
RC22107 (W0106-018) June 13, 2001
Computer Science

IBM Research Report

Performance of Memory Expansion Technology (MXT)

Dan E. Poff, Mohammad Banikazemi, Robert Saccone,
Hubertus Franke, Bulent Abali, T. Basil Smith

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1

Performance of Memory Expansion Technology (MXT)

Dan E. Poff, Mohammad Banikazemi, Robert Saccone,
Hubertus Franke, Bulent Abali, T. Basil Smith

IBM T.J.Watson Research Center

P.O. Box 218, Yorktown Heights, NY 10598
{poff,mb,rsaccone,frankeh,abali,tbsmith}@us.ibm.com

Abstract

A novel memory subsystem called Memory
Expansion Technology (MXT) has been built for fast
hardware compression of main memory contents.
This allows a memory expansion to present a “real”
memory larger than the physically available memory.
This paper provides an overview of the memory
compression architecture, the OS support and an
analysis of the performance impact of memory
compression while running multiple benchmarks.
Results show that the hardware compression of main
memory has a negligible penalty compared to an
uncompressed memory, and for memory starved
applications it increases performance significantly.
We also show that applications’ memory contents can
be compressed usually by a factor of two.

1. Introduction

Data compression techniques are extensively used in
computer systems to save storage space or bandwidth.
Both hardware and software based compression
techniques are used for storing data on magnetic
media or for transmission over network links. While
compression techniques are prevalent in various
forms, hardware compression of main memory
contents has not been used to date due to its
complexity. The primary motivator for a compressed
main memory system is savings in memory cost and
space savings for tightly packed systems, such as for
1U (1.75”) thin, rack-mounted systems. Compression
increases the amount of memory, or in cost sensitive
applications it provides the expected amount of
memory at a smaller cost. Recent advances in parallel
compression-decompression algorithms coupled with
improvements in the silicon density and speed now
makes main memory compression practical [1,2,3,4].

A high-end, Pentium-based server class system with
hardware-compressed main memory, called the
Memory Expansion Technology (MXT), has been
designed and built [3]. In this paper, we present a
brief overview of the hardware and software
technology required to enable the MXT technology,
and provide detailed performance results and main
memory compressibility of several benchmarks.
Results show that two-to-one compression (2:1) is
practical for most applications and that the
performance impact of compression is insignificant,
and for memory starved applications main memory
compression improves performance significantly.
Two-to-one compression effectively doubles the
amount of memory; or in cost sensitive applications it
provides the expected amount of memory for ½ the
expected cost or even less. Larger memory
configurations require more expensive, higher density
memory modules due to the four memory-slot limit of
a typical system. Therefore, an additional cost benefit
of MXT is being able to use less expensive, lower
density modules.
Observations show that main memory contents of
most systems, operating system and applications
included, are compressible. Relatively few
applications’ data that are already compressed or
encrypted, cannot be further compressed. In the MXT
system, a Compressed Memory/L3 cache controller
chip is central to the operation of the compressed main
memory [3]. The MXT architecture adds a level to
the conventional memory hierarchy. Real addresses
are the conventional memory addresses seen on the
processor external bus. Physical addresses are the
addresses used behind the controller chip for
addressing the compressed memory, also referred to
as physical memory in this paper. The controller
performs the real to physical address translation and
compression /decompression of L3 cache lines. The
processors are off-the-shelf Intel processors. They run

2

with no changes in the processor or bus architecture.
Standard operating systems such as Windows NT,
Windows 2000 and Linux, run on the new architecture
with no changes for the most part. However, a corner
case exists, in which physical memory may be
exhausted due to incompressible data. Standard
operating systems are unaware of this problem.
Hence, software support is needed to prevent the
physical memory exhaustion. The amount of physical
memory required changes with the compressibility of
the memory contents. For example, a program
starting with zero-filled buffers will require more
physical memory as the buffers are loaded from disk.
Hence, the physical memory requirements change as
the program runs, requiring constant monitoring, and
tuning as well as a recovery process if memory usage
approaches the limit of the physical size. This corner
case and the compressed memory management are
handled by small modifications in the Linux kernel
and by a set of user level services and a device driver
in the Windows NT and Windows 2000 operating
systems.
The main contributions of this paper are as follows.
We provide an overview of the memory compression
hardware and software support. Combined
software/hardware design allows applications to run
and take advantage of compression transparently.
Using benchmarks we show the cost/performance
benefits of doubling the memory size due to
compression. We further show that a number of
applications’ main memory contents can be
compressed effectively.
In the following section we give an overview of the
MXT hardware. In Section 3 we describe the memory
compression support added to the Linux and the
Windows operating system. In Section 4, we present
experimental results of various industry benchmarks
on the MXT system and we examine the
compressibility of various applications’ memory
contents. Conclusions are in Section 5.

2. Overview of MXT Hardware

In an MXT system the physical memory (SDRAM)
contains compressed data and can be up to 16 GB in
size. A third level cache (L3) is introduced. The L3
cache is a shared, 32-MB, 4-way set associative write-
back cache with 1-KB line size and is made of double
data rate (DDR) SDRAM. The L3 cache contains
uncompressed cached lines and hides the latency of
accessing the compressed memory. The L3

Cache/Compressed Memory Controller (Champion
North Bridge CNB 3.0 HE component of the Pinnacle
server chipset developed in cooperation with
Serverworks) is central to the operation of the MXT
system. The L3 cache appears as the main memory to
the processors and I/O devices, and its operation is
transparent to them. The controller compresses 1 KB
cache lines before writing them into the physical
memory.
The compression algorithm is a parallelized
generalization [2] of the Lempel-Ziv algorithm known
as LZ1. The compression scheme stores compressed
cache lines to the physical memory in a variable
length format. The unit of storage in physical
memory is a 256-byte sector. Depending on its
compressibility, a 1 KB cache line may occupy 0 to 4
sectors in the physical memory. Due to this variable
length format, the controller must translate real
addresses to physical addresses. A 1 KB cache line
(real) address is mapped to 0 to 4 sector (physical)
addresses in the physical memory. The real address is
the conventional address seen on the processor chip's
external bus. The physical address is used for
addressing the sectors in the compressed physical
memory. The memory controller performs real to
physical address translation by a lookup in the
Compression Translation Table (CTT), which is kept
(uncompressed) at a reserved location in the physical
memory. The CTT size is 1/64th of the real memory
size.
Each 1 KB cache line address maps to one entry in the
CTT, and each CTT entry is 16 bytes long (therefore,
the 64 to 1 ratio between and the real memory size and
the CTT size.) A CTT entry contains control flags
and four physical addresses each pointing to a 256-
byte sector in the physical memory. Different
physical memory occupancies result from
compressing 1 KB cache lines with different
compression characteristics. For example, a 1 KB
cache line, which does not compress occupies 4
sectors, i.e. 1 KB of physical memory. A cache line
that compresses by 2:1, will occupy only two sectors
in the physical memory (512 bytes) and the CTT entry
will contain two addresses pointing to those sectors.
The remaining two pointers will be null. For a cache
line that compresses to less than 120 bits, for example
a cache line full of zeros, a special CTT format called
trivial line format exists. In this format, the
compressed data are stored entirely in the CTT entry
replacing the four address pointers. Therefore, a
trivial line of 1 KB occupies only 16 bytes in the

3

physical memory resulting in a compression ratio of
64:1. Another memory saving optimization
implemented in the controller is sharing of sectors by
cohort cache lines. If two 1 KB cache lines are in the
same 4 KB page, they are called cohorts. Two
cohorts may share a sector provided that space exists
in the sector. For example, two cohorts each
compressing to 100 bytes may split and share a sector
since their total size is less than the sector size of 256
bytes. The compression operations described so far
are entirely done in hardware with no software
intervention.
Note that the selection of the 1 KB line size was
influenced by many factors. Directory size, which
grows inversely proportional to the cache line size for
a given cache size, and the compression block size
that effects the compression efficiency were the two
most significant factors for the 1 KB line size [3].
Shorter lines may not compress well and longer lines
may impact performance due to longer
compress/decompress times. In this implementation,
multiple compressors are used for performance
reasons, but the dictionary is shared jointly to achieve
a better compression ratio. Another technique that is
employed to decrease memory-access latency is to
provide the critical 32 bytes of data to the processor
bus as soon as it is decompressed, rather than waiting
until the entire 1 KB line completed. This technique,
on average, reduces the decompression latency to one-
half.
In addition to the above operation the compressed
memory controller provides fast page operations, such
as page moving and page zeroing, which perform
significantly faster than if issued through regular
memory operations. Fast page operations work on 4-
KB pages, same as in the x86 architecture. The speed
increase is achieved merely by updating pointers in
the CTT entries, rather than moving bulk data with the
processor.
The decompression latency is brought down
significantly through the usage of parallel
compression techniques and the utilization of a deep
memory hierarchy. Memory hierarchy employing
multiple cache levels have been used for many years
to reduce the effect of main memory access times,
particularly as the disparity has grown in the past
decade between processor bus speeds and memory bus
speeds. In the MXT architecture the additional L3
cache captures many accesses that would go to main
memory for miss retrieval. The sizes of L2 to L3 are
256 KB and 32 MB, respectively, leading to a low

global miss rate. In addition the L3 cache is shared,
four-way set associative and write-back. These
characteristics, along with the large line size of 1 KB
in the L3 allows for a low miss rate to the main
memory. Achieving a low miss rate requires the large
32MB L3 cache, however the L3 cache size is limited
by the L3 directory size that can be supported on the
controller.
In the MXT architecture, I/O data move through the
shared L3 cache, unlike in the traditional L1/L2 cache
organizations. It is appealing to have direct I/O access
in to the compressed physical memory in terms saving
disk space and I/O bandwidth due to the typically
higher than 1.0 compression ratio. However, this
would have been somewhat difficult and impractical
since it would require additional compression circuitry
in the I/O path and since data are possibly scattered in
several non-contiguously located 256-byte sectors.
Another aspect of this architecture is the real-to-
physical address translation performed by the MXT
memory controller. The translation is performed
transparently to the processors, I/O devices, and
software. This has the advantage of being able to use
stock CPUs and I/O peripherals and without any
changes in the software (except for the memory
management subsystem of the OS.) The translation is
performed only for L3 cache misses which are in the
low single digits due to the large L3 size. For current
processor/memory organizations, combining real-to-
physical address translation with virtual-to-real
address translation appears neither useful nor
practical, unless processors and memory controllers
become integrated on a single chip in the future.
The additional cost for the MXT memory controller is
estimated at ~$60-100 plus the cost for the L3 cache
SDRAM. In return, for a 2GB system supporting 4GB
of real memory, the system is approximately $2400
cheaper based on the memory prices effective at the
time of writing this paper.

3. The MXT Memory Management Software

Compressed memory hardware allows an operating
system to use a larger amount of real memory than
physically exists. During the boot process, the
hardware BIOS reports larger memory size than the
installed physical memory. For example, in an MXT
system we with 512 MB of installed SDRAM and the
BIOS may reports having 1 GB of memory to the
operating system. The main problem in such a system

4

occurs when applications fill the memory with
incompressible data, although more memory than
physically available has been committed. In these
situations, the common OS is unaware that the
physical memory may be running out. For example, a
1024 MB system may have only 600 MB allocated
and therefore may appear to have 424 MB free
memory. However, due to low compressibility of the
allocated memory, the physical memory usage may be
near the 512 MB physical memory limit. Therefore, if
the free memory is allocated, or if compressibility of
the already allocated 600 MB further decreases, then
the system will run out of physical memory, even
though it appears to the OS that there is 424 MB free
memory. Common operating systems do not
distinguish between real and compressed physical
memory nor do they deal with out-of-physical-
memory conditions. The MXT memory management
software addresses this problem. The general
mechanisms underlying the MXT memory
management software that prevent physical memory
from running out can be described as follows:
A: Detect physical memory utilization

1. Either by polling or through interrupts it
detects physical memory utilization and
exhaustion.

2. Detect excessive I/O activity to adjust various
thresholds to ensure forward progress [6].

B: Reclaim real memory and zero out freed pages to
reduce utilization
1. Pageable pages

a) Make VMM believe that it is running out
of memory and cause shrinking of file
caches, and cause the paging daemon to
move dirty pages to the swap disk. Pages
freed are cleared with zeros, therefore
physical utilization decreases, or

b) Dispatch memory eater tasks/processes
that allocate big chunks of memory
stealing them from other processes. Then,
clear the pages, while holding on to them
as long as the physical utilization is high.

2. Non-pageable pages (e.g. drivers and kernel
extensions)
a) Reserve an amount in physical memory

equal to the non-pageable memory size.
b) Force drivers to free memory (e.g. MXT

aware drivers)

C: Steal CPU cycles to prevent further increase in

utilization either by

1. Descheduling processes, or
2. Decreasing process priorities, or
3. Activating a set of busy threads (one per

CPU) to block processes from running.

In Linux, minor changes to the kernel were made in
order to implement these mechanisms. For WinNT
and Win2000, since kernel source code is generally
not available, a combination of device driver and user-
level services were implemented. The particular
details of these implementations under Linux and
Windows2000 are described in [15].

4. Performance Evaluation

The MXT memory system uses a relatively long 1-KB
compression block size to be able to compress
efficiently, since shorter blocks may not compress
well. Due to the compression and decompression
operations performed on these blocks in the memory
controller, memory access times are longer than the
usual. The 32-MB L3 cache contains uncompressed
(1 KB) lines to reduce the effective access times by
locally serving most of the main memory requests.
Since this type of memory organization is relatively
new, we present in the following a detailed
performance analysis using the SPECint2000, the
SPECWeb99 and a DB2 database regression test. In
these experiments, we use MXT systems with dual
733 MHz Pentium III processors and a single disk
drive. Dependent on the benchmark we run both
Linux and Windows2000 and different memory sizes
ranging from 512MB to 2GB physical memory. The
MXT hardware was an early prototype, which had
some of the performance enhancing features disabled
such as bus defer response and processor IOQ depth
limited to 1, due to hardware bugs. We compared the
MXT hardware to a standard system with similar
hardware characteristics except with no compression
or L3 support.

4.1 SPECint2000 Results

The SPECint2000 benchmark suite is designed by the
SPEC consortium to measure the performance of the
CPU and the memory
(http://www.spec.org/osg/cpu2000/) and requires
approximately 256 MB of memory. There are 12
integer benchmarks in the suite. These are the gzip
data compression utility, vpr circuit placement and
routing, gcc compiler, mcf minimum cost network

5

flow solver, crafty chess program, parser natural
language processing, eon ray tracing, perlbmk perl
utility, gap computational group theory, vortex object
oriented database, bzip2 data compression utility, and
twolf place and route simulation benchmarks.
We ran the benchmarks three times, once on the
standard system, and twice on the MXT system with
the compression on and off. The difference between
the standard and the MXT with compression off
results give the performance impact of L3 cache. The
difference between compression off and compression
on results gives the performance impact of the
compression-decompression hardware. The MXT
system has a boot option that permits compression to
be turned off. In that case, the system operates as a
standard with an L3 cache and with non-compressed
memory. Since compression/decompression hardware
is disabled, the memory access latency is expected to
be different than that of the compression-on case. We
also recorded the number of L3 requests and L3
misses using the performance counters built into the
memory controller chip.
Main results of the SPECint2000 experiments are
shown in Fig. 1. The right most three columns are the
average SPECint rates for the three systems that we
considered. Due to strict reporting requirements of
the SPEC consortium, we cannot publish the actual
execution times. Therefore, we normalized the
compression on and off results relative to the standard
system results. Results show that on the average,
MXT with compression-on is 1.3% faster than a
standard system. The individual benchmarks twolf,
vpr, parser, gcc, and bzip2 perform 4.0 to 8.3% faster
on the MXT system as shown in Fig.1. Mcf runs 1.1%
faster on MXT. The L3 miss rates (Fig.2) and L3
request rates (Fig.3) for these six benchmarks reveal
the reason: their miss rates are relatively small, but
their L3 request rates are the highest among the twelve
benchmarks. In other words, the working set of these
six benchmarks fit in the 32 MB L3 cache and since
they make large number of L3 requests, the L3 cache
comprising double data rate (DDR) SDRAM gives a
slight performance advantage over the standard
system comprising regular SDRAM. On the contrary
the benchmarks vortex, gzip, and gap respectively run
2.1%, 2.4%, and 10% slower on the MXT system than
the standard system. Fig.2 shows that these three
benchmarks have the highest miss rates among the
twelve benchmarks (gap that has the worst
performance and the highest miss rate.) It also has the
highest misses/second metric, which is 2.6 times

greater than the next highest. Another observation is
the relatively small L3 request rates for crafty and
eon, which indicate that their working sets entirely fit
in the L1 and L2 caches. Therefore, the L3 cache does
not impact the performance of crafty and eon, which
reveals itself as a negligible difference in their SPEC
rates on Figure 1. Comparisons between MXT with
compression and without compression show that the
compression on case is 0.4% faster than the
compression off case on the average. Figure 1 shows
that vpr and twolf have the greatest difference in favor
of the compression-on case. One possible explanation
is that cache misses of these two benchmarks may
result in large number of trivial line compression and
decompressions. As explained before, a trivial line is
an L3 cache line, which compresses to less than 120
bits and therefore is stored in a 16 byte CTT entry.
Compression and decompression of trivial lines may
have a smaller overhead than that of a line occupying
a sector (256 bytes) or more in the physical memory.
For example, cold cache misses at the beginning of
execution will almost always result in trivial line
compressions because the memory is filled with zeros
initially. The compression off case runs faster than
the compression on case for the gap and vortex
benchmarks by 1.5 and 1.9% respectively. These
have the first and third highest miss rates, and first and
second highest misses per second.
In summary, the impact of the L3 cache and memory
compression for the set of benchmarks is negligibly
small considering that MXT doubles the amount of
memory.

4.2. SpecWeb99 Results

In this test we measure the performance of webserving
using the SpecWeb99 Benchmark comparing an MXT
system with a standard system. The operating system
is Linux and the webserver is TUX 2.0. The fileset of
SPECweb99 was generated with the test option of
wafgen.c enabled to make the files compressible. The
standard SPECweb99 benchmark uses random
character strings as the file content which is not
realistic. Web content is generally compressible by a
factor of 2 as shown later in Figure 9 and [14]. Web
benchmarks including the SPECweb99 need to be
changed to present a more realistic web content. Two
system configurations with varying memory sizes and
different number of Gigabit Ethernet adapters are
analyzed. The left columns in Figure 4 show the
achievable number of connections per second for the

6

adapter (1EthGb) configurations. Since the SPEC
consortium has strict rules for reporting results, we are
not providing absolute numbers of achievable
connections, but only relative numbers normalized
with respect to the left hand most column (512MB
MXT+1EthGB). Adding further memory to the
system does not substantially increase the
performance as the system is bandwidth limited.
However, we observe that MXT can provide roughly
the same performance with half the physical memory
configured in the standard box. Adding an additional
adapter in the 2EthGB configuration moves the
bandwidth limitation from the 1GB memory size to
the 2GB memory size. Again we observe that the
same performance can be achieved under MXT with
half the memory size of the standard box. We further
note that at the same physical memory size the MXT
systems delivers twice the performance. At this
operating point, the I/O bandwidth is not the limiting
factor. Instead, under MXT the OS is capable to keep
a significantly higher number of webpages in the file
cache (due to the compression) and thus does not have
to fetch them as frequently from the disk. This is point
is further supported in the section 5 about the
application compressability.

4.3. DB2 Database Benchmark Results

The MXT system has been measured running an
insurance company database schema. This
configuration is primarily used within IBM as a quick
regression test for ascertaining the impact of DBMS
design changes (http://www.ibm.com
/software/data/db2/). It is substantially less costly and
quicker to run than complex benchmarks such as
TPC-C, but is coarsely representative of the
performance characteristics that might be expected.
Several configurations were run on the prototype
hardware: 512 MB with MXT off, 512 MB (1 GB
expanded) with MXT turned on, 1 GB MXT off, 1 GB
MXT on (2 GB expanded), and 2GB MXT on (4GB
expanded) configurations. Benchmarks ran on the
Windows 2000 operating system. Two runs were
made for each configuration, a cold run where the file
cache is initially empty, and immediately following
that a second warm run, where the buffers have been
“warmed” by the preceding cold run.
Figure 5 shows the performance benefits of MXT.
For the 512 MB system when compression is on, it
doubles the effective amount of memory and the
benchmark runs 25% faster than the compression off

case. For the 1 GB system when compression is on, it
doubles the effective amount of memory to 2 GB and
the benchmark runs 66% faster than the compression
off case. It is interesting to note that the benefit of
larger memory is more pronounced for this workload
for larger memory sizes, and is indicative of both the
smaller 512 MB memory and 1 GB memory
configurations being memory starved. Finally, the
2GB configuration (4GB with compression on)
contains the entire database in memory. The
performance improvement in this case is 300%.
Figure 5 also shows “performance twins” and “cost
twins” to emphasize the benefits of MXT.
Performance twins perform nearly identical, however
the MXT-on twin costs less since its memory
requirements are one-half. Cost twins have the same
amount of physical memory, however the MXT-on
twin performs better due to the doubling of the
memory.
Figure 6 shows runtimes of the individual DB2
queries in a 4GB system after warm-up. The database
is in memory at this point, so most I/O is eliminated.
Generally, queries run a bit faster with compression
on. Query 16 is an exception. This result is explained
in Figures 7 and 8 which detail L3 cache accesses and
misses for Queries 7 and 16. Query 7 has much
higher L3 access and miss rates, and the compression
ratio for this database is 2.68:1, resulting in improved
bandwidth between the L3 cache and main memory
with compression on.
However, the standard system generally runs faster.
The ‘standard system’ used the same processors, twice
the amount of SDRAM used in MXT, and a similar
memory controller, except no compression or L3
support. On this early MXT prototype, performance-
enhancing features of the processor bus was disabled
due to hardware bugs, such as bus defer response and
IOQ depth limited to 1, which is one possible
explanation. Another possibility is higher L3 miss
rates degrading overall performance compared to a
standard system without an L3 cache.

4.3 Compressibility of Applications

Now that the performance of the MXT system is
established, we turn our attention to the
compressibility of main memory contents of various
applications. We measured the compression ratios on
the actual MXT hardware whenever possible. We
used an estimation tool when MXT hardware was not
available. Estimation tool samples the live memory

7

contents while the application is running on a standard
computer and predicts the compression ratio. Results
show that most of these applications’ main memory
contents can be compressed usually by a factor of 2:1,
justifying the real to physical memory ratio chosen for
the MXT systems. The estimation tool is available for
download at http://oss.software.ibm.com/developer
works/opensource/mxt/.
On the MXT hardware, the real and physical memory
utilizations were recorded using an instrumentation
register of the memory controller. The Sectors Used
Register (SUR) reports to the operating system the
amount of physical memory in use. A sampler
program reads every two seconds the SUR register
and the real memory utilization as reported by the OS
and saves them in a file to be processed later. The
measured memory values are for the entire memory.
Therefore, in addition to the benchmark application’s
memory utilization, the measurements include
possibly large data structures such as file cache and
buffer cache that the OS maintains for efficient use of
the system. In a post-processing step we took the
average of the samples to produce the average
compression ratio of a given benchmark.
Figure 9 shows the compression ratios for a few
applications. Synopsis, Photoshop, MSDN Install and
DB2 compression ratios were measured on the MXT
hardware with the Windows2000 operating system.
The Synopsis tool is used as a step in automating chip
design. Photoshop compressibility varies significantly
depending on the properties of the images being
processed. For example, high-resolution topographical
maps are incompressible, while images having less
resolution, or areas of constant background compress
well. Teiresias, from IBM Research, is an efficient
algorithm for finding patterns in genetic structures.
Teiresias ran on a stock PC and the compressibility
was measured by an estimation tool that sampled the
memory contents. This compressibility measurement
was taken while analyzing the E.coli DNA. Microsoft
Developer Network (MSDN) installation and most
software installations compress poorly since the
CDROM files are already compressed. The install
program itself consumes only 4 MB. However, the
associated file cache or NT standby pages fill the
remainder of memory. The DB2 result is for an
insurance company database schema. SPEC CPU
2000 is the average of the 12 integer benchmarks in
the SPEC suite. Www.pc.ibm.com is a live web
server used by IBM PC company customers. This
result was obtained on a production web server and

we used the estimation tool to sample memory
contents.
Figure 10 shows the compressibility of the DB2
insurance database over time. The set of DB2 queries
was run three times. The first run took 44 minutes, a
cold run, reading the database from disk. The second
and third runs took 12 minutes each, following 20
minutes idle time. Average compressibility was
2.68:1.
Overall the compressibility of applications,
particularly those that require large memories
(Webserving, databases), is at least 2:1. This justifies
running the MXT system at a 2:1 real to physical ratio
and one should not expect the physical exhaustion
mechanism to kick in other than in “emergency”
situations.

5. Related Work

Reference [2] considers an approach to compression
that yields parallel speedup, while maintaining the
compression efficiency of sequential approaches.
Related work [5] focuses on the internal design of
compressed random access memories. The issues of
effective memory management in a compressed
memory system are considered in [6]. A method for
estimating the number of page frames as a function of
physical memory utilization is described. They
further model the residency of outstanding I/O as they
transfer data into the memory when streamed through
a cache, thus potentially forcing cache write backs that
could increase the physical memory utilization. Using
a time decay model they evaluate the system behavior
using simulation. Reference [7] describes an
approach to compression that removes the tight
constraints of latency and bandwidth. This is
accomplished by devising an architecture with two
pseudo-levels – compressed and uncompressed
memory, and the CPU operates only from the
uncompressed region where the most frequently used
pages are stored. Reference [8] introduces the concept
of the compression cache, an intermediate level in the
memory hierarchy that serves as a paging store. The
author introduces this concept to take advantage of the
improving speed of processors versus disk, and notes
that the growing disparity between these system
elements makes compression close to the processor an
appealing feature. Reference [9] and the TinyRISC
effort use compression to reduce embedded system
code size. References [10] and [11] use compression
techniques to increase branch prediction accuracy in

8

microprocessors. Reference [12] describes algorithms
and data structures for compressed memory machines.
In contrast, our approach allows entire memory to be
compressed unlike in [8], and it does not partition the
main memory as compressed and uncompressed as in
[7].

6. Conclusion

In this paper we described and evaluated a computer
system with hardware main memory compression that
effectively doubles the size of the main memory. We
gave a brief overview of the MXT hardware and
software technology. We measured the impact of
compression on the application performance and
determined that the hardware compression has a
negligible penalty over an uncompressed hardware.
We measured real and physical memory utilization of
various applications and determined that main
memory contents can be compressed usually by a
factor of 2 or greater. Overall MXT provides an
compelling argument to either increase performance
through increased real memory size at the same price
as standard systems or to reduce the cost of the system
while retaining the same performance characteristics
of standard systems.

References

[1] Hovis et al., “Compression architecture for

system memory application,” US Patent
5812817, 1998.

[2] Franaszek, P, Robinson, J., Thomas, J. “Parallel
Compression with cooperative dictionary
construction,” In Proc. DCC’96 Data
Compression Conf., pp.200-209, IEEE 1996.

[3] Tremaine, R., Franaszek, P., Robinson, J.,
Schulz, C., Smith, T., Wazlowski, M., Bland,
M.: “IBM Memory eXpansion Technology
(MXT),” to appear in the IBM Journal of
Research and Development Vol-2, 2001.

[4] Abali, B., and Franke, H.: “Operating System
Support for Fast Hardware Compression of
Main Memory”, Memory Wall Workshop,
Vancouver, B.C., June 2000. Published as IBM
Research Report No. RC21964, IBM, Yorktown
Heights, NY 10598.

[5] Franaszek, P., Robinson, J., “Design and
Analysis of Internal Organizations For
Compressed Random Access Memory,” to

appear in IBM Journal of Research and
Development Vol-2, 2001.

[6] Franaszek, P., Heidelberger, P., Wazlowski, M.:
“On Management of Free Space in Compressed
Memory Systems”, Proceedings of the ACM
Sigmetrics, 1999.

[7] Wilson, P, Kaplan, S., Smaragdakis, Y.: “The
Case for Compressed Caching in Virtual
Memory Systems”, USENIX Annual Technical
Conference, 1999.

[8] Kjelso, M, Gooch, M., Jones, S.: “Empirical
Study of Memory Data: Characteristics and
Compressibility,” In IEEE Proceedings of
Comput. Digit. Tech, Vol 45, No.1, pp 63-67,
IEEE, 1998.

[9] Larin, Sergei Y.,et al: “Compiler-driven cached
code compression schemes for embedded ILP
processors,” Proceedings of the Annual
International Symposium on
Microarchitecture,1999.pp.82-92.

[10] Chen, I.-C.K., Coffey, J.T., Mudge, T.N.:
Analysis of branch prediction via data
compression, Computer Architecture News v. 24
Special Issue Oct 1996. pp. 128-137

[11] Kalamatianos, John, Kaeli, David R.:
“Predicting indirect branches via data
compression,” Proceedings of the Annual
International Symposium on Microarchitecture
1998. pp. 272-281.

[12] Franaszek, P., Heidelberger, P., Poff, D.E.,
Robinson, J., “Algorithms and Data Structures
for Compressed Memory Machines”, to appear
in IBM Journal of Research and Development
Vol-2, 2001.

[13] Vahalia, U: “Unix Internals, The New
Frontiers”, Prentice Hall, ISBN 0-13-101908-2,
1996

[14] Abali, B., Franke, H., Poff, D.E., Shen, X., and
Smith, T.B. "Performance of Hardware
Compressed Main Memory", proceedings of
The Seventh Int. Symposium High Performance
Computer Architecture (HPCA-7), Monterrey,
Mexico, Jan. 20-24, 2001., pp 73-81.

[15] Abali, B., Franke, H., Poff, D.E., Saccone, R.,
Schulz, C., Herger, L. and Smith, T.B.
"Memory Expansion Technology (MXT):
Software Support and Performance”, to appear
in the IBM Journal of Research and
Development Vol-2, 2001.

9

0.80

0.85

0.90

0.95

1.00

1.05

1.10

cr
af

ty

tw
ol

f

eo
n

vp
r

pa
rs

er gc
c

m
cf

vo
rte

x

pe
rlb

m
k

ga
p

bz
ip

2

gz
ip

av
g

Sp
ec

C
PU

 R
at

io
 (n

or
m

al
iz

ed
)

Standard
MXT-compression-on
MXT-compression-off

Figure 1: SPECint2000 results for three system configurations

0.00

0.50

1.00

1.50

2.00

cr
af

ty

tw
ol

f

eo
n

vp
r

pa
rs

er gc
c

m
cf

vo
rte

x

pe
rlb

m
k

ga
p

bz
ip

2

gz
ip

M
is

s
R

at
io

 (1
00

%
)

Figure 2: L3 Miss Ratio for SPECint2000 under MXT

0

10000

20000

30000

40000

50000

cr
af

ty

tw
ol

f

eo
n

vp
r

pa
rs

er gc
c

m
cf

vo
rte

x

pe
rlb

m
k

ga
p

bz
ip

2

gz
ip

M
is

se
s/

Se
co

nd

Figure 3: L3 request rates for SPECint2000

10

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

512MB Mem -
1xGbit Eth

1GB Mem -
1xGbit Eth

2GB Mem -
1xGbit Eth

512MB Mem -
2x Gbit Eth

1GB Mem - 2x
Gbit Eth

2GB Mem -
2xGb Eth

4GB Mem -
2xGb Eth

Physical Memory Size and Number of Gigabit Ethernet Adapters Per Server

C
on

ne
ct

io
ns

/S
ec

on
d

(n
or

m
al

iz
ed

)

MXT (Compressed Memory 2X)
Standard box

Same Performance, Half the Memory

Same Performance, Half the Memory

Same Memory
Twice the Performance

Figure 4: SpecWeb99 performance comparison

0

10

20

30

40

50

60

70

80

90

512 MB MXT OFF 512 MB MXT ON (1 GB) 1 GB MXT OFF 1 GB MXT ON (2GB) 2GB MXT ON (4GB)

M
in

ut
es

cold warm

Cost Twins: Cost nearly the same, but perform differently
Performance Twins: Perform nearly the same but cost differently

Cost Twins

Performance TwinsCost Twins

Figure 5: Database benchmark results for five different configurations

11

Q7

Q16

Queries
0

20

40

60

80

100

120

S
E
C
O
N
D
S

Standard On Off

Figure 6: DB2 Query Runtimes

T im e , 1 0 6 s e c o n d s
0

1

2

3

4

5

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

M i s s e s & W r i te b a c k s
[T h o u s a n d s]

A c c e s s M is s W r it e B a c k

A c c e s s e s [M i l l i o n s]

Figure 7: Query 7 L3 accesses vs. misses

T im e , 8 7 s e c o n d s
0

1

2

3

4

5
A c c e s s e s [M i l l io n s]

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

M is s e s & W r i te b a c k s
[T h o u s a n d s]

A c c e s s M is s W r ite B a c k

Figure 8: Query 16 L3 accesses vs. misses

12

2.1

1.6

3.4

1.2

2.68
2.3

2.1

0

1

2

3

4

Sy
no

ps
is

 L
og

ic
Sy

nt
he

si
s

Ph
ot

os
ho

p

Te
ire

si
as

, E
.c

ol
i

D
N

A

M
SD

N
 In

st
al

l

D
B2

 D
at

ab
as

e

SP
EC

 C
PU

20
00

 a
vg

.

w
w

w
.p

c.
ib

m
.c

om

C
om

pr
es

si
on

 R
at

io

Figure 9: Compressibility of various applications

Time, 97 Minutes
0

500

1000

1500

2000

2500

3000 MB

Real Physical

Figure 10: DB2 Database Compressibility: real vs. physical memory utilization

