of attributes in the
interests of interpretability. In such cases, we simply replace the eigenvectors with the original axis-
directions in all the above iterative calculations for choosing the directions of greatest polarization.

2.2 User Interaction for Creation of Different Clusters
The algorithm for interactive cluster separation is described in Figure 5. In order to facilitate
user-interaction, effective ways must be provided to understand and visualize the clusters in each

projection. A convenient way of doing so is to provide the user with an idea of which regions of
the data are dense or sparsely populated in a given projection. Density based methods [10, 22] are
quite useful in order to determine the variations in data behavior. To this effect, we use the method
of kernel density estimation [20]. In this technique, in order to calculate the density estimate at z,

we sum up the kernel function values for each data point z;:

10

-
Sen.

Figure 13: A plot of the density profile (Well ~Figure 14: Density Profile (Poorly Polarized
Polarized Projection) Projection)

: \
il

= W
i \’i;m'

u’ﬂgy e

Figure 15: Density Based Cluster Separation Figure 16: Density Based Cluster Separation
(Two Clusters with 7 = 20) (Three Clusters with 5 = 40)

1

Definition 2.1 Given the data points x1 ...z, the kernel density estimate at x is given by:

N
Fl@)=1/N -3 Kulz — i) (2)

i=1

Here K}, is a smooth, unimodal density function which is dependent on the smoothing parameter h.

A widely used value of the kernel is the gaussian function:
Ky (z —) = (1/v/Z7 - h) - e~ =)/ (2h) (3)

For N data points with variance o2, the smoothing parameter h is chosen to be 1.06 -0 - N ~1/5 in
accordance with the Silverman approximation rule [20].

Since the density at every point in the continuous space cannot be calculated, we pick a set of p+p
grid-points at which the density of the data is estimated. The density values at these grid points
are used in order to create surface plot of the data density. An example of such a surface plot is
illustrated in Figure 13. Since clusters correspond to dense regions in the data, they are represented
by peaks in the density profile. Similarly, the regions which separate out the different clusters have
low density values and are represented by valleys in the density profile.

In order to actually separate out the clusters, the user can visually specify density value thresholds
which correspond to noise level at which clusters can be separated from one another. Specifically,
a cluster may be defined to be a connected region in the space with density above a certain noise
threshold %, which is specified by the user. In order to provide the visual perspective of this
separation, a hyperplane at a density value of can be superposed on the density profile. We shall
refer to this as the density separator plane. The intersection between the separator plane and the
density profile creates a number of connected regions at which the density is above the specified
noise threshold. The contours of the intersections between the separator planes and the density
profiles are also the contours of the clusters in the data. All the data points which lie within a
contour correspond to the same cluster in a given projection. For example, in Figure 15, we have
illustrated a case in which by specifying the noise threshold 5 = 20, we find two clusters above
the noise threshold. Note that the resulting clusters may be of arbitrary shape. Furthermore, by
specifying different values of the noise threshold 5 one may have different number, sizes and shapes
of clusters. For example, in Figure 15, there are two clusters at the specified noise threshold of 20,
whereas in Figure 16, at the higher noise threshold of 40, there are three clusters. If we increased
the noise threshold further, then one or more of the clusters may not be revealed at all. ‘We note
that both Figures 15 and 16 are reasonable separations of the data into clusters of different levels
of granularity. This is another interesting aspect of the cluster creation process in which it is often
difficult to settle on the use of single density, since clusters in different localities will have different
densities. In order to handle this, we allow the user the flexibility to specify multiple values of n
in a single projection. The smaller values of the density will reveal even the low density clusters
in the data but will not reveal the finer separations among different clusters. The larger values of
the density will reveal the fine grained separations into different clusters, but will not reveal the

low density clusters. We assume that the final set of densities picked by the user is denoted by

12

K = K1 Insome projections, the data may not be amenable to clustering. An example of such
a projection is illustrated in Figure 14. In such cases, the user may choose not to specify any value
of the noise threshold #, and the set X containing the noise threshold is null. This will not happen
too often if the subspace determination procedure of the previous section is effective in finding
well polarized projections. We note that the number of different separations r may depend upon
the nature of a given projection and a user’s understanding of the data behavior. Such intuition
cannot be matched by any fully automated system effectively: this is an example of the criticality
of the user in the cooperative process of high dimensional clustering. We note that in the Figures
15 and 16, the polarization points occur at the peaks of local optima in the density profiles. It is
typical that polarization points occur at high elevations in the density profile, because the subspace
determination algorithm actively tries to finds a view in which the sampled polarization points
oceur in the interior of some cluster. We note that the specification of the noise threshold n need
not be done directly by value; rather the density separator hyperplane can be visually superposed
on the density profile with the help of a mouse.

2.3 Updating the Identity Strings of the Different Data Points

The procedure for updating the IdSirings is illustrated in Pigure 6. The behavior of the user in a
given projection is used in order to update the set of IdStrings 1. The first step is the determination
of the contours in the different clusters. Since the data densities have been calculated using a set
of p * p grid points, we can use them in order to obtain an approximation of the cluster contours.
The first step is to find all of the elementary grid squares which lie approximately within a cluster
contour. A grid square is assumed to approximately lie within a cluster contour, if at least three
of its corners have a density value above the user-specified noise threshold k. We refer to such grid
squares as dense. Once we have determined all the dense grid squares, we need to consolidate them
into connected components. A variety of graph search algorithms are available for this purpose. In
arder to use these techniques we assume that each grid square is a node, and they are connected
by an edge if they share a common side. Now, the simple breadth first search technique discussed
in [3] may be used in order to find all the connected components. For each of the clusters, we
determine the data points which lie in the corresponding grid squares. These are the clusters which
the user has separated out in that particular pro jection.

After all the clusters have been found, as assign each of them an Id number. (The Ids of the
om 1 through the total number of clusters which have been determined in
Tf a data point lies inside a cluster, then its identity is equal to that of
«¥7 We concatenate the identity of each data point to

clusters are numbered fr
that particular projection.)

the corresponding cluster, otherwise it is
the corresponding TdString. We note that for each different noise threshold specified by the user

in any projection, we concatenate exactly one element to the end of each I1dString. Therefore, at

the end of the process, the length of each string is equal to the total number of acceptable cluster
separations specified by the user.

Once the interactive phase has been terminated by multiple iterations of subspace determination
and user interaction, these JdStrings are used to create the final set of clusters.

13

2.4 Final Creation of Clusters

The final step of creation of the clusters is denoted by FinalClusterCreation, and is described in
Figure 7. We note that even though a set of points may be perceived as a cluster by the user
in a given projection, they may be separated out into different clusters in a different projection.
Therefore, in order to find the final set of clusters we would like to isolate sets of points which have
been classified by the user into the same projection in as many views as possible. At the same
time, we would like to guarantee that a cluster contains at least the minimum fractional support
s. Since the user characterization of clusters is captured with the set of identity strings in Z, we

need to find subpatterns in these strings which occur throughout the data.

Consider an IdString I, and pattern S of the same length I. A pattern S is a subpattern of I if
and only if for each positioni € {1,... I} in S which is not *, the ith position in I also has the same
value. Thus, the string *2*5%** is a subpattern of the string ¥2*5*4*, but it is not a subpattern of
the string ¥2*3*4*. The support of the pattern S is equal to the percentage of the IdStrings in 7,
for which the string S is a subpattern. The larger the number of fixed positions in S, the smaller

the support of the string. We note that the minimum support s provided by the user 15 a measure

of the minimum number of data points which a cluster must contain for it to be considered useful.

Therefore we find all the mazimal subpatterns which have support greater than the user defined
threshold s. We also refer to such subpatterns as itemsets. Methods for finding such itemsets have
Let us denote the final patterns found by Q,...Qk. Note that each of

been proposed? in [4].
ta points Cf whose IdStrings are supersets of

these patterns Q; can be mapped onto all the da
these subpatterns. We shall refer to the subpattern @; for cluster C;F as the cluster template. A
position value m’ on this template ; which is not * (a fixed position) corresponds to a pro jection
in which the points of CF belong to cluster id m' separated out by the user in that view. ‘We note
that when the projections are chosen from the original set of dimensions, it is possible to interpret
the clusters using the cluster template. This is because the cluster template @; of the cluster CI-F
provides the different combinations of dimensions in which the user always classified all of these
points to belong to the same cluster. This provides an intuitive interpretation of how the final
clusters relate both to the attributes in the data and the history of user interaction. The subspace
in which the set of points Cf is a cluster corresponds to the union of the all the 2-dimensional

subspaces for fixed positions in Q;. It now remains to discuss how the meaningfulness of each of

these clusters is quantified.

2.5 Quantification of Meaningfulness by User Responses
Since the final clusters are created by determination of the sets of points which occur together

as clusters in multiple projections, it is useful to evaluate the consistency of the user behavior

across these different views in order to evaluate meaningfulness. In order to do so, we calculate the
interest ratios of the patterns which define the clusters. The interest ratio of a pattern is the ratio
of its actual support to the expected support based on the assumption of statistical independence.
Let S = my...m be a given cluster template, created by the I iterations. Let & be the fraction
of database points supported by S. Let G; be the fractional support of the number of points

2Note that the method in [4] is for binary market basket data. The above string problem can be transformed to
the binary market basket problem by defining an item for each position-value pair.

14

Data Set Polarization | Views | Avg. Interest Cluster Class Chuster Class
Purity (IPCLUS) | Purity (ORCLUS)

(Dimensionality) Points Ratio
1 22 71.4 86.3%
Ionosphere (34) 2 24 79.1 85.7% 73.1%
3 29 64.3 82.3%
1 21 63.7 75.3%
Segmentation(19) 2 20 66.9 77.8% 51.2%
3 27 56.7 70.1%

Table 1: Statistics of Cooperative Clustering for some Real Data Sets

Data Set TPCLUS (Cluster [PCLUS? (Cluster | ORCLUS (Cluster
Class Purity) Class Purity) Class Purity)
Ionosphere 86.3% 81.7% 73.1%
Segmentation 75.3% 63.8% 51.2%

Table 2: Axis-Parallel versus Arbitrary Projections

corresponding to m;. (Specifically, 83; is the fraction of points that belong to cluster Id m; for the
visual projection 5. When m; is “*”, then the value of §; is 1.) Then the interest ratio I R(S) of

the cluster template S is the ratio of the support of template S to its support assuming statistical

independence.

IR(S)=0/(61- B2 B3..- B) (4)
When the user behavior does not show any meaningful correlation across the different projections,
the interest ratio for the clusters discovered will be close to one., An interest ratio larger than 1
is indicative of a cluster which reveals significantly greater affinity among the different data points
based on the user behavior. This effectively means that the set of points occur together in one
cluster based on the user observations in a larger number of projections than can be justified by
random or statistically independent behavior across the different views. The overall procedure for
quantification of meaningfulness is illustrated in Figure 8. Thus, the IPCLUS algorithm finally
returns all the clusters, their templates {(which provide interpretability) and the interest ratios
(which quantify meaningfulness).
3 Empirical Results
In this section, we will illustrate the behavior of the IPCLUS algorithm with a variety of real
data sets. All the data sets used in this paper were obtained from the UCI machine learning®
repository. Our aim in this section is to provide a flavor of how the cooperative process for high
dimensional clustering works both in terms of the kind of projections discovered and the final

quality of clustering.
Unless otherwise mentioned, for cach data set that we tested, support of a cluster was set at 5%.
We ran the algorithm to termination, until the average coverage of each point in the data set

was 10. The first data set on which we tested the algorithm was the ionosphere data set. This

http:/ /www.cs.uci.edu/ miearn

15

Density Estimate

B0

Figure 17: Tonosphere Data Set (Example Pro- Figure 18: Tonosphere Data Set (Example Pro-
jection with Noise Threshold 5 = 27) jection with Noise Threshold n = 13.5)

Figure 19: Example Projection (Ionosphere Figure 20: Example Projection (Ionosphere
Data Set, two polarization points) Data Set, three polarization points)

Donsity Esfimate

* -0 200

Figure 21: Example Projection (Segmentation Figure 22: Example Projection (Segmentation
Data Set) Data Set)

16

data set contained 34 dimensions corresponding to radar returns from the atmosphere. The radar
returns were classified as “good” or “bad” depending upon whether or not they showed some kind
of structure in the jonosphere. We tested the algorithm by using one, two and three polarization
points. We will first discuss the case when one polarization point was used. In order to achieve
the termination criterion of an average coverage of 10, the user was presented about 22 different
views of the data, since each view covered between 10 — 75% of the data points. We found that
the subspace determination procedure of our algorithm always determined projections in which
the data was well polarized. An example of the density profile in such a projection is illustrated
in Figure 17. A number of natural clusters are revealed in the data, one of which contains the
polarization point. We have used two different noise thresholds (n = 27 and n = 13.5 - Figures 17
and 18) in order to illustrate the different kinds of clusters found. In the former case, two high
density clusters are revealed, whereas one low density cluster is ignored. In the latter case, the low
density cluster is found, but the two high density clusters are treated like a single cluster. Thus,
in many projections, we were able to choose multiple separations of points into clusters each of
which provided a different understanding of the clusters in the data. The total length of the id
strings was 29, which is different from the number of views (22) since multiple density separators
were used for some of the views. When the cluster templates were determined at the user defined
support of 5%, the average interest ratio was found to 71.4, which is significantly greater than 1.
In order to provide an intuitive understanding of the actual quality of the clusters found, we use

a measure which we refer to as the cluster purity. Each record in the data sets had a class label
was associated with it. The cluster purity was defined as the average percentage of the dominant
class label in each cluster. Since the class label was not used in the interactive clustering process,
this provides an intuitive idea of the final quality of the clusters. For the case of the ionosphere
data set, the average cluster purity was found to 86.3%. As a baseline, we have also illustrated the

cluster class purity from using the ORCLUS method [2], whose effectiveness is significantly lower.
The summary results are indicated in Table 1.

We also tested the algorithm when more than one polarization point was used. Examples of sample
projections on the ionosphere data set with two and three polarization points are illustrated in
Figures 19 and 20 respectively. The interactive experience and final result for the case of two
polarization points was similar to the case when one point was used. On the other hand, when
three polarization points were used the algorithm did not work quite as effectively, and the quality
degraded further with increase in the number of polarization points.

In the Table 1, we have also illustrated the results from the segmentation data set. Examples of

some sample density profiles with the use of one polarization point are illustrated in Figures 21 and

22 respectively. Again we find that the use of one or two polarization points are more effective than
the use of three polarization points. In fact our common experience with a wide variety of data
sets was that the best results were obtained with one or two polarization points. This is because in
these cases, the subspace determination subroutine is able to optimize the projection which reveals
the cluster to which the polarization points belong. When there are many polarization points, the
subspace determination procedure tries to find a projection in which all these points lie in a distinct

17

cluster. This may sometimes be difficult; consequently a projection is often chosen which does not
provide the user a very clear view of the clusters in the data. For example, in Figure 20, even
though there are three polarization points, only two of them lie in a distinct cluster. The lower
quality of the projections with the use of more than two polarization points also explains the large
number of views (see Table 1) that a user has to browse through to termination; many views either
have to be discarded or do not contain a significant percentage of clustered data. With the use of
one polarization point, at least one distinct cluster (containing the polarization point) is usually
revealed; typically additional clusters may also be revealed. Thus, when a large enough number of
views have been browsed through, most of the clusters have already been revealed from the data.

The results above have been presented for the case when arbitrary projections of the data were
used in order to determine the polarization subspaces. We also tested the technique by using the
axis-parallel version (denoted by IPCLUS*) of the algorithm. The results are indicated in Table
9 for the use of one polarization point. It is clear that arbitrary projections are more effective
than the axis-parallel version in obtaining higher cluster class purity. On the other hand, the axis-
parallel version of the IPCLUS algorithm was better than the fully automated ORCLUS algorithm.
This conclusively shows the advantage of a human-computer cooperative approach, since even the
axis-parallel version of the IPCLUS algorithm performs better than the fully automated (arbitrary
projection based) ORCLUS algorithm.

3.1 When meaningful clusters are absent from the data...

Qince the focus of the method is to develop clusters which are well discriminated from one another
in several combinations of dimensions, it is an interesting question as to how the algorithm behaves
when the data itself is poorly behaved. The techniques of this paper use the fact that even though
high dimensional data is sparse, there are often considerable correlations in lower dimensional
projections which can be exploited in order to create clusters which are meaningful to a user.
Thus, even though the overall implicit dimensionality of the data set is high, the local implicit
dimensionality is low in the neighborhood of the polarization point. Our experiments with real
data sets tend to show this behavior. Some data sets may not even satisfy this weak assumption.
Such data sets correspond to those in which the local implicit dimensionality is high for each data
point. An example of such a data set is the uniformly distributed data set. If the data is not
amenable to clustering, then it is desirable for the IPCLUS algorithm to provide some indication

of this fact.

We applied the IPCLUS algorithm on a uniformly distributed data set with N = 5000 data points.
We used a support of s = 5% and one polarization point. An immediate indication of the poor
behavior of the data is provided by the density profiles in which the clusters were not well dis-
criminated from one another. An example of such a density profile in a projection with this data
is illustrated in Figure 14. We note that even in the uniformly distributed case, the subspace de-
termination algorithm was able to find a projection in which there is some level of discrimination
because of the local variations in data density. Therefore, in a particularly well chosen projection
it is still possible to find some clusters. However, the clusters found in a given projection have

very little correlation with the clusters determined in a different projection. This will be detected

18

by the final phase of the algorithm in which we find cluster templates. The algorithm is usually
unable to find a cluster template with as few as 2 fixed positions from different views which satisfy
the user-defined support threshold. This corresponds to the fact that the user-behavior in two
distinct views never classified any set of points (with the required support) into the same cluster.
By lowering the support further, we were able to force the algorithm to find some cluster templates
with the required support. Typically, when the support was gradually lowered, the algorithm sud-
denly found a very large number of cluster templates, all of which had an interest ratio which was
very close to one. This was evidence of the fact that there are no meaningful clusters in this high
dimensional data set. Thus, when the data itself is poorly behaved, the IPCLUS algorithm is able
to effectively diagnose this and provide the user with a better understanding of the data.

4 Conclusions and Summary

High dimensional clustering is a very challenging problem because of the sparsity of the data. In
this paper we discussed the problem of discovering meaningful clusters in high dimensional space
with the utilization of a cooperative process between the human and the computer. The clusters are
discovered in different subspaces with the use of polarization points and a visual profile of the data
is provided to the user. This visual profile may be used in order separate out the different clusters
with the use of human intervention. The attraction behind such an interactive process is that the
problem of high dimensional clustering requires both the computational power of a computer and
the intuition of a human; consequently a system which allocates the tasks according to the abilities

of each entity is more effective than a fully automated process.

References
[1] C. C. Aggarwal, C. Procopiuc, J. Wolf, P. S. Yu, J.-S. Park. Fast algorithms for projected

clustering. SIGMOD Conference , 1999.

[2] C.C. Aggarwal, P. S. Yu. Finding Generalized Projected Clusters in High Dimensional Spaces.
SIGMOD Conference , 2000.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan. Automatic Subspace Clustering of High
Dimensional Data for Data Mining Applications. SIGMOD Conference , 1998.

[4] R. Agrawal, R. Srikant. Fast Algorithms for Mining Association Rules in Large Databases.
VLDB Conference Proceedings, 1994.

[5] A. V. Aho, J. Hoperoft, J. D. Ullman. Data Structures and Algorithms. Addison-Wesley Pub-
lishing Company, 1987.

[6] M. Ankerst, C. Elsen, M. Ester, H.-P. Kriegel. Visual Classification: An Interactive Approach
to Decision Tree Construction. KDD Conference Proceedings, 1999.

[7] M. Ankerst, M. Ester, H.-P. Kriegel. Towards an Effective Cooperation of the User and the
Computer for Classification. KDD Conference Proceedings, 2000.

[8] K. Beyer, R. Ramakrishnan, U. Shaft, J. Goldstein. When is nearest neighbor meaningful?
ICDT Conference Proceedings, 1999.

19

[9] K. Chakrabarti, S. Mehrotra. Local Dimensionality Reduction: A New Approach to Indexing
High Dimensional Spaces. VLDB Conference Proceedings, 2000.

[10] M. Ester, H.-P. Kriegel, J. Sander, X. Xu. A Density Based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise. KDD Conference, 1996.

[11] S. Guha, R. Rastogi, K. Shim. CURE: An Efficient Clustering Algorithm for Large Databases.
ACM SIGMOD Conference Proceedings, 1998.

[12] J. Han, L. Lakshmanan, R. Ng. Constraint Based Multidimensional Data Mining. IJEEE Com-
puter, Vol. 32, no. 8, 1999, pp. 46-50.

[13] A. Hinneburg, D. A. Keim. Optimal Grid-Clustering: Towards Breaking the Curse of Dimen-
sionality in High-Dimensional Clustering. VLDB Conference Proceedings, 1999.

[14] A. Hinneburg, C. C. Aggarwal, D. A. Keim. What is the nearest neighbor in high dimensional
spaces? VLDB Conference Proceedings, 2000.

[15] A.Hinneburg, D. A. Keim, M. Wawryniuk. HD-Eye: Visual Mining of High Dimensional Data.
IEEE Computer Graphics and Applications, 19(5), pages 22-31, 1999.

[16] A. Jain, R. Dubes. Algorithms for Clustering Data, Prentice Hall, New Jersey, 1998.

[17] 1. T. Jolliffe. Principal Component Analysis, Springer-Verlag, New York, 1986.
[18] R. Ng, J. Han. Efficient and Effective Clustering Methods for Spatial Data Mining, VLDB
Conference Proceedings, 1994.

[19] S. Sarawagi. User-Adaptive Exploration of Multidimensional Data. VLDB Conference Pro-
ceedings, pp 307-316, 2000.

[20] B. W. Silverman. Density Estimation for Statistics and Data Analysis, Chapman and Hall,
1986.

[21] A. Tung, J. Han, L. Lakshmanan, R. Ng. Constraint Based Clustering in Large Databases.
ICDT Conference Proceedings, 2001.

[22] X. Xu, M. Ester, H.-P. Kriegel, J. Sander. A Distribution-Based Clustering Algorithm for
Mining in Large Spatial Databases. ICDE Conference Proceedings, 1998.

[23] T. Zhang, R. Ramakrishnan, M. Livny. BIRCH: An Efficient Data Clustering Method for Very
Large Databases. ACM SIGMOD Conference Proceedings, 1996.

[24] L. Yang. Tuteractive Exploration of Very Large Relational Databases through 3D dynamic
projections. ACM SIGKDD Conference Proceedings, 2000.

20

