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Abstract:  In the UML, use cases are used to define coherent units of functionality associated with classes,
subsystems, or systems.  Two principal purposes that use cases serve are specifying the functionality the system
will provide and providing a basis for developing test cases for the system being specified.  This paper discusses
issues that arise when using use cases as the basis for model-based testing.  A basic use case meta-model is
developed that is consistent with the UML 1.3 specification but based on meta-modeling techniques developed to
provide precise semantics for modeling languages.  This meta-model is then extended to derive a test enabled
meta-model for use cases.  The paper closes by discussing future research.

1 Introduction 

The Unified Modeling Language (UML) provides use cases as a mechanism for specifying the functionality that will
be provided by a system.  Use cases are useful for three purposes [BRJ99]:
(1) Use cases provide a mechanism for describing the system’s functionality in a way that is understandable by

domain experts.
(2) Use cases provide a starting point for developers to understand and implement the required functionality.

(3) Use cases serve as the basis for testing the system as it evolves.
In the first case, domain experts exploit use cases to ascertain that the system being constructed provides complete
and correct functionality.  No additional UML artifacts are created as a result of this step.  In the second situation,
use cases serve as the basis for deeper analysis and design, in which the use cases are realized using object-oriented
methods.  The realization process typically involves exploring a domain model developed during analysis and
determining how each use case can be achieved using the classes from the model [Ja92].  The expansion from ‘what’
(use cases) to ‘how’ (collaborations of classes) requires a well-defined meta-model for classes, associations, and
related concepts.  Such models have received considerable attention, for example see [Cl00] and [Cl01].  The third
advantage of using use cases is to aid in the development of test cases, which is unique among the three purposes
listed above in that it is the only one whose goal is to utilize use cases to produce an artifact that is external to the
UML.  Thus, just as classes and their associated concepts require a well defined meta-model in order to produce
sound code, use cases need a precise meta-model to produce valid and robust test cases.  This paper explores the
meta-modeling issues that arise when seeking to exploit use cases for testing purposes.

It is important to note that testing is an important and costly step in the software development process.  Testing
typically takes anywhere from 30%-50% of the total budget of a software project.  Improvements in testing can lead
to significant savings for a development organization.  In fact, in most organizations, testing consumes a larger
fraction of resources than the coding phase of the life cycle.  Thus, automation of portions of the testing process
offer some of the most significant opportunities for enhancing the efficiency of the development process.  

The remainder of this paper proceeds as follows.  First, I examine the basic requirements for test case generation from
use cases.  Next, I develop a generic meta-model for use cases based on concepts from the UML 1.3 meta-model.
This meta-model is then extended with new testing related elements to develop a meta-model that is amenable for test



case generation.  This extension shows the power and flexibility of developing UML as a family of modeling
languages as proposed in [Cl00].  Finally, I present conclusions and opportunities for further work.

2  Basic Tenets for Testing with Use Cases

Before proceeding to develop a meta-model for use cases, it is important to step back and explore what is required for
use cases to be used in conjunction with model-based testing techniques.  These tenets arose as a result of
developing a tool for use case based testing.  This tools runs within one of the popular modeling tools and allows
testers to add additional annotations to the use case model.  The output of the tool is a suite of test cases optimized
for coverage of the input parameters and test suite size.  An early paper on the technique is [WP99]; the tool has
been enhanced with additional capability based on the meta-model described in section 4. 

2.1 Use Cases define Classifier Functionality

In [RJB00], a use case is described as a “coherent unit of functionality provided by a classifier.”  Thus, the first
requirement for a meta-model for use case based testing is that it should support the notion that there is a classifier
against which a use case is developed.   The classifier is what is being tested, with the use cases describing how to
test it.  Rather than focusing on a use case as a classifier with attributes and operations, test generation is best
served when use cases are considered as having the classifier being tested “behind” them, with this classifier being
the repository of state.  The use case is then a set of action sequences which involve either the classifier or actors
associated with the use case.  This viewpoint differs significantly from earlier attempts to formalize use cases
[OP98][S01].  The justification for this “stateless” view of use cases is described below; however, the two viewpoints
may be reconcilable.  The basic approach to reconciliation is as follows: use cases could be considered to provide a
projection onto a subset of the attributes of the classifier against which they are defined.  Then, the action sequence
notions are directly mappable to the labeled transition system formalism used in [S01]. 

 In the description of the features that may belong to a use case, [RJB00] states that a use case may have attributes
and operations.  It is states that the attributes may represent the state of the use case, or progress of executing it.
However, the state of the use case and the progress of executing it are two very different things.  The state would
simply be the aggregate values of any attributes belonging to the use case, whereas progress would indicate where
we are (i.e. which action is the current action) in terms of executing an instance of the use case.  For effective test
generation, location in the action sequence of the use case is all of the state that we require.  

From a testing viewpoint, the state based formalization of use cases [S01] raises questions of parsimony.  The first
issue is the definition of the state space S for a use case u.  If u is considered to be associated with an entity with
state space E and actors with state spaces A1,...,An  u is constrained to include a quotient map, which is a surjection
h:E%A1%...%AndS.  The problem is that the state space of the actors involved with a use case should be irrelevant to
the use case, as the actor represents an entity external to the system’s boundary.  This issue is seen again in the
notion of pre- and postconditions, which are defined as a relation PP`(E%A1%¢%An)%(E%A1%¢%An).  Our experience
in automated test case generation indicates that the state of the entity E is sufficient to correctly construct a
precondition to determine when a use case may be invoked, thus capturing the state of the actors is unnecessary.
Finally, [S01] discusses the need for formalizing notions of use case “interference.”  In the framework in which state
is a property of the classifier being tested rather than the use case, interference can be defined as the situation in
which different use case instances update the same attribute on the classifier.  Given this definition, techniques
based on data flow analysis can be used to generate interesting test cases based on interference.  

A argument similar to that for attributes can be constructed concerning operations on use cases.  [RJB00] states that  
“an operation represents a piece of work the use case can perform.  It is not directly callable from the outside, but
may be used to describe the effect of the use case on the system.  The exe cution of the operation may be associated
with the receipt of a message from an actor.  The operations act on the attributes of the use case, and indirectly on
the system or class that the use case is attached to.”   This quote points to several ambiguities concerning
operations.  First, they are not invocable from outside, but somehow respond to messages from actors.  Second, their
primary purpose is to act on the attributes of the use case, with changes to the classifier’s attributes being indirect



effects.  As our representation has no attributes beyond a current location in the action sequence for the use case,
operations are unnecessary.

Thus, the first requirement on our meta-model is that the use case be a stateless entity (beyond the need to keep
track of where we are within a use case instance) that describes a set of sequences of actions, each of which involves
an actor or the classifier against which the use case exists.  Extension and inclusion should be supported in the form
defined in the 1.3 specification.

2.2 Use Cases consist of Actions

Since our representation of use cases is that of a sequence of actions without attributes or state, developing the
appropriate action representation is essential.  Action semantics have been considered in [ASC01] and  [Al01].  The
MML based semantics developed in [Al01] serve as a basis for action sequences within use cases.  

As they relate to use cases, actions always describe one of two situations: interaction with an actor or the classifier
to which the use case is associated.  The actions need to be robust enough to specify what happens to the
actor/classifier, without specifying how it happens.   A key point is that actions should be simple to record in the use
case, but regardless of the appearance they represent syntactic sugar for specifying interactions between actors and
classifiers.  

2.2.1 Actor Related Actions

There are three types of actions that a use case can specify concerning an actor.  In all three, the entity implicitly
involved is the classifier owning the use case, not the use case itself.  The actions are: receiving input from an actor
(Actor Input), writing output to an actor (Actor Output), and invoking a computation on an actor (Actor
Computation).   Computation differs from the others in that output is passed to the actor, resulting in a new set of
input from the actor that is dependent on the original output.  To illustrate the possible actions, consider the
following fragment of a use case model shown in Figure 1.  

customer

View Balance Account Database 
System

Figure 1.  Actor related Actions.



In this instance, when the customer requests a balance inquiry from the ATM system, the ATM system sends a
request to the Account Database Actor, passing it the customers account number as a parameter.  The Account
Database System actor returns the balance in the customers account.  The balance is then displayed to the customer.
All three of the actor related action types are used in this simple scenario, as shown in Table 1.

Actor OutputATM displays amount to customer3

Actor ComputationATM issues request to account DB system.
Balance is returned.

2
Actor InputCustomer requests balance inquiry.1
 Action TypeActionStep

Table 1.  Action Scenario illustrating Action Types

The meta-model for testing with use cases must support the three actions types (Actor Input, Actor Output, Actor
Computation) between actors and the classifier.

2.2.2  Classifier Related Actions

A use case must also be capable of expressing actions that occur within the system as a result of an interaction with
an actor.  These actions specify state changes that the classifier undergoes as a result of the execution of the use
case.  The action language defined in [Al01] provides the necessary action types required to update the classifier
state, so no further requirements for action types against classifiers are needed.

2.3 Actors drive Use Cases

In the later phases of testing a system, testers are often interested in executing sequences of use cases.  These are
selected because they represent interesting transactions that actors perform using the system.  In order to specify
these sequences, we require the notion of “flows” between use cases, where a flow defines that a test case should be
considered in which one use case directly follows another.  For example, suppose we have a set of use cases
U={u1,u2,...,u4} and an actors A.  If A was associated with u1, u2, u3, and u4, then the flows for A in which u1 occurs
first, followed by any number of either u2 or u3, followed by u4 can be represented by the use case flow graph in
Figure 2.   Note that these edges are not associations, but temporal flows through the system performed by an actor.
The meta-model should support the definition of a set of use case flow that can be associated with an actor. 

u1

u2 u3

u4

Figure 2.  Use Case Flow Graph



2.4 Testing requires Test Data 

The final set of requirements for a meta-model that supports testing is that a use case should be capable of
specifying the inputs that flow from an actor to the classifier, as well as the output that flows the other way.  The set
of input data values  required by a use case can be represented as parameters, which consists of logical partitions
that categorize the actual test data [WP99][P00].  For example, if the parameter is password, the two logical partitions
the parameter could have are valid and invalid.  Given these partitions for the parameter, it is possible to associate
actual data with them.  For example, there will be one valid password for a given user, but there could be an infinite
number of invalid passwords.  A meta-model that supports testing from use cases will support the notions of
parameters, logical partitions, and actual data that belongs to a given logical partition.  Another requirement is that
test data is often related in complex ways.  The meta-model for test data needs to be capable of expressing these
complex relationships, using entities such as collections and objects.

2.5  Requirements Summary

The following summarizes the requirements discussed in the above sections.
(1) Use cases should be represented as a sequence of actions written against a classifier.

(2) A set of three actor related actions should be defined for use cases: actor input, actor output, and actor
computation.

(3) Transactions for actors should be definable based on sequences of use cases known as flows.

(4) The meta-model needs to incorporate a rich notion of test data involving parameters, partitions, and actual data.
Complex constructs such as collections and objects should be supported.

3 A Use Case Meta-model 

The meta-model is constructed using the MMF (Meta-modeling Facility) described in [Cl01].  The MMF method is
performed using the Meta-modeling Language (MML),  which is a language developed to enable UML to be
re-architected as a family of modeling languages [Cl00].  MML has a well defined semantics provided using the
s-calculus [CEK01].  In the MMF method, MML is used to provide two types of mappings.  The display mapping  
maps concrete syntax (human viewable layout of UML diagrams) to the abstract syntax (machine processable
representation).  The semantic mapping maps the abstract syntax to the semantic domain, which describes how model
concepts are realized in model instances.  Figure 3 [Al01] illustrates these relationships.  Modeling using MML is
supported by the meta-modeling tool (MMT.) 

concrete syntax

semantic mapping

abstract syntax

display mapping

semantic domain

Figure 3.  The MMF Method

The focus in this paper is the semantic mapping between abstract syntax and the semantic domain; I do not consider
issues associated with concrete syntax and screen layout.  The packages described below use elements from the mml
package described in  [Cl00] and the actions package described in [Al01].   Thus, they extend both of these models,



as is shown in Figure 4.  The dashed arrows represent generalization rather than dependency.  The testing package is
shown outside of the UML package because it uses elements that are not part of standard UML.  These are added as
annotations to a standard UML model by the tester.  This is an excellent example of the extensibility that comes from
the meta-modeling approach of [Cl00].  The Object Constraint Language (OCL) [WK99] is use to specify additional
constraints to guarantee that the meta-models are well formed.

UML

mml

useCase

testing

actions

Figure 4.  Generalization relationships between packages.

The use case package uses MMF techniques to describe the basic modeling structures required to build use case
models.  The basic functionality defined in UML 1.3 is provided.  The key elements in developing use case models
are use cases and actors, which are related by associations  (see Figure 5).

3.1 uml.useCase.model.concepts

Use cases are generalizations of Classifier, and as such may be related to other use cases via generalization.
Generalization between use cases will not be covered in this paper, but deserves further study.  The basic ideas
involving generalization based on the points of views of the actors involved [S01] is the approach that would be
most amenable to the meta-model defined here, with the appropriate changes to allow classifiers to be the holder of
state.  Several issues remain to be explored, [S01] provides an excellent overview of the challenges.  In practice,
generalization has been used with our test case generation approach, but always from abstract to concrete use cases.
Thus, the semantic requirements  are less stringent.  The other relationships between use cases are the ^extendp
and ^includep relationships.  These are addressed in the meta-model, as shown in Figure 6.  

The ^extendp relationship is based upon the description given in [RJB00].  In [RJB00], ^extendp relationships are
composed of three entities: the base use case, the extension use case, and the extends relationship between them.
The base use case defines a set of extension points, and each extension point corresponds to a location in the base
use case where additional behavior can be added.  The extend relationship refers to these extension points as a set of 



names.  The relationship also has associated with it a constraint, which is a condition that must be true for the
extension to take place.  The constraint will be based on either the classifier or an input or result from an actor
associated with the use case.  The extension use case consists of a set of insertion segments, each of which specifies
a sequence of actions that can be inserted when the segment is included in the base use case via extension.  

The ^includep relationship is similar to the extend relationship, but simpler. Inclusion always occurs at the point
specified, and all of the behavior is included rather than just an insertion sequence. 

Actors comprise the other key element for developing use case models.  They are related to use cases via
associations.  The representation for these elements is shown in Figure 6.

Classifier
(from staticCore.model.concepts)

Actor

BinaryAssociation
(from staticCore.model.concepts)

0..n

1

+assoc0..n
+actor

1

UseCase

0..n

1

+assoc
0..n

+useCase

1

Figure 5.  Use Cases and Actors in the uml.useCase.model.concepts Package

Well-formedness rules

[1] An  ^extendp relationship must be between distinct use cases.
context uml.useCase.model.concepts.Extend inv:

not(self.base = self.extension)
[2] An ^includep relationship must be between distinct use cases.

context uml.useCase.model.concepts.Include inv:
not(self.base = self.addition)

[3] Actors cannot contain other classifiers.
context uml.useCase.model.concepts.Actor inv:

self.elements->isEmpty
[4]  The elements of a use case contains its extension points.

context uml.useCase.model.concepts.UseCase inv:
elements->exists(g | 

g.name = “extPt” and g.elements = extensionPts())
[5] The elements of a use case contain its insertion segments.

context uml.useCase.model.concepts.UseCase inv:
elements->exists(g |

g.name = “segments” and g.elements = segments())



BinaryAssociation
(from staticCore.model.concepts)

Extend
condition : Constraint

Include
location : Integer

Extension Point
location : Integer

n

1..n

n

+names
1..n

UseCase

1

n

+base 1

n

1

n

+extension

1

+extend n

1

n

+base1

+include n

1

n

+addition

1

n

1

n

1
+extPt

n
{ordered}

InsertionSegment0..n

+segments

0..n
{ordered}

Figure 6.  Actors and their Relationships in the uml.useCase.model.concepts Package

Methods

[1] The method extensionPts() returns a set containing all of the extension points of a use case.
context uml.useCase.model.concepts.UseCase

extensionPts() : Set(ExtensionPoint)
extPt->iterate(p s = Set{} | s->union(p))

[2] The method segments() returns a set containing all insertion segments of a use case.
context uml.useCase.model.concepts.UseCase

segments() : Set(InsertionSegment)
segments->iterate(p s = Set{} | s->union(p))

3.2 uml.useCase.instance.concepts

Use case instances are specializations of Instance.  They are related to one another using instances of extend and
include relationships.  These relationships are shown in Figure 7.  Actor instances are related to use case instances
via association instances, as shown in Figure 8.

Well-formedness Rules

[1] The extend relationship must be between distinct use case instances.
context uml.useCase.instance.concepts.ExtendInstance inv:

not(self.base = self.extendUCInstance)
[2] The include relationship must be between distinct use case instances.

context uml.useCase.instance.concepts.IncludeInstance inv:
not(self.base = self.includeUCInstance)



[3] The number of extension point instances associated with an extend instance must be equal to the number of
insertion blocks on the extending use case.
context uml.useCase.instance.concepts.ExtendInstance inv:

self.extensionPoint->size = self.extendUCInstance.blocks->size
[4] Use case instances contain their insertion blocks.

context uml.useCase.instance.concepts.UseCaseInstance inv:
elements->exists(g | 

g.name = “segments” and
g.elements = blockSet())

[5] Use case instances contain their extension point instances.
context uml.useCase.instance.concepts.UseCaseInstance inv:

elements->exists(g | 
g.name = “extPt” and
g.elements = extensionSet())

Methods

[1] The blockSet method returns a set containing the insertion blocks on a use case instance.
context uml.useCase.instance.concepts.UseCaseInstance 

blockSet() : Set(InsertionBlock)
blocks->iterate(b s=Set{} | s->union(b))

[2] The extesionSet method returns a set containing the extension point instances for a use case instance.
context uml.useCase.instance.concepts.UseCaseInstance

extensionSet() : Set(ExtensionPointInstance)
extensionPt->iterate(e s=Set{} | s->union(e))

Instance
(from staticCore.instance.concepts)

IncludeInstance
ExtendInstance

value : Calc

ExtensionPointInstance

+extensionPoint

{ordered}
1..n1..n

n

InsertionBlock

UseCaseInstance

1

n

+extendUCInstance

1

+extend n n

1

n

+base

1

1

n

+addition

1

n

1

n

+base

1

+include n

n

+extensionPt

{ordered}
n

+blocks

{ordered}
0..n0..n

n

Figure 7. Use Case related Classes in the uml.useCase.instance.concepts Package



ActorInstance

AssociationInstance
(from staticCore.instance.concepts)

1

0..n

+actor 1

+assoc
0..n

Instance
(from staticCore.instance.concepts)

UseCaseInstance

0..n

1

+assoc
0..n

+useCase1

Figure 8.  Actor related classes in the uml.useCase.instances.concepts Package

3.3 uml.useCase.semantics 

The semantics for the use case package is defined  in the useCase.semantics package, which extends both the
useCase.model.concepts and useCase.instance.concepts.  Semantic relationships are developed by defining a
mapping between the model concepts and instance concepts.  These are shown in Figure 9. 

Well-formedness Rules

[1] Abstract use cases cannot be instantiated.
Inherited from Classifier.

[2] Instances must satisfy the properties of their classifier.
Inherited from Instance.

[3] The value for an extends instance is calculated correctly for the constraint.
Inherited from Instance

One area that requires additional formalization is how extension and inclusion points are correctly mapped from
location references to precise points (as an integer) in a sequence of actions.  The basic idea is that a sequence of
actions exists, with extension points containing location references to places between actions.  However, some of
these actions may be composite, so an  instance of the use case would not necessarily have references in exactly the
same order.  However, they would increase monotonically in both the use case and its instance.  Further work along
the lines explored in [S01] could formalize this further in the meta-model.



InsertionSegment
(from useCase.model.concepts)

InsertionBlock
(from useCase.instance.concepts)

1 n

+of

1

+instances

n

ExtendInstance

value : Calc

(from useCase.instance.concepts)
Extend

condition : Constraint

(from useCase.model.concepts)

n1

+instances

n

+of

1

ExtensionPointInstance

point : Integer
(from useCase.instance.concepts)

Extension Point

location : locationReference
(from useCase.model.concepts)

n1

+instances

n

+of

1

Actor
(from useCase.model.concepts)

ActorInstance
(from useCase.instance.concepts)

1 n

+of

1

+instances

n

UseCaseInstance
(from useCase.instance.concepts)

UseCase
(from useCase.model.concepts)

n1

+instances

n

+of

1

IncludeInstance

point : Integer
(from useCase.instance.concepts)

Include

location : locationReference
(from useCase.model.concepts)

n1

+instances

n

+of

1

Figure 9.  uml.useCase.semantics Package

4 The testing Package

The testing package extends both the useCase package defined above, as well as the action package presented in
[Al01].  The concepts in the testing package are based on work done to explore automatically generating test cases
from use cases, early versions of which are described in [WP99]. The requirements outlined in section 2 above will be
addressed in the meta-model defined in this package.

4.1  testing.model.concepts

The following formalizations are used to meet the requirements necessary to utilize use cases for testing.
(1) Make actions explicit as constituents of use cases.

(2) Emphasize that use cases express functionality for a classifier

(3) Add pre- and postconditions to use cases.

(4) Enhance action language to support use case specification of communication between actors and classifiers.

(5) Support the notion of flows through use cases for actor based testing.

(6) Support the addition of parameters and partitions for input from actors.

(7) Support associations with test data.



Figure 10 shows the enhancements to the use case portion of the meta-model based on  formalizations 1-3 described
above.

Constraint

name : String
(from constraints.model.concepts)

Postcondition

Precondition

Action
(from actions.model.concepts)

Classifier
(from staticCore.model.concepts)

UseCase
(from useCase.model.concepts)

0..n
+postcondition

0..n

0..n+precondition 0..n

1..n
+actions

1..n

{ordered}

1

+context

1

Extension Point

location : locationReference
(from useCase.model.concepts)

1

n

1

+extPt
n

{ordered}

Figure 10.  Additions to the Use Case meta-model in the testing.model.concepts Package.

Each use case consists of an ordered sequence of actions, and is associated with a classifier, which provides the
context for that use case’s actions.  Pre- and postconditions have been added, and are constraints written against the
context of the use case.  In the same spirit as [OP98], extension points are defined as a subclass of Action.  This
provides consistency with the notion that a use case is simply a sequence of actions.  

The actor related portions of the meta-model are also enhanced in the testing package, as shown in Figure 11.  Actors
are associated with flows through use cases, which defined sequences of use cases that are interesting from a testing
point of view.  Although it is not shown here, flows specialize Classifier.  Actors are defined to communicate with
classifiers via message related actions, which are shown in Figure 12.

Flow

UseCase
(from useCase.model.concepts)

1..n
+sequence
{ordered}1..n

Actor
(from useCase.model.concepts)

1..n0..n 1..n

+flows

0..n

MessageAction

1

0..n

+actor 1

+message 0..n

0..n1

+message

0..n

+useCase

1

Figure 11.  Flows and Messages between Actors and Use Cases.



PrimitiveAction

MessageAction

InputMessage OutputMessage

Classifier
(from staticCore.model.concepts)

1..n
+input

1..n
{ordered}

1..n

+output

1..n
{ordered}

ComputationMessage

1..n
+input
1..n

{ordered}

1..n

+output

1..n
{ordered}

Figure 12.  Message Actions in the testing.model.concepts Package

The diagram in Figure 13 formalizes the notions of parameters, partitions, and their associated test data.  Test data
can be structured in any form, as it is a specialization of classifier.  Associated with each use case are parameters
which flow from outside of the system (via actors) into the classifier.  These parameters are ordered, and each
parameter can take on a logical value.  Each logical value can be associated with actual test data, providing a link
between testing logical portions of functionality and the test data actually used to do the testing.

Classifier
(from staticCore.model.concepts)

InputValue

InputPartition

1..n+values 1..n

InputParameter

1..n+parts 1..n

UseCase
(from useCase.model.concepts)

0..n

+params

0..n
{ordered}

Figure 13.  Parameters, Partitions, and Test Data in the testing.model.concepts Package



Given these new classes and relationships, several new constraints must be defined on the model.  For reasons of
space, I only give a representative sample here taken from use cases, actors, and flows.  The various message and
data handling classes need to be considered as well, but they are handled in a manner identical to those below.

Well-formedness Constraints

[1] Use case must contain its action set, context, preconditions, postconditions, and input parameters .
context testing.model.concepts.UseCase inv:

elements->
  (exists(g | g.name = “context” and

g.elements = context) and
  exists(g | g.name = “precondition” and

g.elements = precondition) and
  exists(g | g.name = “postcondition” and

g.elements = postcondition) and
  exists(g | g.name = “actions” and

g.elements = actionSet()) and
  exists(g | g.name = “inputParams” and

g.elements = paramSet())
)

[2] Actors contain their flows.
context testing.model.concepts.Actor inv:

elements->exists(g | g.name = “flow” and
g.element = flows))

[3] Flows contain their sequence sets.
context testing.model.concepts.Flow inv:

elements->exists(g | g.name = “sequence” and
g.element = seqSet())

[4] The context for a precondition and postconditions is the context for the use case to which it belongs.
context testing.model.concepts.UseCase inv:

self.precondition->forAll(p | self.context = p.context)
self.postcondtion->forAll(p | self.context = p.context)

Methods

[1] The actionSet() method returns a set of all actions within a use case.
context testing.model.concepts.UseCase

actionSet() : Set{Action}
actions->interate(a s=Set{} | s->union(a))

[2] The paramSet() method returns all parameters associated with a use case.
context testing.model.concepts.UseCase

paramSet() : Set(InputParameter)
params->iterate(p s=Set{} | s->union(p))

[3] The seqSet() method returns the set of all use cases contained in a flow.
context testing.model.concepts.Flow

seqSet() : Set(UseCase)
sequence->iterate(u s=Set{} | s->union(u))

4.2 testing.instance.concepts

The semantic domain for testing is enhanced with appropriate execution classes for capturing action instances, value
classes for pre- and postconditions, the notion of transactions as instances of flows, and instance classes for the



parameter and partition classes.  Execution is covered using the abstract MessageExecution class, which is
specialized into three types of executions for messages: InputExecution, OutputExecution, and
ComputationExecution.  Each of these message types recieves a sequence of Instances as their input and/or output.
The message executions are directed toward a particular ActorInstance, which must have an association with the
UseCaseInstance.  Figures 14 through 17 illustrate the concepts from the testing.instance.concepts package.
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Figure 14.  Use Case Instances in the testing.instance.concepts Package
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Figure 15.  Transactions and Messages in the testing.instance.concepts Package
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Figure 16.  Message instances in the testing.instance.concepts Package
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Figure 17.  Logical / Physical Representations of Test Data in testing.instance.concepts Package



Well-formedness Constraints

Because many of the constraints are similar or identical to constraints constructed earlier, only two interesting
constraints are shown here.

[1] All transactions for an actor must contain only use cases with which the actor is associated.
context testing.instance.concepts.ActorInstance inv:

self.transactions->forall(t | 
t.testSteps->forall(u | 

self.assoc->exists(a | a.useCase = u)
)

)
[2] Messages can only flow between associated actor and use case instances.

context testing.instance.concepts.MessageExecution inv:
self.actor.assoc->exists(a | a.useCase = self.useCase)

4.3  testing.semantics

The package testing.semantics provides semantic mappings.  For the sake of space, only a sample of these mappings
are shown in Figure 18.  The rest are straightforward and follow the same pattern.  Two well-formedness rules are
constructed for the more interesting semantic properties that must hold.  
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Figure 18. Semantic mappings for testing.semantics Package

Well-formedness Rules

[1] The execution sequence of a use case instance must include Execution elements corresponding to the Action
sequence of the use case.
context testing.semantics.UseCaseInstance inv:

Sequence{1,2,...,self.exec->size}->iterate(i o=true |
(self.exec->at(i).of = self.of.actions->at(i)) and o)



[2] The use case instances in a transaction must correspond to the use cases defined in the corresponding flow.
context testing.semantics.Transaction inv:

Sequence{1,2,...,self.useCases->size}->iterate(i o=true |
(self.useCases->at(i).of = self.of.useCases->at(i)) and o)

4 Conclusion and Future Work

UML use cases can serve as the basis for model-based testing, but they require some additional information to be
useful.  I developed a set of requirements that a meta-model should satisfy in order to facilitate the capture of this
additional information.  Next, I developed a meta-model for standard use cases based upon UML1.3, but using the
techniques defined in the MMF.  This standard model was then extended to develop a test-ready meta-model.  This
meta-model has been used as a foundation for a tool for model-based testing.  Early pilots with this tool have
produced promising results, indicating that the concepts formalized above are important in test case generation.
Several important questions remain concerning model-based testing with use cases.  Additionally, there are some
broader questions about testing and UML that need to be explored.

As noted earlier, generalization requires a thorough treatment in order to be formalized in a way that is useful from a
testing perspective.  Similarly, extension and inclusion relationships require additional work to formalize the notion of
location references in the base use case.  How these different relationships affect one another must also be
considered carefully.  For instance, generalization indicates that a child use case should inherit the relationships of its
parent, including the ^includep and ̂ extendp relationships.  What this means needs to be thoroughly explored and
considered in the meta-model.

Utilizing other UML elements in modeling is another important area that requires further work.  For example, behind a
use case might be a set of sequence diagrams indicating how the use case is realized.  This information could be used
to enhance test generation algorithms, but it needs to be related to the use case model in a rigorous way.  One
approach would be to develop a meta-model for formalizing realization, refinement, and composition.  These topics
are covered in the Catalysis process [DW99], but require more study and formalization in order to gain the maximum
advantage by supporting them in an automated environment.  

Finally, this work raises a basic question about use cases in general.  If it is not essential to consider use cases as
having state for test case generation, is state an important or desirable concept to have associated with use cases?
The basic impetus for arguing this point is that use cases are (or should be) at their most detailed and robust by test
case generation time.  If this is true, and state is not required, will it ever be useful for practitioners to think about use
cases as having state?  I suspect that state should be left to other classifiers such as classes, subsystems, and
systems, but I would like to see a broader conversation about use cases as “stateless” classifiers.
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