
RC 22104 (99084) June 29 2001 Computer Science

IBM Research Report

 Issues for Context for Ubiquitous Computing

Maria Ebling, Guerney D.H. Hunt, Hui Lei
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1

Issues for Context Services for Pervasive Computing

Maria R. Ebling, Guerney D. H. Hunt and Hui Lei
IBM T. J. Watson Research Center

{ebling,gdhh,hlei}@us.ibm.com

Abstract

Context-aware computing has the potential to
greatly alleviate the human attention bottleneck.
To facilitate the development of context-aware
applications, we envision a context service that
provides standardized support for applications. It
supports both synchronous queries and asyn-
chronous event notifications. It also addresses
privacy concerns by providing controls that allow
people to limit the release of their context
information.

Introduction

Just as the words or passage that surround a
discourse can throw light on the meaning of that
discourse, the environment in which a compu-
tation takes place can throw light on its meaning
or on the intentions and needs of the user that
computation is supporting. We call the environ-
ment in which a computation takes place its
context. We define context in the broadest
possible sense. A context may either refer to
aspects of the physical world or to conditions and
activities in the virtual world. Further, context
information can be either transient or persistent.
Transient context reflects the environment at a
single point of time and persistent context is a
history of transient context.

Context awareness enables a new class of
applications in pervasive computing. These
applications can help users navigate unfamiliar
territory, find nearby restaurants, receive mess-
ages in the most useful and least intrusive manner,
get extra sleep when meetings are cancelled, find
people with similar interests, and the like. The use
of context information in these applications
reduces the amount of human attention an
application needs to service the user’s requests.

Because human attention is the ultimate bottle-
neck in computing, context-aware applications
offer an opportunity to increase human produc-
tivity in substantial ways.

Context information, by its nature, can contain
very private and personal data. For context
applications and services to gain widespread
acceptance and achieve their goals of reducing the
need for human attention, they must address the
privacy issues involved and offer protection for
the users they monitor.

To date, there has been very little infrastructural
support for context-aware applications. Existing
applications have been written in an ad hoc
manner and are limited in the kinds of context that
they use. In fact, most existing applications
consider only location awareness. New applica-
tions are hard to develop, with significant
programming effort spent on deriving and
managing context data. In addition, little to no
attention has been paid to giving users control
over the release of their own context information.

We believe that making context services an
integral part of the pervasive computing infra-
structure can substantially advance the current
state of the art. Applications could then interact
with context services to obtain the information
they desire without worrying about the details of
context management. Further, the costs associated
with introducing new context sources can be
amortized across many applications.

We are developing and experimenting with a
context service, dubbed Owl, that supports
context-aware applications. Its extensible and
flexible architecture accommodates heterogeneous
context sources. It offers a programming model
that allows for both synchronous queries and
asynchronous event notifications. It protects

2

people’s privacy though the use of a role-based
access control (RBAC) mechanism.

Uses of Context

Context information may refer either to aspects of
the physical world or to conditions and activities
in the virtual world. It should support personalized
access by delivering the right information to the
right place at the right time. It should enable
personalized content to be delivered to a smart TV
and intelligent sorting of incoming messages. It
should allow systems to infer a user’s intention
and thus to reduce user distraction. For example, a
query for restaurants should consider factors such
as location as well as food preferences and current
wait time of the candidate restaurants. Because
pervasive computing devices are, in general,
resource constrained, context awareness should
enable applications to extend the capabilities of
these devices as well as their precious resources
by using those available in the local environment.
Context awareness should allow users to take
advantage of unexpected opportunities. For
example, a user could be informed that they will
be passing a gas station with prices significantly
less expensive than their usual station. Finally,
context awareness will allow information to be
prefetched in anticipation of future contexts,
providing better performance and availability. For
example, because applications can gain access to
calendar and location information, they can
prefetch maps, restaurant information, and local
weather/traffic conditions before they are actually
needed.

Terminology

Previous work defines the notion of sensed and
derived context [Gray2001,Gellersen2000] as well
as the idea of physical and logical sensors
[Gellersen2000]. Our definition of context
includes these ideas, but broadens them to include
information beyond the present point in time. Our
reasoning is based upon the observation that
humans are creatures of habit. Therefore,
knowledge of past context information may allow
us to infer present (or future) behavior in the
absence of current information. Thus, our context
service can maintain a history of context

information or can use historical data maintained
by a sensor.

For example, the system might detect that the
receiver located in my office is currently receiving
the signal from my active badge. From this
information, it might derive that my present
location is my office. From an extended history of
such information, the system might also derive
that I am usually in my office at 9:00am on
weekdays.

Owl collects and maintains context information
from a variety of context sources about numerous
subjects. Clients request context information
about one or more subjects. Subjects of Owl may
be users or objects (e.g., equipment or packages).
Clients of Owl may be other users (e.g., a
secretary, colleague, or spouse) or other programs
(e.g., a service or application). Clients may query
for the current context information or may submit
a request to be notified when a particular
condition is met. The controller of context
information may be the subject about whom the
information pertains or it may be the owner of the
object about which the information pertains.

Design Issues

Several considerations influenced our design.
Among these were the need to preserve the
subject’s privacy to the greatest extent possible,
the need to scale to a potentially large number of
subjects and clients, and the need to extend the
system to new sources of context information.
These and other factors we considered are
discussed in detail in the sections that follow.

Privacy

Any service that maintains context information
knows much about its subject. Our instincts
impressed upon us the need to protect the privacy
of context subjects to the greatest possible extent.
People’s reaction [Coy1992] to previous research
in this area as well as emerging standards [P3P] to
protect privacy reinforced these views.

Our privacy protection mechanism is based upon
Role Based Access Control (RBAC)

3

[Sandhu1996]. We assume a closed system: that
the identity of all context clients is known to the
system. We have chosen RBAC because studies
[Ferraiolo1993] have shown that RBAC reduces
the cost of administering security policies. RBAC
separates the association between users and
groups from the associations between groups and
privileges. Since the number of groups is typically
much smaller than the number of users, RBAC
reduces the number of associations that must be
managed in most cases and hence the
administrative cost. In addition, because subject-
based policies align closely with existing business
practices and can be expressed naturally in terms
of roles, RBAC makes the specification of
security policies less error-prone.

A system such as Owl must consider the privacy
of context sources as well as that of the context
subjects. The identity of context sources should
not be released without their explicit permission.
This raises the issue of what happens when the
privacy of the context subject and that of the
source conflict. In such instances, we propose to
honor the privacy policy of individuals first and
that of the context source second.

Another aspect of privacy concerns whether or not
subjects should have control over which context
sources can supply data about them. Our opinion
on this matter is that the system should at least
support such controls.

Scalability

We envision Owl as becoming a piece of the
pervasive computing infrastructure. As such, we
expect it will need to scale to very large numbers
of users. Our initial goal is to support on the order
of 10 million subjects with as many as 1 million
clients active at any given point in time. When the
system grows beyond the confines of a single
machine, Network Dispatcher [Hunt1998] or
similar load-balancing technology can be used to
scale the service. The use of Network Dispatcher
assumes that the back-end services are
functionally identical. Depending upon the request
stream, this assumption may defeat any benefits of
caching.

Our desire to support persistent context requires a
context store. We have chosen a database system
for this purpose. Consequently, the scalability of
our system will be limited to the degree that the
underlying database system can be scaled.

Extensibility

Because context-aware computing is relatively
new to the computing world, services supporting a
general notion of context must be easily
extensible to accommodate new and unanticipated
sources of context information. This requires that
the system handle different interaction mechan-
isms with context sources and that it allow new
context sources to be easily added.

A context service can interact with context
sources in one of two ways: push or pull. In a
push mechanism, context sources periodically
push updated context information to the context
service. The context service maintains the
information in a context store and services client
inquiries from its local store. In a pull mechanism,
the context service must explicitly request context
information. It can either make this request on a
periodic basis (polling) or when an application
demand arises. Each mechanism has advantages
and disadvantages:

• A push model collects data ahead of need
and thus may offer better performance.
However, it may consume substantial
resources transferring and storing
information that is never required. In
addition, it must trade off information
freshness with the costs of frequent
updates.

• A pull system may use fewer resources by
obtaining only the data that is required.
However, this exposes the context service
to inevitable network delays and
unavailability. In some circumstances, it
may be possible for prefetching and/or
caching to alleviate these problems, but
this may increase resource utilization.

In both cases, the ability to derive context
information from past history is limited by the
frequency with which context information is

4

acquired or by the support offered by the context
source.

Another aspect of extensibility is that of
accommodating irregularities in context data. One
potential solution is to encode the context
information in XML. The expressive power and
flexibility of XML make it a good representation
language for heterogeneous context data. Further,
an information model that describes the interrela-
tionships between different types of context data
could provide structure for accessing and
reasoning about context.

Synchrony

We conjecture that both synchronous and
asynchronous operations will be useful. A
synchronous operation requires that the
application wait for a response, whereas an
asynchronous one notifies the application when
the requested information is available. Applica-
tions that base their real-time operation on the
present context (e.g., deliver this message to the
telephone nearest Andy) will require synchronous
operations whereas applications that need to be
activated upon a particular context (e.g., deliver
this message when Andy is free) will find
asynchronous operation more useful. Asyn-
chronous operation allows applications to obtain
the information they need without resorting to
expensive polling behaviors. Allowing asynchron-
ous context queries requires that incoming context
changes be matched with outstanding context
callback requests. Only experience will show
whether the benefits obtained will outweigh the
costs imposed.

Quality of Information

Context information often involves real world
entities. Thus, it makes sense to measure the
quality of context information (QoI), or the extent
to which the data corresponds to the real world.
The quality of context information can vary,
perhaps substantially, depending on the context
source. A context service must therefore allow for
inaccuracies and uncertainty. Our system allows
context information to be associated with QoI
metrics such as freshness and confidence. It also

allows applications to specify their QoI
requirements when interacting with the context
service. We should note that the quality of context
information, as reported by context sources,
remains suspect. Independent monitoring is still
needed, as discussed under future work.

Mechanisms for modifying context data or
recording complaints must be developed.
Currently, social mechanisms must step in should
a context source prove to be untrustworthy.
Additional work is required to address the issues
of monitoring the accuracy of reported QoI and of
reporting the quality of context information
derived from multiple sources or from historical
data.

Early Experiences

We have chosen an incremental, application-
driven approach to developing our context
service. We have started with a basic system and
plan to evolve it gradually, adding new features as
required by applications. Currently, our context
service provides information on user locations,
activities, and on-line presence. We have done an
initial usability study on our privacy control
interface and expect to refine our interface based
upon what we have learned.

In addition to developing the context service
itself, we have also developed an application
called the Universal Notification Dispatcher
(UND). The UND addresses the issue of personal
mobility in pervasive computing. A mobile user
often has multiple devices. As he moves from
place to place, he may switch from one device to
another. Like other work in this area
[Maniatis1999, Raman2000], the UND delivers
messages to users via whatever device (telephone,
email, pager, instant messaging, WAP, and SMS)
is most appropriate. In contrast to these other
efforts, our service relies on the recipient's context
information to determine which device is most
appropriate. UND in combination with Owl has
been used in Planet Blue (a research testbed for
pervasive technologies here at IBM) as well as
other research projects.

5

Related Work

An important area of work is that of further
supporting applications by providing semantic
interpretations of context information. Salber and
his colleagues approached this problem by
building a context toolkit to aid the developers of
context-aware applications [Salber1999]. This
toolkit provides widgets that hide the complexity
of the actual sensors used to collect the data,
abstract this information, and provide reusable
and customizable building blocks. A complete
infrastructure for context-aware applications
requires this type of abstraction. From our recent
discussions with Abowd, Dey, and Salber, we
believe that their context toolkit could be built
using our infrastructure for the raw context
information.

The Cricket Location-Support System flips the
responsibility for location awareness around
[Priyantha2000], providing support for mobile
devices to determine their own location within a
building. Cricket explicitly does not use location
tracking purportedly to “address” the privacy
problem inherent in such approaches. By doing
so, however, Cricket precludes certain types of
applications unless an application on the mobile
device makes its location known externally. The
existence of such an application lands Cricket
back at square one with respect to privacy. In
contrast, Owl addresses the privacy question head
on by giving users control over who can access
their context information. Further, Owl supports a
general notion of context, not just location.

Hull and his colleagues describe a system that,
like Owl, is intended to handle many diverse
sources of contextual information, though the only
source with which they have experience is
location data from their custom Pinger device
[Hull1997]. Their system goes beyond Owl in the
sense that they provide a higher-level abstraction
of the information for use by applications (e.g.,
PersonSpotted events) whereas Owl leaves this
functionality for higher levels of the pervasive
computing stack. Finally, because their system is
intended to serve just a single individual using a
wearable computer, scale and privacy were not

considered design goals and are not explicitly
addressed.

The TEA and Mediacup projects [Gellersen2000]
explore an architecture for obtaining and using
context in everyday devices. In contrast to many
context-based projects, context information in
these projects is sensed on the devices themselves.
The Mediacup broadcasts the context it detects.
These broadcasts could be monitored and stored
in a system such as ours. The TEA phone
demonstrates a novel use for context information.
It shows how context can be exploited to give
users, in this case the caller, more information
about the current activities of the person they are
trying to reach. Though the TEA phone uses self-
sensed context, similar functionality could be
provided through the use of our system. Neither of
these projects consider the problem of privacy – in
both cases, context information is treated as
openly available and no restrictions are placed
upon its dissemination.

Conclusions

Context awareness is critical to achieving the
vision of pervasive computing and to alleviating
the human attention bottleneck. To date, the
development of context-aware applications has
been hampered by the need to develop a custom
context infrastructure for each application. Owl
removes this obstacle by placing the context
functionality in the infrastructure. At the same
time, it addresses privacy concerns by giving
people the ability to easily control the release of
their context information. Just as file systems are
a standard infrastructural component of comput-
ing systems today, we believe that context
services should be made an integral part of the
pervasive computing infrastructure of tomorrow.

Acknowledgements

We wish to thank our colleagues who have
contributed to the development of our context
service, including Vincent Bazinette, Azzari
Caillier, Ying Chen, J. Smith Doss, Renee
Kovales, Peter Malkin, Jussi Myllymaki, Oliver
Ribardiere, John Richards, Gregory Stewart, and
Robert Sundstrom. We would also like to thank

6

John Davis II, William Jerome, and Daniel Salber
for many interesting discussions.

Bibliography

[Coy1992] Peter Coy. Big Brother Pinned to you
Chest. Business Week. August 17, 1992, Number
3279, 38.

[Ferraiolo1993] Ferraiolo, D.F.; Gilbert, D.M.;
Lynch, N. An Examination of Federal and
Commercial Access Control Policy Needs. In
NIST-NCSC National Computer Security
Conference (Baltimore, MD, Sept. 1993), 107-
116.

[Gellersen2000] Gellersen, H.-W.; Schmidt, A.;
Beigl, M. Adding Some Smartness to Devices and
Everyday Things. In the Proceedings of the Third
IEEE Workshop on Mobile Computing Systems
and Applications (Monterey, CA, Dec. 2000),
ACM, 3-10.

[Gray2001] Gray, P. D.; Salber, D. Modelling and
Using Sensed Context Information in the Design
of Interactive Applications. To appear in the
Proceedings of the 8th IFIP Working Conference
on Engineering for Human-Computer Interaction
(EHCI'01) (Toronto, Canada, May 2001).

[Hull1997] Hull, R.; Neaves, P.; Bedford-Roberts,
J. Towards Situated Computing. In the
Proceedings of the 1st International Conference
on Wearable Computing (1997), IEEE, 146-153.

[Hunt98] Hunt, G.D.H.; Goldszmidt, G.S.; Kind,
R.P.; and Mukherjee, R. "Network Dispatcher: a
connection router for scalable Internet services",
Computer Networks and ISDN Systems, Vol. 30,
1998, 347-357.

[Maniatis1999] Maniatis, P.; Roussopoulos, M.;
Swierk, E.; Lai, K.; Appenzeller, G.; Zhao, X. and
Baker, M. The Mobile People Architecture. ACM
Mobile Computing and Communications Review
(MC2R), July 1999.

[OECD] http://www.oecd.org/

[P3P] Platform for Privacy Preferences (P3P)
Project. http://www.w3.org/P3P/

[Priyantha2000] Priyantha, N.; Chakraborty, A;
Balakrishnan, H. The Cricket Location-Support
System. In Proceedings of the Sixth Annual
International Conference on Mobile Computing
and Networking (Boston, MA, August 2000),
ACM, 32-43.

[Raman2000] Raman, B.; Katz, P.; Joseph, A.
Universal Inbox: Providing Extensible Personal
Mobility and Service Mobility in an Integrated
Communication Network. In Proceedings of the
IEEE Workshop on Mobile Computing Systems
and Applications (Monterey, CA, December
2000), IEEE, 95-106.

[Salber1999] Salber, D; Dey, A. K.; Abowd, G.
D. The Context Toolkit: Aiding the Development
of Context-Enabled Applications. In Proceedings
of CHI ’99 (Pittsburgh, PA, May 1999), ACM,
434-441.

[Sandhu1996] Sandhu, R.S.; Coyne, E.J.;
Feinstein, H.L.; Youman, C.E. Role-based Access
Control Models. IEEE Computer, Vol. 29, No. 2,
Feb. 1996, 38-47.

[Wang2000] Wang, H. J.; Raman, B.; Chuah, C.;
Biswas, R.; Gummadi, R.; Hohlt, B.; Hong, X.;
Kiciman, E.; Mao, Z.; Shih, J. S.; Subramanian,
L.; Zhao, B. Y.; Joseph, A. D.; Katz R. H.
ICEBERG: An Internet-core Network
Architecture for Integrated Communications.
IEEE Personal Communications, Vol. 7 No. 4,
Aug. 2000, 10-19.

[Weiser1991] Weiser, Mark. The Computer for
the 21st Century. Scientific American. September
1991, 66-75.

