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The probabilistic relationship between the assignment

and asymmetric traveling salesman problems

Alan Frieze� Gregory B. Sorkiny

25 June 2001

Abstract

We consider the gap between the cost of an optimal assignment in a complete bi-

partite graph with random edge weights, and the cost of an optimal traveling salesman

tour in a complete directed graph with the same edge weights. Using an improved

\patching" heuristic, we show that with high probability the gap is O((lnn)2=n), and
that its expectation is 
(1=n). One of the underpinnings of this result is that the largest
edge weight in an optimal assignment has expectation �(lnn=n). A consequence of

the small assignment-TSP gap is an e
~O(
p
n)-time algorithm which, with high probabil-

ity, exactly solves a random asymmetric traveling salesman instance. In addition to

the assignment-TSP gap, we also consider the expected gap between the optimal and
second-best assignments; it is at least 
(1=n2) and at most O(lnn=n2).

1 Introduction

The Assignment Problem (AP) is the problem of �nding a minimum-weight perfect matching
in an edge-weighted bipartite graph. An instance of the AP can be speci�ed by an n � n
matrix C = (C(i; j)); here C(i; j) represents the weight (or \cost") of the edge between
i 2 X and j 2 Y , where X and Y are disjoint copies of [n] = f1; 2; : : : ; ng and X is the
set of \left vertices" and Y is the set of \right vertices" in the complete bipartite graph
KX;Y . The AP can be stated in terms of the matrix C as follows. Find a permutation � of
[n] = f1; 2; : : : ; ng that minimizes

Pn
i=1C(i; �(i)). Let AP(C) be the optimal value of the

instance of the AP speci�ed by C.
The Asymmetric Traveling-Salesman Problem (ATSP) is the problem of �nding a Hamil-

tonian circuit of minimum weight in an edge-weighted directed graph. An instance of the
ATSP can be speci�ed by an n� n matrix C = (C(i; j)) in which C(i; j) denotes the weight
of edge (i; j). The ATSP can be stated in terms of the matrix C as follows: �nd a cyclic
permutation � of [n] that minimizes

Pn
i=1C(i; �(i)); here a cyclic permutation is one whose

cycle structure consists of a single cycle. Let ATSP(C) be the optimal value of the instance
of the ATSP speci�ed by C.
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University, Pittsburgh PA15213, e-mail alan@random.math.cmu.edu

yDepartment of Mathematical Sciences, IBM T.J. Watson Research Center, Yorktown Heights NY 10598,
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It is evident from the parallelism between the above two de�nitions that AP(C) �
ATSP(C). The ATSP is NP-hard, whereas the AP is solvable in time O(n3). Several
authors, e.g. Balas and Toth [5], have investigated whether the AP can be used e�ectively
in a branch-and-bound method to solve the ATSP and have observed that the AP gives
extremely good bounds on random instances.

Karp was able to explain this in an important paper [15]. He assumed that the entries
of C were independent uniform [0,1] random variables, and proved the surprising result that

E(ATSP(C)� AP(C)) = o(1): (1)

Since whp1 AP(C) > 1 we see that this rigorously explains the quality of the assignment
bound, a signi�cant plus for probabilistic analysis. Karp proved (1) constructively, analysing
an O(n3) patching heuristic that transformed an optimal Assignment Problem solution into
a good TSP solution. Karp and Steele [16] simpli�ed and sharpened this analysis, and Dyer

and Frieze [8] improved the error bound in (1) to O
�

(lnn)4

n ln lnn

�
. Our �rst theorem sharpens

this further.

Theorem 1 Over random cost matrices C,

whp; ATSP(C)� AP(C) � c1
(lnn)2

n
and

E(ATSP(C)� AP(C)) � c0
n
:

In this paper, c0; c1; : : : are positive absolute constants whose precise values are not too
important to us. The proofs of Theorems 1{4 constitute the body of the paper.

As in previous works, we will prove the upper bound in Theorem 1 by analysing an
O(n3) heuristic which patches an optimal AP solution into a good ATSP solution. We
note a related discretized result of Frieze, Karp and Reed [12], who consider the C(i; j) to
be random positive integers chosen from a range [0; L = L(n)], and determine for what
functions L(n) one has ATSP = AP whp.

Karp and Steele showed that whp the greatest cost of an edge used in the optimal

assignment was O
�
(lnn)2

n

�
; our next theorem improves upon this. Let Cmax = Cmax(C)

denote the maximum cost of an edge used in an optimal assignment.

Theorem 2 Whp over random cost matrices C,

(1� o(1))
lnn

n
� Cmax � c2

lnn

n
:

It is perhaps of interest to estimate the expected di�erence �1 between the cheapest
and second-cheapest assignments. (Since 1 in n permutations is cyclic, it is plausible that
the ATSP might typically be the n'th cheapest assignment, providing one reason that gaps
between various cheap assignments are a natural object of study.)

1with high probability, i.e., with probability 1-o(1) as n!1
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Theorem 3 Over random cost matrices C,

1

n2
(1� o(1)) � E(�1) � c3

lnn

n2
:

The algorithm with the best known worst-case time for solving the ATSP exactly is the
O(n22n) dynamic programming algorithm of Held and Karp [13]. The next theorem describes
a modest, probabilistic improvement.

Theorem 4 Whp, a random instance of the ATSP can be solved exactly in time e
~O(
p
n).

Here ~O is the standard notation for ignoring logarithmic factors.

2 Analysis of the Assignment Problem

In this section we will prove Theorem 2. The diÆcult part of the proof | showing that
the longest edge in an optimal assignment has length O(lnn) | has its essence in Lemma 5
below.

De�ne the k-neighborhood of a vertex to be the k vertices nearest it, where distance is
given by the matrix C; let the k-neighborhood of a set be the union of the k-neighborhoods
of its vertices. In particular, for a complete bipartite graph KX;Y and any S � X, T � Y ,

Nk(S)
:
= fy 2 Y : 9s 2 S s.t. (s; y) is one of the k shortest arcs out of sg; (2)

Nk(T )
:
= fx 2 X : 9t 2 T s.t. (x; t) is one of the k shortest arcs into tg: (3)

Given the complete bipartite graph KX;Y , any permutation � : X ! Y has an associated
matching M� = f(x; y) : x 2 X; y 2 Y; y = �(x)g. Given a cost matrix C and permutation
�, de�ne the digraph

~D = ~DC;� = (X [ Y; ~E) (4)

consisting of backwards matching edges and forward \short" edges:

~E = f(y; x) : y 2 Y; x 2 X; y = �(x)g [ f(x; y) : x 2 X; y 2 N40(x)g
[ f(x; y) : y 2 Y; x 2 N40(y)g: (5)

Lemma 5 Whp over random cost matrices C, for every permutation �, the (unweighted)

diameter of ~D = ~DC;� is at most 3 log4 n.

Proof. For S � X, T � Y , let

N ~D(S) = fy 2 Y : 9s 2 S such that (s; y) 2 ~Eg;
N ~D(T ) = fx 2 X : 9t 2 T such that (x; t) 2 ~Eg:

3



We �rst prove that whp, for all S � X with jSj � dn=5e, jN ~D(S)j � 4jSj. (Note that only
the cheap edges out of S, and not the matching edges into it, are involved here.)

Pr(9S : jSj � dn=5e ; jN ~D(S)j < 4jSj) �
dn=5eX
s=1

�
n

s

��
n

4s

� �4s
40

��
n
40

�
!s

�
dn=5eX
s=1

�ne
s

�s �ne
4s

�4s�4s
n

�40s

=

dn=5eX
s=1

�
e5436s35

n35

�s

= o(1): (6)

Similarly, whp, for all T � Y with jT j � dn=5e, jN ~D(T )j � 4jT j. (Again only the cheap
edges, not the matching edges, are involved.)

In the remainder of this proof, assume that we are in the high-probability \good" case,
in which all small sets S and T expand.

Now, choose an arbitrary x 2 X, and de�ne S0; S1; S2; : : : ; by

S0 = fxg and Si = ��1(N ~D(Si�1)):

Since we are in the good case, jSij � 4jSi�1j provided jSi�1j � n=5, and so there exists
a smallest index iS � 1 � log4(n=5) � log4 n � 1 such that jSiS�1j > n=5. Arbitrarily
discard vertices from SiS�1 to create a smaller set S 0iS�1 with jS 0iS�1j = dn=5e, so that
S 0iS = N ~D(S

0
iS�1) has cardinality jS 0iS j � 4jS 0iS�1j � 4n=5.

Similarly, for an arbitrary y 2 Y , de�ne T0; T1; : : : ; by
T0 = fyg and Ti = �(N ~D(Ti�1)):

Again, we will �nd an index iT � log4 n whose modi�ed set has cardinality jT 0
iT
j � 4n=5.

With both jS 0iS j and jT 0
iT
j larger than n=2, there must be some x0 2 S 0iS for which y0 =

�(x0) 2 T 0
iT
. This establishes the existence of a walk and hence a path of length at most

2(iS + iT ) � 2 log4 n from x to y in ~D.
We have proved there is a short path from any x 2 X to any y 2 Y . A short path from

x to x0 both in X can be formed by going from x to y = �(x0) and appending the backward
edge to x0; a path from y to x0 by starting with the backward edge from y to x = ��1(y) and
then pursuing a path to x0; and a path from y to y0 by taking a path from y to x0 = ��1(y0)
and discarding its �nal backward edge. 2

We will also need the following inequality, Lemma 4.2(b) of [11].

Lemma 6 Suppose that k1 + k2 + � � � + kM � a lnN , and Y1; Y2; : : : ; YM are independent
random variables with Yi distributed as the kith minimum of N independent uniform [0,1]
random variables. If � > 1 then

Pr

�
Y1 + � � �+ YM � �a lnN

N + 1

�
� Na(1+ln ���):
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Let the weight of a forward edge (x; y) be C(x; y) and the weight of a backwards edge
(y; x) be �C(x; y).
Lemma 7 Whp over random C, for all �, the weighted diameter of ~D = ~DC;� is � c2

lnn
n
.

Proof. Let

Z1 = max

(
kX
i=0

C(xi; yi)�
k�1X
i=0

C(yi; xi+1)

)
; (7)

where the maximum is over sequences x0; y0; x1; : : : ; xk; yk where (xi; yi) is one of the 40
shortest arcs leaving xi for i = 0; 1; : : : ; k � k0 = d3 log4 ne.

We estimate the probability that Z1 is large. Indeed, for any � > 0 we have

Pr

�
Z1 � �

lnn

n

�
�

k0X
k=1

n2k+1 1

(n� 1)k
1

k!
�

Z 1

y=0

"�
y lnn

n

�k X
�1+���+�k�40k

q(�1; : : : ; �k; � + y)

#
dy

where

q(�1; : : : ; �k; �) = Pr

�
X1 + � � �+Xk � �

lnn

n

�
;

X1; : : : ; Xk are independent and Xj is distributed as the �jth minimum of n � 1 uniform
[0,1] random variables.

Explanation: We have � n2k+1 choices for the sequence x0; y0; x1; : : : ; xk; yk. The term
1
k!

�
y lnn
n

�k
bounds the probability that the sum of k independent uniforms, C(y0; x1) + � � �+

C(yk�1; xk), is at most y lnn
n

. We integrate over y. 1
n�1 is the probability that (xi; yi) is the

�ith shortest edge leaving xi, and these events are independent for 0 � i � k � 1. The �nal
summation bounds the probability that the associated edge lengths sum to at least (�+y) lnn

n
.

It follows that if � is suÆciently large then, for all y � 0, q(�1; : : : ; �k; � + y) � n�(�+y)=2

and

Pr

�
Z1 � �

lnn

n

�
� 2n1��=2

k0X
k=1

(lnn)k

k!

�
40k � 1

k � 1

�Z 1

y=0

ykn�y=2dy

� 2n1��=2
k0X
k=1

(lnn)k

k!

�
40e

lnn

�k+1

�(k + 1)

� 2n1��=2(40e)k0+2

= o(1):

Similarly, whp Z2 � � lnn
n
, where Z2 is the maximum of the RHS of expression (7) over

sequences where (xi; yi) is one of the 40 shortest arcs entering yi.
An alternating path P from x 2 X to y 2 Y de�ned in Lemma 5 can be decomposed

into a path P1 from x to y0 = �(x0), the edge (y0; x0) and a path P2 from x0 to y. The cost
of P is at most the sum of the costs of P1; P2 which is at most Z1 + Z2 � 2� lnn

n
whp.
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We have proved there is a cheap path from any x 2 X to any y 2 Y . Extending this to
cheap paths between any two vertices is just as in the proof of Lemma 5. 2

We can now prove Theorem 2, repeated here for convenience.

Theorem 2 Whp over random cost matrices C,

(1� o(1))
lnn

n
� Cmax � c2

lnn

n
:

Proof. The lower bound follows easily from the fact that lnn
n

is the threshold probability
for a random bipartite graph to have a perfect matching, as shown by Erd}os and R�enyi [10].

For the upper bound, de�ne ~D = ~DC;� as per (4) and (5). From the preceding lemma,
we can assume the existence of a cheap alternating path from any x to �(x),

x = x0; y0; x1; y1; : : : ; xk; yk = �(x); k � 2k0 (8)

consisting of cheap forward edges and backwards matching edges. Appending a �nal back-
wards edge (�(x); x) creates an alternating cycle.

If any edge in the optimal matching has cost C(x; �(x)) > c2 lnn
n

, then the canonical

alternating cycle on x has reverse (matching) edge cost at least c2 lnn
n

yet whp has forward

edge cost Zx � c2 lnn
n

. From the original matching, delete the alternating cycle's match-
ing edges and replace them with its forward edges to produce a new matching of smaller
cost | contradicting optimality. Thus whp, every edge in an optimal matching has cost
C(x; �(x)) � c2 lnn

n
. 2

3 Analysis of the Traveling Salesman Problem

Our goal in this section is to prove Theorem 1, recalled here for convenience.

Theorem 1 Over random cost matrices C,

whp; ATSP(C)� AP(C) � c1
(lnn)2

n
and

E(ATSP(C)� AP(C)) � c0
n
:

We prove the Theorem's �rst assertion in sections through 3.3, and the second in sec-
tion 3.4.

If (i; �(i)), i 2 X, is a perfect matching of KX;Y , then (i; �(i)) de�nes a permutation
digraph, i.e., a set of vertex-disjoint directed cycles that cover all n vertices of the complete
directed graph ~Kn associated with KX;Y . The size j�j of � is the number of cycles in the
permutation.

Similarly a near-perfect matching gives rise to a near-permutation digraph (NPD), i.e.,
a digraph obtained from a permutation digraph by removing one edge. Thus an NPD �
consists of any number of directed cycles and a single directed path PATH(�).

The edges (i; j) will be coloured: Red for C(i; j) 2 [0; c2
lnn
n
]; Blue for C(i; j) 2

(c2
lnn
n
; 2c2

lnn
n
]; Green for C(i; j) 2 (2c2

lnn
n
; 3c2

lnn
n
]; and Black otherwise.

We will use a three phase method as outlined below:
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Phase 1. Solve the assignment problem to obtain an optimal assignment � and perfect
matching M� in KX;Y ; whp, only Red edges are used.

Phase 2. Whp, at cost O( (lnn)
2

n
) we increase the minimum cycle length in the permutation

digraph to at least n0 =
�
n ln lnn
lnn

�
. We use Red and Blue edges.

Phase 3. Whp, at cost O( (lnn)
2

n
) we convert the Phase 2 permutation digraph to a tour.

We use Green edges.

3.1 Phase 1

That only Red edges are used in an optimal assignment is immediate from Theorem 2.
Furthermore, given the optimal assignment and conditional on it only using Red edges,
the edges which are not Red can be thought of as having independent lengths, uniform in
[c2

lnn
n
; 1].

Also, whp, the optimal assignment �'s associated permutation digraph �1 is of size
j�1j � 2 lnn. This holds because � is a random permutation; we will elaborate on this in
Phase 2.

3.2 Phase 2

In this phase, to increase the minimum cycle length in the PD, we will deal with each small
cycle in turn. Let us describe the essence of how one small cycle of a PD is repaired, setting
aside the combinatorial and probabilistic issues. One edge (a; b) of the cycle is chosen. From
vertex a, an alternating path is grown, alternating forward non-PD edges (starting with
an edge out of a) with PD edges traversed backwards. From b a similar path is grown,
alternating non-PD edges traversed backwards (starting with an edge into b) with PD edges
traversed forwards. The a-path, followed by the edge joining its terminal to that of the
b-path, followed by the reversed b-path, followed by the edge (b; a), de�nes an alternating
cycle. The \sum" of this cycle and the original PD is a new PD. If the two paths, and the
edge bridging their endpoints, are cheap, the new PD is not much more expensive than the
old one. How does the new structure compare with the old one?

Consider the sum of the original PD and the path on a, as the path grows. When the
path enters a vertex on a PD cycle and exits from the vertex's predecessor, the sum (an
NPD) includes a directed path starting at a and going the long way around through the
cycle. When the next cycle is struck, it is added to this string. If a cycle is hit a second time
(\the string crosses itself"), the loop formed splits o� as a cycle, and the path continues on.
Similarly from b. As long as no cycles split o� are small, and either a or b hits at least one
large cycle, the new cycle containing a and b, and any other new cycles formed, will be large.
We will try to arrange for this to be the case, otherwise declaring the attempt a failure.

If we fail for a cycle, then the entire algorithm fails. If we succeed, we proceed to the
next small cycle, until all small cycles are repaired.

Of course the \new" PD of one case becomes the \original" PD of the next one, and the
most diÆcult part of the analysis will be to avoid conditioning that might be introduced by
this evolving cycle structure. (We will rely on the fact that a PD is induced by a bipartite
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matching when the two sets of vertices are put into correspondence by a labelling, and until
that labelling is established, the PD and the matching are in a sense independent.)

The �rst detail is the construction of the cheap alternating paths out of vertices a and
b. Paths alternating with respect to a PD as described above are | equivalently | alter-
nating with respect to the corresponding bipartite matching. We begin by �nding a cheap
\alternating tree" (actually a directed acyclic graph, or DAG, but no matter), rooted at a,
containing many cheap alternating paths. After doing the same for b, we (hopefully) �nd
some cheap edge between an a-leaf and a b-leaf, and we use the paths selected by these
leaves.

To de�ne the trees, recall the de�nitions (2) and (3) of Nk(S) and Nk(T ). For the
remainder of this section let K be a suitably large constant. Let EK = f(x; y) : y 2
NK(x) or x 2 NK(y)g.

Lemma 8 For any �xed K, whp over random matrices C, every set of s � s0 = lnn
2 ln lnn

vertices, spans at most s edges from EK.

Proof. Since K is large, we know that whp every edge in EK has length at most 2K lnn
n
.

So the probability there exists a small set S containing jSj+ 1 edges is at most

o(1) +
s0X
s=1

�
n

s

��
s(s� 1)

s + 1

��
2K

lnn

n

�s+1

� o(1) +
s0X
s=1

s

n
(2e2K lnn)s+1 = o(1):

2

Lemma 9 Whp over random matrices C, for all S � X, T � Y , with jSj; jT j � n3=4,

jNK(S)j � (K � 2)jSj and NK(T )j � (K � 2)jT j: (9)

Proof. Just as in deriving (6),

Pr(9S or T : :(9))

� 2
n3=4X
s=1

�
n

s

��
n

(K � 2)s

� �(K�2)s
K

��
n
K

�
!s

= o(1):

2

As before, we use this expansion to create many short alternating paths. Let a bijection
(matching) �i between X and Y be given, and let one matching edge (ai; bi) be speci�ed.
De�ne branching factors

r1 = dK lnne and rt = K

for a �rst generation t = 1 and for all subsequent generations t � 2 respectively. For each i
we construct a pair of \trees" (actually DAGs), Si rooted at ai and Ti at bi, which we will use

8



to modify bijection � = �i. Their depth-t nodes consist of the sets S
(t)
i and T

(t)
i respectively.

The depth-0 node sets are the singletons

S
(0)
i = faig and T (0)

i = fbig:
De�ne

s0 =
lnn

12 ln lnn
;

and for 1 � t � s0 let

S
(t)
i = ��1(Nrt(S

(t�1)
i )) and T

(t)
i = �(Nrt(T

(t�1)
i )):

For t > s0 let

S
(t)
i = ��1(Nrt(S

(t�1)
i )) n (

i�1[
i0=1

ln lnn[
u=1

S
(u)
i0 [

i�1[
i0=1

ln lnn[
u=1

��1(T (u)
i0 ))

T
(t)
i = �(Nrt(T

(t�1)
i )) n (

i�1[
i0=1

ln lnn[
u=1

T
(u)
i0 [

i�1[
i0=1

ln lnn[
u=1

�(S
(u)
i0 )):

It is immediate that jS(1)
i j = jT (1)

i j = r1. For t � 2 and (as will always be the case) i < 4 lnn,

it follows from Lemmas 8 and 9 that whp jS(t)
i j � (K�3)jS(t�1)

i j and jT (t)
i j � (K�3)jT (t�1)

i j
as long as both S

(t�1)
i and T

(t�1)
i are of size at most n3=4. Lemma 8 means that for all i0 < i,�����

s0[
t=1

S
(t)
i \

s0[
t=1

S
(t)
i0

����� � 2: (10)

(Otherwise, if the repeated points are a1; a2; a3, then the paths between i; i0 and a1; a2; a3
form a bicyclic graph with at most 6s0 vertices, contradicting the lemma.) ) Combining this

with Lemma 9 means that for t � s0, jS(t)
i j � (K � 3)jS(t�1)

i j. For generations t > s0, for
each i0 the sets subtracted out are of size O(K ln lnn), and so as long as i < 4 lnn, in all, the
sets subtracted out are of size O(K ln lnn lnn), much smaller than the size 
((K � 3)s0) to

which the set S
(t)
i has by then grown. By throwing away random vertices if necessary, we

can assume that jS(t)
i j = (K � 3)jS(t�1)

i j and jT (t)
i j = (K � 3)jT (t�1)

i j. Thus if
� = d1 + logK�3(n

3=4=dK lnne)e;
then whp

8i : n3=4 � jS(�)
i j = jT (�)

i j � Kn3=4: (11)

Each x 2 S(t)
i de�nes a walk from ai to x, of length 2t, which is alternating w.r.t. the matching

M�; prune it to de�ne a path P [i; x]. Similarly, each y 2 T (t)
i de�nes a path Q[i; y] from y to

bi, of length at most 2t, which is alternating w.r.t. M�.
We say that a cycle C of �1 is small if jCj < n0; recall that we de�ned

n0 =

�
n ln lnn

lnn

�
:
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Detailed analyses of random permutations have been undertaken by Arratia, Barbour,
and Tavar�e [3], in which the joint distribution of counts ki of cycles of length i is approximated
by independent Poissons Zi � Pois(1=i), and by Arratia and Tavar�e [4], which provides a
tighter bound on the distance between the true distribution and the Poisson approximation.
From these (or more elementary analyses) we observe �rst that the expected number of
vertices on small cycles is n0 � 1 and so with probability 1� O(n0=n)

There are less than 2n0 vertices on small cycles. (12)

(The distance between the true distribution and independent Poisson estimate dominates
the bound; the probability the Poissons exceed their expectation of n0 by a factor of 2 is
much smaller.) Assume from now on that � satis�es (12).

Let the small cycles of �1 be C1; C2; : : :. At the start of Phase 2, from each small cycle
C we choose an edge (a; b) of C. Let the chosen edges be (ai; bi); i = 1; 2; : : : ; �. We now
describe how we try to remove a Ci without creating any new small cycles. (See Figure 3.2.)

Suppose we have removed C1; C2; : : : ; Ci�1 and the original permutation � has become
� = �i. Assume that we have not already serendipitously removed Ci as well. Let (ai; bi) be
the chosen edge of Ci.

Each alternating path P [i; x] starts with a \forward" edge which is one of the K lnn
shortest edges leaving ai (the �rst branching factor was r1 = K lnn), has up to � � 1 other
forward edges each of which is one of the K shortest edges leaving a vertex,2 and has another
up to � \backward", matching edges (edges in M�); a symmetric condition holds for Qi.

It follows from the proof of Lemma 7 that whp each of these paths is such that the total
length of its forward edges minus the total length of its backward edges is bounded by c4

lnn
n
.

We now see that if we �nd �i 2 S(�)
i and �i 2 T (�)

i such that (�i; �i) is Red or Blue (recall
the de�nition from the start of Section 3) then it | together with the edge (ai; bi) and the
paths P [i; �i] and Q[i; �i] | de�nes an alternating cycle whose action on the current perfect
matching increases the matching's cost by at most (2c4 + 2c2)

lnn
n
. We now show that we

can whp �nd at least one such alternating cycle whose action does not create any new small
cycles. Furthermore, if such a path contains an edge of Ci0, i

0 > i, then this alternating cycle
will also remove the small cycle Ci0.

Let � be a random permutation of [n] associating the vertices of X to those of Y , and let
matrix Ĉ be de�ned by Ĉ(i; j) = C(i; �(j)). If  is the (w.p. 1, unique) minimum solution to
the assignment problem with matrix Ĉ then � = � is the minimum solution to the original
problem. We exploit the randomness of �, which produces a random permutation � from  .
Instead of taking � as given, we assume that  is given and � is to be obtained through a
random permutation �. We condition on the cycle structure of �. De�ning ki as the number
of cycles of length i in �, we assume that (i)

Pn0
i=1 iki � 2n0 and that (ii) � =

Pn
i=1 ki � 2 lnn;

these conditions hold whp.
How do we sample a random permutation conditioned upon having a cycle structure

dictated by k1; k2; : : :, i.e., dictated by the multiset fki � i : i 2 [n]g in which cycle length i
appears ki times? Let � denote the set of permutations of X with the given cycle structure.
Let 
 be any �xed permutation with the given cycle structure. (For example, if t1 = 0,

2fewer than � � 1 if the path P [i; x] resulted from nontrivially pruning a (� � 1)-long walk
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Figure 1: In the left box is a bipartite graph with matching edges shown as horizontals (black
or grey). The right box shows the corresponding oriented cycle cover indicated by straight
arrows (black or grey), for example the arrow 1 �! 2 indicating that X vertex 1 is matched
to Y vertex 2. We imagine that only the pentagon is a \long" cycle, and all the others are
short cycles needing repair.
Suppose that, to repair the cycle 1; 2; 3; 4, we had selected edge (1; 2). In the bipartite graph
we �nd a path, rooted at 1, of cheap (Red) forward edges (shown as slanted grey lines in
the left box) alternating with matching edges (horizontal solid lines), in this case the path
x1; y6; x5; y12; x11. The right box shows the NPD obtained from this alternating path, the
light grey edges being removed from the cycle cover and the bent edges added to it. If in
symmetry to the alternating path 1 �! 11 we found a cheap alternating path y �! 2, and
if the edge (11; y) happened to be cheap (Red or Blue), we would repair the cycle 1; 2; 3; 4.
In this case we would also serendipitously repair the cycle 10; 11; 12. The cycle 13; 14; 15
(like most cycles, most of the time) is uninvolved.

11



t�+1 = n, and the multi-sets ftj+1 � tj : j 2 [�]g and fki � i : i 2 [n]g coincide, then we
may de�ne 
 by: if x; y 2 Cj and y = x + 1 mod tj+1 � tj then 
(x) = y.) Then given a
bijection f : X ! X we de�ne a permutation �f on X by �f = f�1
f . Each permutation
� 2 � appears precisely

Qn
i=1 ki!i

ki times as �f . Thus choosing a random mapping f , chooses
a random �f from �. (This is equivalent to randomly choosing � = f�1
f �1.)

The most natural way to look at this is to think of having oriented cycles on the plane
whose vertices are at points P1; P2; : : : ; Pn and then randomly labelling these points with X.
Then if P 0 follows P on one of the cycles and P; P 0 are labelled x; x0 by f then �f (x) = x0.

To give a concrete example, Figure 3.2 included a \canonical" digraph 4-cycle labelled
1; 2; 3; 4, arising from a corresponding canonically labelled structure in the bipartite graph,
the matching edges (x1; y2); (x2; y3); (x3; y4); (y4; x1). In a random labelling dictated by a
random permutation f , these matching edges would be labelled (xf(1); yf(2)), (xf(2); yf(3)),
(xf(3); yf(4)), (xf(4); yf(1)), and the digraph's 4-cycle would be labelled f(1), f(2), f(3), f(4).

As we proceed through Phase 2 we have to expose parts of f (equivalently �). x is clean
if f(x) is unexposed (the label x has not yet been used) and dirty otherwise. Thus imagine
that we have cycles, mostly unlabelled, but with a few vertices labelled. Let us use ~ to
denote a partially labelled graph.

We can now describe how to eliminate the small cycles. We proceed in order through
the selected edges i 2 [�]. At stage i we should have eliminated C1; C2; : : : ; Cj�1 for some j,
and have a current perfect matching Mi, de�ning �i. (Consider Mi to be fully revealed, but
the labels on its vertices not revealed except for the selected edges in short cycles; thus all
that is revealed of �i is its cycle structure and labels on these few edges.)

We construct the trees Si and Ti and then seek Red or Blue edges between the leaves S
(�)
i

of Si and T
(�)
i of Ti. We will consider only vertices of S

(t)
i and T

(t)
i that are clean and whose

paths to their respective roots also contain only clean vertices; call these vertices squeaky
clean. We take the squeaky clean vertices v 2 S

(�)
i in some �xed order. For each such vertex

v we look, again in some �xed order, at each squeaky clean vertex w 2 T (�)
i . Each such edge

(v; w) is either Red or has length uniform in [c2
lnn
n
; 1]. Thus the probability that it is Red

or Blue is at least c2
lnn
n
. This lower bound holds conditionally on the current history | see

comment at the beginning of Section 3.1. We assert that

whp there are � n3=5 squeaky clean vertices in each of S
(�)
i and T

(�)
i ; (13)

this will be shown in the last paragraph in this subsection. Thus if we run through n2=5

squeaky clean vertices v 2 S(�)
i , the expected number of Red or Blue edges to squeaky clean

vertices w 2 T
(�)
i is � c2

lnn
n
� n2=5 � n3=5, and with probability � 1 � e�c2 lnn = 1 � n�c2, we

�nd at least one Red or Blue edge. For a given v, if we �nd no Red or Blue edge to any w,
we move on to the next v. If we �nd a Red or Blue edge (v; w), we test if for acceptability
as described in the next paragraphs; if the edge is acceptable, the cycle can be repaired and
we move on to the next cycle i. If the edge is not acceptable, v and w have been dirtied in
the course of the testing, and we move on to the next v. Because we �nd a Red or Blue edge
after exploring about n2=5 vertices from S

(�)
i , and jS(�)

i � n3=5, we can �nd at least n1=5 Red
or Blue edges to test; we will soon see that the failure probability is � n�1=5, so eventual
success is assured whp.

12



Now consider squeaky clean �i 2 S
(�)
i ; �i 2 T

(�)
i such that (�i; �i) is Red or Blue. In

the bipartite graph, there is a squeaky clean alternating cycle C = P [i; �i], (�i; �i), Q[i; �i],
(bi; ai). (C may start life as a circuit rather than a cycle, in which case we prune it down to
a cycle containing (bi; ai).) We will de�ne what it means for a cycle to be \acceptable", and
show that C is acceptable with probability at least (lnn)��, where

� = 7(lnK)�1 < 1=2:

For any x 2 S
(t)
i , consider P [i; x] = (x0 = ai; y1; x1; y2; : : : ; yt; xt = x) where yj = �i(xj)

for j � 1. P [i; x] de�nes a sequence M (0);M (1); : : : ;M (t) of near-perfect matchings (see
Figure 3.2)M (s) = (M (s�1)[f(xs�1; ys)g)nf(xs; ys)g. Let �(0);�(1); : : : ;�(t) be the associated
NPD's. We say that �(s) is acceptable if (i) jPATH(�(s))j � n0 and (ii) the small cycles of
�(s) are a subset of fCi+1; : : : ; C�g. We say that x is acceptable if �(0);�(1); : : : ;�(t) are all
acceptable.

M M0 M1 M2

x0 = ai

x1

x2

x3

bi

y0

y1

y2

Figure 2: For t = 3, a perfect matching (dashed edges) and the sequence of near-
perfect matchings (dashed and solid edges) de�ned by an alternating path (x0 =
ai; y1; x1; y2; : : : ; xt = x) (the union of all edges shown).

Going back to P [i; x = xt] let us estimate the probability that xt is acceptable, given that
it is clean and xt�1 is acceptable. Assume that we have revealed f(xt�1) and that we have

a partially labelled NPD ~�
(t�1)
i . We randomly choose f(xt) from the unlabelled points and

label it with xt. We then replace the arc (f(xt); �) of ~�(t�1)
i by (f(xt�1); �).3 When t = 1, x1

is acceptable unless f(x1) lies in a small cycle; it follows from (12) that given the previous
exposures, this has probability at most p1 = 3 ln lnn

lnn
. For t > 1, xt will be acceptable if f(xt)

is not within n0 of an endpoint of PATH(~�(t�1)
i ). We will see that

whp only O((lnn)2�) squeaky clean cycles need to be checked

before an acceptable one is found.

Since each path has O(lnn) points, and we repeat for O(lnn) cycles, in all, at most
O((lnn)2+2�) values of f are exposed. So if xt is clean, it will be unacceptable with

3When dealing with the path from bi to �i we randomly choose f(xt) and then replace the arc (f(xt�1); �)
by (f(xt); �).
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probability at most p2 =
2n0

n�O((lnn)2+2�)
� 3 ln lnn

lnn
conditional on previous exposures. A similar

analysis holds for the paths Q[i; y].
If all vertices on C are clean then the probability that C is not acceptable is at most

p1 + 1� (1� p2)
2� � 3 ln lnn

lnn
+ 1� �1� 3 ln lnn

lnn

�2� � 1� (lnn)��. Thus if we can �nd (lnn)2�

clean cycles then one of them will succeed, with probability at least 1�(1�(lnn)��)(lnn)
2� �

1� expf�(lnn)�g. As remarked earlier, we can in fact �nd far more clean cycles than this
| in fact around n1=5 of them | as long as there are around n3=5 squeaky clean vertices in
each of S

(�)
i and T

(�)
i ; this is all that remains to be shown.

Let A
(t)
i denote the squeaky clean vertices of S

(t)
i , t = 1; 2; : : : ; � . It follows from Lemmas 8

and 9 that jA(1)
i j � K lnn � 4�� (lnn)2� and that jA(t)

i j � (K � 3)jA(t�1)
i j � 4� � (lnn)2�

for 2 � t � ln lnn. Here we use (10) to argue that for i0 < i, the �rst ln lnn levels of each
Si0 ; Ti0 dirty at most 2 vertices of the �rst ln lnn levels of Si, giving the 4� term. The (lnn)2�

term comes from vertices dirtied during failed acceptability tests for the current cycle i, one
dirtied vertex per level t per failed test. The higher levels of Si0; Ti0 do not dirty any of
the lower levels of Si, by construction. In general, for t > ln lnn, Lemma 9 implies that
jA(t+1)

i j � (K � 3)jA(t)
i j � 4��(lnn)2�. Thus, jA(�)

i j � n3=5. A similar argument holds for

squeaky clean vertices of T
(�)
i , verifying the assertion (13).

3.3 Phase 3

For Phase 3 we use the Green edges. We can assert that whp at the end of Phase 2, all
cycles are of length at least n0 and so there are o(lnn) cycles. Given two cycles C1; C2 each
of length at least n0 then the probability that we cannot patch them together (delete edges
(ai; bi) from Ci; i = 1; 2 and replace them by Red or Blue or Green edges (a1; b2); (a2; b1)) is

at most (1� c22(lnn)
2

n2
)n

2
0 � e�c

2
2
(ln lnn)2 . Doing this o(lnn) times increases the cost by at most

o
�
(lnn)2

n

�
and so Phase 3 succeeds whp.

This completes the proof of the high-probability upper bound on ATSP�AP. We now
consider the lower bound.

3.4 Proof of the lower bound

The Assignment Problem can be expressed as a linear program:

Minimise
X
i;j

C(i; j)zi;j subject to
X
i

zi;k =
X
j

zk;j = 1; 8k; 0 � zi;j � 1; 8i; j: (LP)

This has the dual linear program:

Maximise
X
i

ui +
X
j

vj subject to ui + vj � C(i; j); 8i; j: (DLP)

Remark 10 Condition on an optimal basis for (LP). We may w.l.o.g. take u1 = 0 in (DLP),
whereupon w.p. 1 the other dual variables are uniquely determined. Furthermore, the re-
duced costs of the non-basic variables �C(i; j) = C(i; j) � ui � vj are independently and
uniformly distributed, with �C(i; j) 2unif [max f0;�ui � vjg ; 1� ui � vj].

4

4Do not be misled by the notation: �ui � vj can be (and often is) positive.
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Proof. The 2n� 1 dual variables are unique w.p. 1 because they satisfy 2n� 1 linear equa-
tions. The only conditions on the non-basic edge costs are that C(i; j) 2 [0; 1] (equivalently
�C(i; j) 2 [�ui � vj; 1� ui � vj]) and �C(i; j) � 0; intersecting these intervals yields the last
claim. 2

Lemma 11 Whp

max
i;j

fjuij; jvjjg � c5
lnn

n
: (14)

Proof. Optimal dual values ui; vj can be characterised as shortest distances, as follows [1].
Consider a directed bipartite digraph � on X [ Y with \forward" edges (xi; yj), i; j 2 [n],
j 6= �(i), of length C(i; j); and \backward" edges (yj; xi), i; j 2 [n], j = �(i), of length
�C(i; �(i)). If u1 = 0, then �ui is the shortest distance d(x1; xi) from x1 to xi in �, and vj
is the shortest distance from x1 to yj.

5

Lemma 7 implies that �ui; vi � c6
lnn
n

for i 2 [n]. Furthermore, using the fact that
a cheapest path is also a cheapest walk (derived from the optimal assignment, � has no
negative-cost cycles), �uj = d(x1; xj) � d(x1; xi) + d(xi; xj) � �ui + c6

lnn
n

implies ui �
uj � c6

lnn
n
. Immediately, juij � c6

lnn
n

and also, with �u =
P
ui=n, j�uj � c6

lnn
n
. Likewise,

vi� vj � c6
lnn
n
, from which jvi� �vj � c6

lnn
n
. But we know that whp the optimal assignment

cost satis�es 1:51 <
P

i ui +
P

j vj < 1:94 [14, 9, 17, 7], so �v 2 (1:51=n � �u; 1:94=n � �u),

giving j�vj � c6
lnn
n

+O(1=n) and �nally jvij � c7
lnn
n
. 2

Having solved LP we will have n basic variables zi;j, (i; j) 2 I1, with value 1 and n � 1
basic variables zi;j, (i; j) 2 I2, with value 0. The edges (xi; yj), (i; j) 2 I = I1 [ I2 form a
tree T � in KX;Y . We show that with probability at least c9 > 0 there exists (i; i) 2 I1 (a
loop) such that (xi; yi) is a pendant edge in T �; w.l.o.g. suppose xi is its leaf. In this case
the optimal TSP tour, viewed as a bipartite matching, cannot use the edge (xi; yi) (a loop),
and must use some other edge (xi; yi0); since xi is a leaf in T

�, zi;i0 is not a basic LP variable.
The expected value of the reduced cost of zi;i0 is at least

c10
n

and so E(ATSP�AP) � c9c10
n

and the lower bound follows.
To prove the existence of (i; i) we show that whp the optimal assignment  for Ĉ of

Section 3 has at least c11n leaves L. After applying the random permutation �, the number of
leaves giving rise to loops is, at least, a random variable whose distribution is asymptotically
Poisson with density c11; thus

Pr(9 at least one leaf-loop) � (1� o(1))(1� e�c11):

By taking a spanning tree T of KX;Y which contains a perfect matching M and shrinking
the edges of M we obtain a tree isomorphic to a spanning tree T 0 of Kn. Each T arises from
exactly 2n�1 T 0s because we have two choices as to how to con�gure each non-M edge. (An
(i; j) edge in T 0 can in T be expanded to (xi; yj) or to (xj; yi).) Let b(T ) = b(T 0) denote the
number of branching nodes (degree � 3) of T and T 0. A tree T 0 is �-bushy if b(T 0) � �n.

5It is easy to see this from the graph with edge costs �C(i; j) = C(i; j)� ui � vj � 0. This graph includes
a spanning tree of 0-cost edges, so all distances are 0. The C-cost of any path is almost the same as its
�C-cost: of the two directed edges leading into and out of any intermediate node, one has a ui (or vj) added,
and the other has the same quantity subtracted. The cancellation fails only at the path's source (but we
de�ned u1 = 0) and at its terminal, resulting in C-distance �ui or +vj as claimed.
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Bohman and Frieze used this concept in [6] and showed that the number of �-bushy trees
is at most n!e�(�)n where �(�) ! 0 as � ! 0. It follows that the number of �-bushy trees of
KX;Y which have a perfect matching is at most e�(�)n2n�1n!. Observe that the number of
leaves in T is at least b(T ). We complete the proof by showing that, for a suÆciently small
constant �,

Pr(T � is �-bushy) = o(1): (15)

For any tree T with a perfect matching, we can put u1 = 0 and then solve the equations
ui + vj = C(i; j) for (xi; yj) 2 T to obtain the associated dual variables. T is optimal if
�C(i; j) = C(i; j) � ui � vj � 0 for all (xi; yj) =2 T . Let ZT =

P
i ui +

P
j vj. Let Now

whp the optimal tree T � satis�es ZT � 2 [1:51; 1:94], because ZT � is the optimal assignment
cost, and it is known both that expectation is in the stated range [17, 7] and that the actual
value is concentrated about the expectation [2]. Then if E denotes the event f(14) and ZT 2
[1:51; 1:94]g, for any tree T , over random matrices C(i; j),

Pr(ZT 2 [1:51; 1:94] and (14) and �C(i; j) � 0 8(i; j) =2 I)
� Pr( �C(i; j) � 0 8(i; j) =2 T j E)�Pr(ZT 2 [1:51; 1:94])

� 1:94n

n!
E(

Y
(xi;yj)=2T

(1� (ui + vj)
+) j E)

� E(expf�
X

(xi;yj) 62T
(ui + vj)g j E)1:94

n

n!

� E(e�nZT expf
X

(xi;yj)2T
(ui + vj)g j E))1:94

n

n!

� e�1:51nn2c5
1:94n

n!
:

Explanation 1:94n

n!
bounds the probability that the sum of the lengths of the edges in the

perfect matching of T is at most 1.94. The product term is the probability that each non-
basic reduced cost is non-negative.

Thus

Pr(9 an �-bushy tree T : ZT 2 [1:51; 1:94] and (14) and �C(i; j) � 0 8(i; j) =2 I)
� n!2ne�(�)n � e�1:51nn2c5

1:94n

n!
= o(1)

for � suÆciently small. This implies (15).

4 An enumerative algorithm

We can now prove Theorem 4, restated here for convenience.

Theorem 4 Whp, a random instance of the ATSP can be solved exactly in time e
~O(
p
n).
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Proof. Let Ik denote the interval [2�kc1
(lnn)2

n
; 2�(k�1)c1

(lnn)2

n
] for k � 1. It follows from

Lemmas 11 and 10 that whp (i) there are � c12
�(k�1)n lnn non-basic variables zi;j whose

reduced cost is in Ik; 1 � k � k0 =
1
2
log2 n and (ii) there are � 2c1

p
n lnn non-basic variables

zi;j whose reduced cost is � c1
(lnn)2

n3=2
.

We can search for an optimal solution to ATSP by choosing a set of non-basic variables,
setting them to 1 and then re-solving the assignment problem. If we try all sets and choose
the best tour we �nd, then we will clearly solve the problem exactly. However, it follows
from Theorem 1 that we need only consider sets which contain � 2k variables with reduced

costs in Ik and none with reduced cost � c1
(lnn)2

n
. Thus whp we need only check at most

22c1
p
n lnn

k0Y
k=1

2kX
t=1

�
c12

�(k�1)n lnn
t

�
= e

~O(
p
n)

sets. 2

5 Second best assignment

We recall and prove Theorem 3, on the gap �1 between the costs of the cheapest and
second-cheapest assignments.

Theorem 3 Over random cost matrices C,

1

n2
(1� o(1)) � E(�1) � c3

lnn

n2
:

Proof. �1 is equal to the minimum non-basic reduced cost.6 From Lemma 11 and
P

i ui+P
j vj > 1:51 whp, it follows that whp there are at least n1 = c7

n2

lnn
pairs i; j such that

ui + vj > 0. Each such pair corresponds to a non-basic variable C(i; j), and it follows from
Remark 10 that the minimum reduced cost among this set is at most 1

n1+1
in expectation,

proving the upper bound.
For the lower bound, again from Remark 10, the n2 � 2n + 1 non-basic reduced costs

�C(i; j) are independent, with �C(i; j) 2unif [ai;j; bi;j] where each ai;j � 0 and (from Lemma 11)
each bi;j � 1 � 2c5 lnn=n. The minimum of this collection satis�es E(minf �C(i; j)g) �

1
n2�2n(1� 2c5 lnn=n) =

1
n2
(1� o(1)). 2
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