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Abstract 
 
A novel memory subsystem called Memory 
Expansion Technology (MXT) has been built for fast 
hardware compression of main memory contents.  
This allows a memory expansion to present a “real” 
memory larger than the physically available memory.  
This paper provides an overview of the memory 
compression architecture, the OS support and an 
analysis of the performance impact of memory 
compression while running multiple benchmarks. 
Results show that the hardware compression of main 
memory has a negligible penalty compared to an 
uncompressed memory, and for memory starved 
applications it increases performance significantly. 
We also show that applications’ memory contents can 
be compressed usually by a factor of two.   

1. Introduction 
 
Data compression techniques are extensively used in 
computer systems to save storage space or bandwidth.  
Both hardware and software based compression 
techniques are used for storing data on magnetic 
media or for transmission over network links.  While 
compression techniques are prevalent in various 
forms, hardware compression of main memory 
contents has not been used to date due to its 
complexity.  The primary motivator for a compressed 
main memory system is savings in memory cost and 
space savings for tightly packed systems, such as for 
1U (1.75”) thin, rack-mounted systems. Compression 
increases the amount of memory, or in cost sensitive 
applications it provides the expected amount of 
memory at a smaller cost.  Recent advances in parallel 
compression-decompression algorithms coupled with 
improvements in the silicon density and speed now 
makes main memory compression practical [1,2,3,4]. 

A high-end, Pentium-based server class system with 
hardware-compressed main memory, called the 
Memory Expansion Technology (MXT), has been 
designed and built [3].   In this paper, we present a 
brief overview of the hardware and software 
technology required to enable the MXT technology, 
and provide detailed performance results and main 
memory compressibility of several benchmarks.  
Results show that two-to-one compression (2:1) is 
practical for most applications and that the 
performance impact of compression is insignificant, 
and for memory starved applications main memory 
compression improves performance significantly.  
Two-to-one compression effectively doubles the 
amount of memory; or in cost sensitive applications it 
provides the expected amount of memory for ½ the 
expected cost or even less.  Larger memory 
configurations require more expensive, higher density 
memory modules due to the four memory-slot limit of 
a typical system.  Therefore, an additional cost benefit 
of MXT is being able to use less expensive, lower 
density modules.  
Observations show that main memory contents of 
most systems, operating system and applications 
included, are compressible.  Relatively few 
applications’ data that are already compressed or 
encrypted, cannot be further compressed.  In the MXT 
system, a Compressed Memory/L3 cache controller 
chip is central to the operation of the compressed main 
memory [3].  The MXT architecture adds a level to 
the conventional memory hierarchy.  Real addresses 
are the conventional memory addresses seen on the 
processor external bus.  Physical addresses are the 
addresses used behind the controller chip for 
addressing the compressed memory, also referred to 
as physical memory in this paper.  The controller 
performs the real to physical address translation and 
compression /decompression of L3 cache lines.  The 
processors are off-the-shelf Intel processors. They run 
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with no changes in the processor or bus architecture.  
Standard operating systems such as Windows NT, 
Windows 2000 and Linux, run on the new architecture 
with no changes for the most part.  However, a corner 
case exists, in which physical memory may be 
exhausted due to incompressible data. Standard 
operating systems are unaware of this problem. 
Hence, software support is needed to prevent the 
physical memory exhaustion.  The amount of physical 
memory required changes with the compressibility of 
the memory contents.  For example, a program 
starting with zero-filled buffers will require more 
physical memory as the buffers are loaded from disk. 
Hence, the physical memory requirements change as 
the program runs, requiring constant monitoring, and 
tuning as well as a recovery process if memory usage 
approaches the limit of the physical size. This corner 
case and the compressed memory management are 
handled by small modifications in the Linux kernel 
and by a set of user level services and a device driver 
in the Windows NT and Windows 2000 operating 
systems.  
The main contributions of this paper are as follows. 
We provide an overview of the memory compression 
hardware and software support. Combined 
software/hardware design allows applications to run 
and take advantage of compression transparently. 
Using benchmarks we show the cost/performance 
benefits of doubling the memory size due to 
compression. We further show that a number of 
applications’ main memory contents can be 
compressed effectively. 
In the following section we give an overview of the 
MXT hardware. In Section 3 we describe the memory 
compression support added to the Linux and the 
Windows operating system.  In Section 4, we present 
experimental results of various industry benchmarks 
on the MXT system and we examine the 
compressibility of various applications’ memory 
contents. Conclusions are in Section 5. 

2. Overview of MXT Hardware 
 
In an MXT system the physical memory (SDRAM) 
contains compressed data and can be up to 16 GB in 
size. A third level cache (L3) is introduced. The L3 
cache is a shared, 32-MB, 4-way set associative write-
back cache with 1-KB line size and is made of double 
data rate (DDR) SDRAM.  The L3 cache contains 
uncompressed cached lines and hides the latency of 
accessing the compressed memory.  The L3 

Cache/Compressed Memory Controller (Champion 
North Bridge CNB 3.0 HE component of the Pinnacle 
server chipset developed in cooperation with 
Serverworks) is central to the operation of the MXT 
system. The L3 cache appears as the main memory to 
the processors and I/O devices, and its operation is 
transparent to them.  The controller compresses 1 KB 
cache lines before writing them into the physical 
memory. 
The compression algorithm is a parallelized 
generalization [2] of the Lempel-Ziv algorithm known 
as LZ1. The compression scheme stores compressed 
cache lines to the physical memory in a variable 
length format.  The unit of storage in physical 
memory is a 256-byte sector.  Depending on its 
compressibility, a 1 KB cache line may occupy 0 to 4 
sectors in the physical memory.  Due to this variable 
length format, the controller must translate real 
addresses to physical addresses.  A 1 KB cache line 
(real) address is mapped to 0 to 4 sector (physical) 
addresses in the physical memory.  The real address is 
the conventional address seen on the processor chip's 
external bus.  The physical address is used for 
addressing the sectors in the compressed physical 
memory.  The memory controller performs real to 
physical address translation by a lookup in the 
Compression Translation Table (CTT), which is kept 
(uncompressed) at a reserved location in the physical 
memory. The CTT size is 1/64th of the real memory 
size. 
Each 1 KB cache line address maps to one entry in the 
CTT, and each CTT entry is 16 bytes long (therefore, 
the 64 to 1 ratio between and the real memory size and 
the CTT size.)  A CTT entry contains control flags 
and four physical addresses each pointing to a 256-
byte sector in the physical memory.  Different 
physical memory occupancies result from 
compressing 1 KB cache lines with different 
compression characteristics.  For example, a 1 KB 
cache line, which does not compress occupies 4 
sectors, i.e. 1 KB of physical memory. A cache line 
that compresses by 2:1, will occupy only two sectors 
in the physical memory (512 bytes) and the CTT entry 
will contain two addresses pointing to those sectors.  
The remaining two pointers will be null.  For a cache 
line that compresses to less than 120 bits, for example 
a cache line full of zeros, a special CTT format called 
trivial line format exists.  In this format, the 
compressed data are stored entirely in the CTT entry 
replacing the four address pointers.  Therefore, a 
trivial line of 1 KB occupies only 16 bytes in the 
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physical memory resulting in a compression ratio of 
64:1. Another memory saving optimization 
implemented in the controller is sharing of sectors by 
cohort cache lines.  If two 1 KB cache lines are in the 
same 4 KB page, they are called cohorts.  Two 
cohorts may share a sector provided that space exists 
in the sector.  For example, two cohorts each 
compressing to 100 bytes may split and share a sector 
since their total size is less than the sector size of 256 
bytes.  The compression operations described so far 
are entirely done in hardware with no software 
intervention.   
Note that the selection of the 1 KB line size was 
influenced by many factors.  Directory size, which 
grows inversely proportional to the cache line size for 
a given cache size, and the compression block size 
that effects the compression efficiency were the two 
most significant factors for the 1 KB line size [3].  
Shorter lines may not compress well and longer lines 
may impact performance due to longer 
compress/decompress times.  In this implementation, 
multiple compressors are used for performance 
reasons, but the dictionary is shared jointly to achieve 
a better compression ratio.  Another technique that is 
employed to decrease memory-access latency is to 
provide the critical 32 bytes of data to the processor 
bus as soon as it is decompressed, rather than waiting 
until the entire 1 KB line completed.  This technique, 
on average, reduces the decompression latency to one-
half. 
In addition to the above operation the compressed 
memory controller provides fast page operations, such 
as page moving and page zeroing, which perform 
significantly faster than if issued through regular 
memory operations. Fast page operations work on 4-
KB pages, same as in the x86 architecture. The speed 
increase is achieved merely by updating pointers in 
the CTT entries, rather than moving bulk data with the 
processor. 
The decompression latency is brought down 
significantly through the usage of parallel 
compression techniques and the utilization of a deep 
memory hierarchy.  Memory hierarchy employing 
multiple cache levels have been used for many years 
to reduce the effect of main memory access times, 
particularly as the disparity has grown in the past 
decade between processor bus speeds and memory bus 
speeds.  In the MXT architecture the additional L3 
cache captures many accesses that would go to main 
memory for miss retrieval.  The sizes of L2 to L3 are 
256 KB and 32 MB, respectively, leading to a low 

global miss rate.  In addition the L3 cache is shared, 
four-way set associative and write-back.  These 
characteristics, along with the large line size of 1 KB 
in the L3 allows for a low miss rate to the main 
memory. Achieving a low miss rate requires the large 
32MB L3 cache, however the L3 cache size is limited 
by the L3 directory size that can be supported on the 
controller. 
In the MXT architecture, I/O data move through the 
shared L3 cache, unlike in the traditional L1/L2 cache 
organizations.  It is appealing to have direct I/O access 
in to the compressed physical memory in terms saving 
disk space and I/O bandwidth due to the typically 
higher than 1.0 compression ratio.  However, this 
would have been somewhat difficult and impractical 
since it would require additional compression circuitry 
in the I/O path and since data are possibly scattered in 
several non-contiguously located 256-byte sectors.  
Another aspect of this architecture is the real-to-
physical address translation performed by the MXT 
memory controller.  The translation is performed 
transparently to the processors, I/O devices, and 
software. This has the advantage of being able to use 
stock CPUs and I/O peripherals and without any 
changes in the software (except for the memory 
management subsystem of the OS.)   The translation is 
performed only for L3 cache misses which are in the 
low single digits due to the large L3 size.  For current 
processor/memory organizations, combining real-to-
physical address translation with virtual-to-real 
address translation appears neither useful nor 
practical, unless processors and memory controllers 
become integrated on a single chip in the future. 
The additional cost for the MXT memory controller is 
estimated at ~$60-100 plus the cost for the L3 cache 
SDRAM. In return, for a 2GB system supporting 4GB 
of real memory, the system is approximately $2400 
cheaper based on the memory prices effective at the 
time of writing this paper. 
 

3. The MXT Memory Management Software 
 
Compressed memory hardware allows an operating 
system to use a larger amount of real memory than 
physically exists. During the boot process, the 
hardware BIOS reports larger memory size than the 
installed physical memory.  For example, in an MXT 
system we with 512 MB of installed SDRAM and the 
BIOS may reports having 1 GB of memory to the 
operating system.  The main problem in such a system 
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occurs when applications fill the memory with 
incompressible data, although more memory than 
physically available has been committed.  In these 
situations, the common OS is unaware that the 
physical memory may be running out.  For example, a 
1024 MB system may have only 600 MB allocated 
and therefore may appear to have 424 MB free 
memory.  However, due to low compressibility of the 
allocated memory, the physical memory usage may be 
near the 512 MB physical memory limit.  Therefore, if 
the free memory is allocated, or if compressibility of 
the already allocated 600 MB further decreases, then 
the system will run out of physical memory, even 
though it appears to the OS that there is 424 MB free 
memory. Common operating systems do not 
distinguish between real and compressed physical 
memory nor do they deal with out-of-physical-
memory conditions. The MXT memory management 
software addresses this problem. The general 
mechanisms underlying the MXT memory 
management software that prevent physical memory 
from running out can be described as follows: 
A:  Detect physical memory utilization 

1. Either by polling or through interrupts it 
detects physical memory utilization and 
exhaustion. 

2. Detect excessive I/O activity to adjust various 
thresholds to ensure forward progress [6]. 

B:  Reclaim real memory and zero out freed pages to 
reduce utilization 
1. Pageable pages 

a) Make VMM believe that it is running out 
of memory and cause shrinking of file 
caches, and cause the paging daemon to 
move dirty pages to the swap disk.  Pages 
freed are cleared with zeros, therefore 
physical utilization decreases, or 

b) Dispatch memory eater tasks/processes 
that allocate big chunks of memory 
stealing them from other processes. Then, 
clear the pages, while holding on to them 
as long as the physical utilization is high. 

2. Non-pageable pages (e.g. drivers and kernel 
extensions) 
a) Reserve an amount in physical memory 

equal to the non-pageable memory size. 
b) Force drivers to free memory (e.g. MXT 

aware drivers) 
 
C:  Steal CPU cycles to prevent further increase in 

utilization either by 

1. Descheduling processes, or 
2. Decreasing process priorities, or 
3. Activating a set of busy threads (one per 

CPU) to block processes from running. 
 
In Linux, minor changes to the kernel were made in 
order to implement these mechanisms.  For WinNT 
and Win2000, since kernel source code is generally 
not available, a combination of device driver and user-
level services were implemented.  The particular 
details of these implementations under Linux and 
Windows2000 are described in [15]. 

4. Performance Evaluation 
 
The MXT memory system uses a relatively long 1-KB 
compression block size to be able to compress 
efficiently, since shorter blocks may not compress 
well.  Due to the compression and decompression 
operations performed on these blocks in the memory 
controller, memory access times are longer than the 
usual.  The 32-MB L3 cache contains uncompressed 
(1 KB) lines to reduce the effective access times by 
locally serving most of the main memory requests.  
Since this type of memory organization is relatively 
new, we present in the following a detailed 
performance analysis using the SPECint2000, the 
SPECWeb99 and a DB2 database regression test. In 
these experiments, we use MXT systems with dual 
733 MHz Pentium III processors and a single disk 
drive. Dependent on the benchmark we run both 
Linux and Windows2000 and different memory sizes 
ranging from 512MB to 2GB physical memory.  The 
MXT hardware was an early prototype, which had 
some of the performance enhancing features disabled 
such as bus defer response and processor IOQ depth 
limited to 1, due to hardware bugs.  We compared the 
MXT hardware to a standard system with similar 
hardware characteristics except with no compression 
or L3 support.  
 
4.1 SPECint2000 Results 
 
The SPECint2000 benchmark suite is designed by the 
SPEC consortium to measure the performance of the 
CPU and the memory 
(http://www.spec.org/osg/cpu2000/) and requires 
approximately 256 MB of memory.  There are 12 
integer benchmarks in the suite.  These are the gzip 
data compression utility, vpr circuit placement and 
routing, gcc compiler, mcf minimum cost network 
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flow solver, crafty chess program, parser natural 
language processing, eon ray tracing, perlbmk perl 
utility, gap computational group theory, vortex object 
oriented database, bzip2 data compression utility, and 
twolf place and route simulation benchmarks.   
We ran the benchmarks three times, once on the 
standard system, and twice on the MXT system with 
the compression on and off.  The difference between 
the standard and the MXT with compression off 
results give the performance impact of L3 cache.  The 
difference between compression off and compression 
on results gives the performance impact of the 
compression-decompression hardware.  The MXT 
system has a boot option that permits compression to 
be turned off.  In that case, the system operates as a 
standard with an L3 cache and with non-compressed 
memory.  Since compression/decompression hardware 
is disabled, the memory access latency is expected to 
be different than that of the compression-on case. We 
also recorded the number of L3 requests and L3 
misses using the performance counters built into the 
memory controller chip. 
Main results of the SPECint2000 experiments are 
shown in Fig. 1. The right most three columns are the 
average SPECint rates for the three systems that we 
considered.  Due to strict reporting requirements of 
the SPEC consortium, we cannot publish the actual 
execution times.  Therefore, we normalized the 
compression on and off results relative to the standard 
system results. Results show that on the average, 
MXT with compression-on is 1.3% faster than a 
standard system.  The individual benchmarks twolf, 
vpr, parser, gcc, and bzip2 perform 4.0 to 8.3% faster 
on the MXT system as shown in Fig.1.  Mcf runs 1.1% 
faster on MXT.   The L3 miss rates (Fig.2) and L3 
request rates (Fig.3) for these six benchmarks reveal 
the reason: their miss rates are relatively small, but 
their L3 request rates are the highest among the twelve 
benchmarks.  In other words, the working set of these 
six benchmarks fit in the 32 MB L3 cache and since 
they make large number of L3 requests, the L3 cache 
comprising double data rate (DDR) SDRAM gives a 
slight performance advantage over the standard 
system comprising regular SDRAM.  On the contrary 
the benchmarks vortex, gzip, and gap respectively run 
2.1%, 2.4%, and 10% slower on the MXT system than 
the standard system.  Fig.2 shows that these three 
benchmarks have the highest miss rates among the 
twelve benchmarks (gap that has the worst 
performance and the highest miss rate.)  It also has the 
highest misses/second metric, which is 2.6 times 

greater than the next highest.  Another observation is 
the relatively small L3 request rates for crafty and 
eon, which indicate that their working sets entirely fit 
in the L1 and L2 caches. Therefore, the L3 cache does 
not impact the performance of crafty and eon, which 
reveals itself as a negligible difference in their SPEC 
rates on Figure 1. Comparisons between MXT with 
compression and without compression show that the 
compression on case is 0.4% faster than the 
compression off case on the average.  Figure 1 shows 
that vpr and twolf have the greatest difference in favor 
of the compression-on case.  One possible explanation 
is that cache misses of these two benchmarks may 
result in large number of trivial line compression and 
decompressions.  As explained before, a trivial line is 
an L3 cache line, which compresses to less than 120 
bits and therefore is stored in a 16 byte CTT entry.  
Compression and decompression of trivial lines may 
have a smaller overhead than that of a line occupying 
a sector (256 bytes) or more in the physical memory.  
For example, cold cache misses at the beginning of 
execution will almost always result in trivial line 
compressions because the memory is filled with zeros 
initially.  The compression off case runs faster than 
the compression on case for the gap and vortex 
benchmarks by 1.5 and 1.9% respectively.  These 
have the first and third highest miss rates, and first and 
second highest misses per second. 
In summary, the impact of the L3 cache and memory 
compression for the set of benchmarks is negligibly 
small considering that MXT doubles the amount of 
memory. 

4.2.  SpecWeb99 Results 
 
In this test we measure the performance of webserving 
using the SpecWeb99 Benchmark comparing an MXT 
system with a standard system. The operating system 
is Linux and the webserver is TUX 2.0. The fileset of 
SPECweb99 was generated with the test option of 
wafgen.c enabled to make the files compressible. The 
standard SPECweb99 benchmark uses random 
character strings as the file content which is not 
realistic. Web content is generally compressible by a 
factor of 2 as shown later in Figure 9 and [14]. Web 
benchmarks including the SPECweb99 need to be 
changed to present a more realistic web content. Two 
system configurations with varying memory sizes and 
different number of Gigabit Ethernet adapters are 
analyzed. The left columns in Figure 4 show the 
achievable number of connections per second for the  
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adapter (1EthGb) configurations. Since the SPEC 
consortium has strict rules for reporting results, we are 
not providing absolute numbers of achievable 
connections, but only relative numbers normalized 
with respect to the left hand most column (512MB 
MXT+1EthGB).  Adding further memory to the 
system does not substantially increase the 
performance as the system is bandwidth limited. 
However, we observe that MXT can provide roughly 
the same performance with half the physical memory 
configured in the standard box. Adding an additional 
adapter in the 2EthGB configuration moves the 
bandwidth limitation from the 1GB memory size to 
the 2GB memory size. Again we observe that the 
same performance can be achieved under MXT with 
half the memory size of the standard box. We further 
note that at the same physical memory size the MXT 
systems delivers twice the performance. At this 
operating point, the I/O bandwidth is not the limiting 
factor. Instead, under MXT the OS is capable to keep 
a significantly higher number of webpages in the file 
cache (due to the compression) and thus does not have 
to fetch them as frequently from the disk. This is point 
is further supported in the section 5 about the 
application compressability. 

4.3.  DB2 Database Benchmark Results 
 
The MXT system has been measured running an 
insurance company database schema.  This 
configuration is primarily used within IBM as a quick 
regression test for ascertaining the impact of DBMS 
design changes (http://www.ibm.com 
/software/data/db2/). It is substantially less costly and 
quicker to run than complex benchmarks such as 
TPC-C, but is coarsely representative of the 
performance characteristics that might be expected.  
Several configurations were run on the prototype 
hardware: 512 MB with MXT off, 512 MB (1 GB 
expanded) with MXT turned on, 1 GB MXT off, 1 GB 
MXT on (2 GB expanded), and 2GB MXT on (4GB 
expanded) configurations.  Benchmarks ran on the 
Windows 2000 operating system. Two runs were 
made for each configuration, a cold run where the file 
cache is initially empty, and immediately following 
that a second warm run, where the buffers have been 
“warmed” by the preceding cold run.   
Figure 5 shows the performance benefits of MXT.  
For the 512 MB system when compression is on, it 
doubles the effective amount of memory and the 
benchmark runs 25% faster than the compression off 

case.  For the 1 GB system when compression is on, it 
doubles the effective amount of memory to 2 GB and 
the benchmark runs 66% faster than the compression 
off case.  It is interesting to note that the benefit of 
larger memory is more pronounced for this workload 
for larger memory sizes, and is indicative of both the 
smaller 512 MB memory and 1 GB memory 
configurations being memory starved.  Finally, the 
2GB configuration (4GB with compression on) 
contains the entire database in memory. The 
performance improvement in this case is 300%.  
Figure 5 also shows “performance twins” and “cost 
twins” to emphasize the benefits of MXT.  
Performance twins perform nearly identical, however 
the MXT-on twin costs less since its memory 
requirements are one-half.  Cost twins have the same 
amount of physical memory, however the MXT-on 
twin performs better due to the doubling of the 
memory. 
Figure 6 shows runtimes of the individual DB2 
queries in a 4GB system after warm-up. The database 
is in memory at this point, so most I/O is eliminated.  
Generally, queries run a bit faster with compression 
on. Query 16 is an exception. This result is explained 
in Figures 7 and 8 which detail L3 cache accesses and 
misses for Queries 7 and 16.  Query 7 has much 
higher L3 access and miss rates, and the compression 
ratio for this database is 2.68:1, resulting in improved 
bandwidth between the L3 cache and main memory 
with compression on. 
However, the standard system generally runs faster. 
The ‘standard system’ used the same processors, twice 
the amount of SDRAM used in MXT, and a similar 
memory controller, except no compression or L3 
support.  On this early MXT prototype, performance-
enhancing features of the processor bus was disabled 
due to hardware bugs, such as bus defer response and 
IOQ depth limited to 1, which is one possible 
explanation.  Another possibility is higher L3 miss 
rates degrading overall performance compared to a 
standard system without an L3 cache.  

4.3 Compressibility of Applications 
 
Now that the performance of the MXT system is 
established, we turn our attention to the 
compressibility of main memory contents of various 
applications.  We measured the compression ratios on 
the actual MXT hardware whenever possible.  We 
used an estimation tool when MXT hardware was not 
available.  Estimation tool samples the live memory 
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contents while the application is running on a standard 
computer and predicts the compression ratio.  Results 
show that most of these applications’ main memory 
contents can be compressed usually by a factor of 2:1, 
justifying the real to physical memory ratio chosen for 
the MXT systems.  The estimation tool is available for 
download at http://oss.software.ibm.com/developer 
works/opensource/mxt/. 
On the MXT hardware, the real and physical memory 
utilizations were recorded using an instrumentation 
register of the memory controller.  The Sectors Used 
Register (SUR) reports to the operating system the 
amount of physical memory in use.  A sampler 
program reads every two seconds the SUR register 
and the real memory utilization as reported by the OS 
and saves them in a file to be processed later.  The 
measured memory values are for the entire memory.  
Therefore, in addition to the benchmark application’s 
memory utilization, the measurements include 
possibly large data structures such as file cache and 
buffer cache that the OS maintains for efficient use of 
the system.  In a post-processing step we took the 
average of the samples to produce the average 
compression ratio of a given benchmark.   
Figure 9 shows the compression ratios for a few 
applications. Synopsis, Photoshop, MSDN Install and 
DB2 compression ratios were measured on the MXT 
hardware with the Windows2000 operating system. 
The Synopsis tool is used as a step in automating chip 
design. Photoshop compressibility varies significantly 
depending on the properties of the images being 
processed. For example, high-resolution topographical 
maps are incompressible, while images having less 
resolution, or areas of constant background compress 
well.   Teiresias, from IBM Research, is an efficient 
algorithm for finding patterns in genetic structures. 
Teiresias ran on a stock PC and the compressibility 
was measured by an estimation tool that sampled the 
memory contents.  This compressibility measurement 
was taken while analyzing the E.coli DNA.  Microsoft 
Developer Network (MSDN) installation and most 
software installations compress poorly since the 
CDROM files are already compressed.  The install 
program itself consumes only 4 MB. However, the 
associated file cache or NT standby pages fill the 
remainder of memory.  The DB2 result is for an 
insurance company database schema. SPEC CPU 
2000 is the average of the 12 integer benchmarks in 
the SPEC suite.  Www.pc.ibm.com is a live web 
server used by IBM PC company customers.  This 
result was obtained on a production web server and 

we used the estimation tool to sample memory 
contents. 
Figure 10 shows the compressibility of the DB2 
insurance database over time. The set of DB2 queries 
was run three times. The first run took 44 minutes, a 
cold run, reading the database from disk. The second 
and third runs took 12 minutes each, following 20 
minutes idle time. Average compressibility was 
2.68:1. 
Overall the compressibility of applications, 
particularly those that require large memories 
(Webserving, databases), is at least 2:1. This justifies 
running the MXT system at a 2:1 real to physical ratio 
and one should not expect the physical exhaustion 
mechanism to kick in other than in “emergency” 
situations. 

5.  Related Work    
 
Reference [2] considers an approach to compression 
that yields parallel speedup, while maintaining the 
compression efficiency of sequential approaches.  
Related work [5] focuses on the internal design of 
compressed random access memories. The issues of 
effective memory management in a compressed 
memory system are considered in [6].  A method for 
estimating the number of page frames as a function of 
physical memory utilization is described.  They 
further model the residency of outstanding I/O as they 
transfer data into the memory when streamed through 
a cache, thus potentially forcing cache write backs that 
could increase the physical memory utilization.  Using 
a time decay model they evaluate the system behavior 
using simulation.   Reference [7] describes an 
approach to compression that removes the tight 
constraints of latency and bandwidth.  This is 
accomplished by devising an architecture with two 
pseudo-levels – compressed and uncompressed 
memory, and the CPU operates only from the 
uncompressed region where the most frequently used 
pages are stored.  Reference [8] introduces the concept 
of the compression cache, an intermediate level in the 
memory hierarchy that serves as a paging store.  The 
author introduces this concept to take advantage of the 
improving speed of processors versus disk, and notes 
that the growing disparity between these system 
elements makes compression close to the processor an 
appealing feature. Reference [9] and the TinyRISC 
effort use compression to reduce embedded system 
code size.  References [10] and [11] use compression 
techniques to increase branch prediction accuracy in 
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microprocessors.  Reference [12] describes algorithms 
and data structures for compressed memory machines. 
In contrast, our approach allows entire memory to be 
compressed unlike in [8], and it does not partition the 
main memory as compressed and uncompressed as in 
[7].    

6. Conclusion 
 
In this paper we described and evaluated a computer 
system with hardware main memory compression that 
effectively doubles the size of the main memory. We 
gave a brief overview of the MXT hardware and 
software technology. We measured the impact of 
compression on the application performance and 
determined that the hardware compression has a 
negligible penalty over an uncompressed hardware.  
We measured real and physical memory utilization of 
various applications and determined that main 
memory contents can be compressed usually by a 
factor of 2 or greater. Overall MXT provides an 
compelling argument to either increase performance 
through increased real memory size at the same price 
as standard systems or to reduce the cost of the system 
while retaining the same performance characteristics 
of standard systems. 
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Figure 1: SPECint2000 results for three system configurations 
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Figure 2: L3 Miss Ratio for SPECint2000 under MXT 
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Figure 3: L3 request rates for SPECint2000 
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Figure 4: SpecWeb99 performance comparison 
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Figure 5: Database benchmark results for five different configurations 
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Figure 6: DB2 Query Runtimes 
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Figure 7: Query 7 L3 accesses vs. misses 

 

T im e ,  8 7  s e c o n d s
0  

1  

2  

3  

4  

5  
A c c e s s e s  [  M i l l io n s  ]  

0  

1 0  

2 0  

3 0  

4 0  

5 0  

6 0  

7 0  

8 0  

9 0  

1 0 0  

M is s e s  &  W r i te b a c k s
[  T h o u s a n d s  ]  

A c c e s s  M is s  W r ite B a c k  

 
Figure 8: Query 16 L3 accesses vs. misses 
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Figure 9: Compressibility of various applications 
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Figure 10: DB2 Database Compressibility: real vs. physical memory utilization 

 

 


