
RC 22133 (W0107-026) 30 July 2001 Computer Science

IBM Research Report

A Debugging Platform for Java Server Applications

Bowen Alpern, Jong-Deok Choi, Ton Ngo, Manu Sridharan,
John Vlissides, Hyun-Gyoo Yook

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Debugging Platform for Java Server Applications

Bowen Alpern Jong-Deok Choi Ton Ngo Manu Sridharan∗ John Vlissides
Hyun-Gyoo Yook

IBM T. J. Watson Research Center
PO Box 704, Yorktown Heights, NY 10598

{jdchoi, alpernb, ton}@us.ibm.com, msridhar@mit.edu, vlis@us.ibm.com, hyun@watson.ibm.com

Abstract

Development of multithreaded server applications is particularly tricky because of their nondeterministic execu-
tion behavior, availability requirements, and extended running times. New tools are needed to help programmers
understand server behavior.

DejaVu supports deterministic replay of nondeterministic, multithreaded Java programs running on the Jalapeño
virtual machine on uniprocessors. Jalapeño is written in Java, and its optimizing compiler combines application,
virtual machine, and DejaVu instrumentation code into unified machine-code sequences. Such integration boosts
performance, but it also compounds the difficulty of replaying nondeterministic behavior accurately and with minimal
interference from the instrumentation. DejaVu ensures deterministic replay throughsymmetric instrumentation—
side-effect-preserving instrumentation in both record and replay modes—andremote reflection, which exposes the
state of an application without perturbing it.

1 Introduction

Software development tooling has matured to the point that any programming environment will provide a debugger

that can single-step, set breakpoints, inspect values, and evaluate expressions. Multithreading support is less common.

Still, many current tools add straightforward extensions that permit independent control and inspection of threads. But

even the most carefully designed and implemented multithreaded program can behave nondeterministically; that is,

successive runs with the same input data may nonetheless produce different outputs. Nondeterminism makes errors

difficult to reproduce, greatly complicating the hunt for bugs.

Compounding this problem are two technology trends:

1. Software is increasingly dynamic, with more and more configuration, translation, linking, and optimization

being performed at run-time. Dynamism is the enemy of high performance.

2. Distributed systems often incorporate multithreaded middleware components. Nondeterminism may arise within

the component, in its interactions with other components, or both. The errors that result can elude unit testing,

surfacing only under production conditions. It may not be feasible to halt a large production system to debug

such errors, and yet they might not be reproducible on a smaller scale.

These difficulties are not independent; addressing one can exacerbate the other. For example, Jalapeño [2] is a

Java virtual machine (JVM) designed for high-performance servers. Written in Java, Jalapeño uses a compilation-only

model to achieve dynamismandhigh performance by compiling bytecode to machine code at run-time. Unfortunately,
∗Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139.

1

two aspects of Jalapeño’s compilation model can make program behavior even less predictable than usual:cross-

optimizationanddynamic optimization.

Cross-optimization improves performance by analyzing and optimizing the application and its run-time system

together. Just as interprocedural analysis yields benefits beyond what can be achieved with purely local optimizations,

“co-analysis” and “co-optimization” of the application and run-time environment can expose many new opportunities

for optimization. But because cross-optimization blurs the distinction between application code and system code, it

may be more difficult to isolate problems in the application.

Meanwhile, dynamic optimization improves performance by recouping the time cost of optimization through

speedup of the optimized code. This trade-off is driven by dynamic profiling; hence the optimizations performed

and the application code produced can vary with workload. As a result, a long-running application may get optimized

in a way that’s difficult to reproduce.

A replay tool can address these problems by reproducing a program’s execution behavior at will. Such a tool

must record execution behavior, which requires instrumenting the program. Because instrumentation may impact

performance, the tool should be able to run the program without instrumentation. We distinguish three modes of

program execution:uninstrumented, record, andreplay.

To be at all useful, a replay tool must beaccurate: the behavior in replay mode must correspond exactly to

record mode’s (although the two modes need not perform identically). An additional criterion for a replay tool is its

precision—how well the behavior and performance of the system in record mode match uninstrumented mode. The

accuracy requirement is absolute; precision is relative.

This paper describesDejaVu, a replay tool for multithreaded Java applications running on the Jalapeño JVM on

uniprocessors.1 DejaVu (DeterministicJava ReplayUtility) provides a replay capability on which to build higher-level

tools for debugging and analyzing multithreaded applications. Jalapeño allows for high performance, while DejaVu is

designed to eliminate the complications that arise from multithreading and from Jalapeño itself.

2 An Example of Debugging using Deterministic Replay

To demonstrate the value of deterministic replay for debugging multithreaded Java programs, consider a simple exam-

ple in which five threads each attempt to add a single number to a sorted linked list. The list’s contents is then printed.

The insertion order is random, depending on the interleaving of the threads.

With inadequate synchronization, these insertions may interfere with each other and produce incorrect behavior.

Suppose that on a given execution the insertion order is9513, 4238, 7449, 6353, and1127, but the result is that only

four of the five numbers are printed—1127, 4238, 7449, and9513. The fourth number,6359, has been lost. The

DejaVu replaying debugger will be usedon this executionto discover the cause.

We start by setting a breakpoint at the beginning of theinsert method. Figure 1 shows the screen shot of the

Jalapẽno graphical debugger when the breakpoint is hit the fourth time. As expected,6353 is about to be inserted.

Recall that this is the value that didnot appear in the output. Note also that4238 and9513 are on the list, but7449 is

not.2

1Replay ofmultiprocessorexecutions is a considerably harder problem that we hope to address in the future (see Section 7). Nonetheless,
we claim that a uniprocessor replay engine is useful in understanding and debugging multithreaded programs even if they are meant to run on
multiprocessors.

2The thread that is inserting7449 has been artificially delayed. The disastrous consequences of this delay will soon be apparent. Although this
delay was induced, a JVM’s thread scheduler could have produced it just as well.

2

Figure 1: Thread 11 at the breakpoint about to add6359 to the list. Where is7449?

3

Figure 2: After a delay, Thread 9 is about to addnewItem (7449) to the sorted list betweencurrentItem (4238)
andoldNext (9513). Notice howcurrentItem andoldNext are sadly out of date.

4

Single stepping from here, Figure 2 shows Thread 9 in the act of corrupting the list. TheinsertAfter method is

supposed to insert anewItem (7449) into the list betweencurrentItem (4238) andoldNext (9513). This will

disconnect6359, which is already in the list betweencurrentItem (4238) andoldNext (9513). In a concurrent

system, such an update should be atomic. This method is not. The artificial delay thus allows the next two statements

to corrupt the list.

Although this example is contrived, such synchronization bugs are the bane of concurrent programming because

of how hard they are to reproduce. DejaVu solves that problem by recording the execution of a multithreaded program

so that it can be replayed on demand.

3 Jalapẽno Background

The archetypal Java run-time service—automatic memory management, both object allocation and garbage collection—

is completely deterministic in Jalapeño. However, its implementation impacts DejaVu’s. To avoid memory leaks

associated with conservative garbage collection, and to allow copying garbage collection, Jalapeño’s collectors are

type-accurate. That means every reference to a live object must be identified during collection.

Identifying such references in a thread’s activation stack is problematic. Jalapeño reference mapsspecify these

locations for predefinedsafe-pointsin the compiled code for a method.3 At collection-time, Jalapẽno guarantees that

every method executing on every mutator thread has halted at one of these safe-points.

Jalapẽno satisfies this guarantee through a custom thread package. Threads are switched quasi-preemptively at

predeterminedyield points, which occur exclusively in method prologues and on loop backedges. Yield points are a

subset of safe-points. To ensure fairness, threads are preempted at the first yield point after a periodic timer interrupt—

a key source of nondeterminism in Jalapeño.

The multithreading facilities of Jalapeño were designed to be highly efficient, modular, and independently tunable.

Nevertheless, capturing the effects of interrupts would be a challenge to any replay tool. While not a run-time service

per se, Jalapẽno’s support for the Java Native Interface (JNI) presents another challenge. JNI allows Java programs to

make arbitrary calls to native code and vice versa. This flexibility further complicates replay because native code is

beyond DejaVu’s control.

4 Deterministic Replay

On a uniprocessor, an application’s execution behavior is uniquely defined by (1) a sequence ofexecution events(i.e.,

bytecodes or instructions) and (2) the program’s state after each execution event. Two executions are identical if

(1) their execution sequences are identical and (2) their states after any two corresponding events are identical. For a

multithreaded application, events can be executed by different threads. Athread switchis the transition from an event

executed by one thread to an event executed by another. As we saw in Section 2, timing of a thread switch can affect

the order of subsequent events, thereby potentially affecting program state.

The example in Figures 3A and B highlights how two different executions of the same program with the same

state can result in different behaviors due to thread switches. The “print y ” of Figure 3A will print “8”, while the

“print y ” of Figure 3B will print “0”.
3Jalapẽno does not interpret Java bytecodes. Rather, one of three Jalapeño compilers translates these bytecodes to machine code. Currently,

DejaVu uses Jalapeño’sbaselinecompiler.

5

x = 0, y = 0

(D)

print y;
y = y * 2;

if (y < 15)
y = Date();

(A) (B) (C)

o1.notify();

y = x + 100;

x = y * 2;

y = y * 2;

print y;

T1 T2 T1 T2 T1 T2

y = x * 2;

y = Date();
if (y < 15)

o1.wait();

print y;

y = 1;

y = x * 2;

T1 T2

y = x + 100;

T1, T2: threads : thread switch

x = y * 2;

y = 1;

y = y * 2;

print y;

x = 0, y = 0

Figure 3: Nondeterministic Execution Examples

The program’s state after an event can itself influence a thread switch by affecting the execution path following

the event. Consider now Figures 3C and D, in which “Date() ” returns today’s date from the system wall-clock.

In the example, different program states immediately after “y = Date() ” take different branches after “if (y

< 15) ”: the “true ” branch is taken in Figure 3C, while the “false ” branch is taken in Figure 3D. The “true ”

branch in Figure 3C results in a thread switch from T1 to T2 due to “o1.wait() ” inside the branch. Meanwhile, the

“ false ” branch in Figure 3D does not incur an immediate thread switch.

We can ensure that two executions of a multithreaded application are identical by ensuring identical thread switches

and identical program states after corresponding events.

4.1 Ensuring Identical Program State

An event isdeterministicif the samein-stateproduces the sameout-state, where in-state and out-state are the program

states immediately before and after the event, respectively. All the events in Figures 3A and B are deterministic. If

all the events are deterministic, then execution behaviors remain identical as long as threads are switched identically,

assuming the same starting state.

Some events are inherently nondeterministic: the same in-state can produce different out-states. An example of a

nondeterministic event is reading the value of a wall clock during execution, like the “Date() ” function in Figures 3C

and D. Another example is reading a mouse motion or a keystroke. DejaVu handles such events by recording the out-

state (or the change therein) during one execution and subsequently replacing nondeterministic operations with the

retrieval of their prerecorded results.

4.2 Ensuring Identical Thread Switches

Three factors can cause thread switches in Jalapeño: (1) synchronization events, (2) timed events (such assleep and

timedwait), and (3) timer interrupts. Thread switches due to synchronization events are deterministic, while thread

switches due to the latter two factors are nondeterministic.

6

Replaying Deterministic Thread Switches

A thread switch occurs when a synchronization event blocks the execution of the current thread, as would await

event or an unsuccessfulmonitorenter event. Synchronization events can also make a blocked thread ready to

execute. Such events includemonitorexit , notify , notifyAll , andinterrupt .

A thread switch occurs when thread “T1” in Figure 3C executes “o1.wait() ”. This thread switch is determinis-

tic; there will always be a thread switch on await event. The main challenge for replay here is to ensure thread “T2”

becomes the next active thread in the presence of multiple ready threads.

An unsuccessfulmonitorenter event also generates a thread switch in Jalapeño, because the current thread is

blocked until it can successfully enter the monitor (for example, a synchronized method or block in Java). Whether a

monitorenter event is successful or not depends on program state, including thelock stateof each thread. Thus

monitorenter is usually a nondeterministic event. Cross-optimization of Jalapeño and its application actually

benefits DejaVu in this regard, although it also presents problems that will be discussed later.

When DejaVu replays an application up to a synchronization operation (say amonitorenter), it replays the

program state of Jalapeño as well. That includes Jalapeño’s thread package, which maintains the lock state of each

thread and lock variable plus the dispatch queue of threads. Therefore the synchronization operation will succeed

or fail in replay mode depending on whether it succeeded or failed in record mode. If it fails, then the next thread

dispatched during replay (as determined by the thread package) will be the same thread dispatched during record mode.

That’s because DejaVu also reproduces the data structure that the thread package uses to schedule threads. Similarly,

anotify operation (as in Figure 3C) performed in replay mode will succeed or fail if it succeeded or failed in record

mode.4

Cross-optimization simplifies the implementation of this behavior. No additional threading information need be

captured or restored during replay to accommodate synchronization events. The thread scheduler will choose the

correct thread because the scheduler itself is replayed.

Replaying Nondeterministic Timed Events

The thread scheduler’s state includes a queue of threads ready to execute (theready threads) and a list of threads

blocked due to synchronization operations (theblockedthreads). Under DejaVu, blocked threads become ready threads

normally as a result of other threads’ wake-up operations such asnotify , notifyAll , andmonitorexit . Two

exceptions aresleep and timedwait operations. A sleeping thread wakes up after a period specified in an argument

to thesleep operation. Await operation can specify a period after which a thread should wake up unilaterally.

These timer-dependent operations must be handled specially.

Timer expiration depends on the wall-clock value and is nondeterministic with respect to application state. To

ensure deterministic threading behavior during replay, timer expiration is based on equivalent program state, not wall-

clock values alone. To handlesleep and timedwait , Jalapẽno reads the wall clock periodically. The values read are

nondeterministic, but their reproduction is deterministic under DejaVu. Therefore events that depend on wall-clock

values, such assleep and timedwait s, will execute deterministically. Reproducing wall-clock values is a special

case of replaying nondeterministic events as described earlier.
4A notify operation on an object “succeeds” if there exists a thread waiting on the same object.

7

4.3 Replaying Preemptive Thread Switches

A nondeterministic thread switch occurs in Jalapeño as a result of a timer interrupt. Since the number of instructions

executed in a fixed interval can vary, a nondeterministic number of instructions will be executed within each preemptive

thread switch interval.

Cross-optimization simplifies things here too, since DejaVu replays Jalapeño’s thread package. Ensuring identi-

cal preemptive thread switches requires identifying the events that occur following preemption while recording, and

enforcing thread switches after the corresponding events during replay. The key issue here is how to identify the

corresponding events in record and replay modes.

Wall-clock time is not a reliable basis for identification, because a thread’s execution rate can vary due to external

factors such as caching and paging. Instruction addresses are also insufficient—the same instruction can be executed

many times during an execution through loops and method invocations. A straightforward counting of instructions

executed by each thread will work, but the overhead is prohibitive.

The developers ofInstant Replay[9] observed that events can be uniquely identified by a tuple containing an

instruction address and a count of the number of backward branches executed by the program. Jalapeño exploits this

observation by equating the number of yield points encountered to the number of backward branches executed. Since

preemptive thread switches in Jalapeño occur exclusively at yield points, the yield-point count can uniquely specify

preemptive thread-switch events.5

4.4 Symmetric Instrumentation

DejaVu cannot replay its own instrumentation, which behaves differently by definition: it writes data in record mode

and reads data in replay mode. Ideally, DejaVu’s execution should betransparentto Jalapẽno—having no impact on

its behavior except to effect replay.

However, cross-optimizing DejaVu, Jalapeño, and the application makes absolute transparency impractical. Side

effects of DejaVu instrumentation may affect the virtual machine, the application, or both. For example, any class

that DejaVu loads affects Jalapeño, since a class loaded by DejaVu will not be loaded again for Jalapeño. Hence

class loading on DejaVu’s part can change Jalapeño’s execution behavior and potentially that of the application. Class

loading can also affect the garbage collector, because loading usually involves allocating objects.

Where transparency cannot be achieved, DejaVu employssymmetrybetween record mode and replay mode: De-

jaVu activity that could affect the JVM (or DejaVu itself) is performed identically during both record and replay. Such

activity includes

• object allocation,

• class loading and method compilation,

• stack overflow, and

• updating the logical clock.

5Recall that there is a yield point in every method prologue and on each loop backedge. So while the two counts are not identical, they serve the
same purpose.

8

Symmetry in Object Allocation

DejaVu preserves symmetry in object allocation by allocating and using the same heap objects for both record and

replay modes at a given point in the execution. For example, the same buffer stores information captured in record

mode and information read from disk in replay mode. DejaVu’s initialization phase pre-allocates the buffer in both

modes. Additional heap objects are created as needed at a given point in either mode’s execution.

Symmetry in Loading and Compilation

To maintain symmetry in class loading and method compilation, DejaVu pre-loadsall its classes during initialization

whether or not they will be instantiated. DejaVu also pre-compiles the corresponding methods at that time.

Furthermore, DejaVu pre-loads classes needed for file I/O, which is used to store information captured while

recording and to read it back during replay. To preserve symmetry here, DejaVu writes to a temporary file (i.e., invokes

output methods) and then immediately reads from that file (i.e., invokes input methods) during its initialization phase

in both record and replay modes. This forces compilation of input and output methods in both modes.

Symmetry in Stack Overflow

Jalapẽno allocates run-time activation stacks in heap objects (arrays), creating one when the current stack overflows.

Should that happen, DejaVu maintains symmetry by ensuring that an overflow occurs at exactly the same point in the

execution under both modes, whether in Jalapeño or in the application.

DejaVu’s instrumentation in Jalapeño invokes different DejaVu methods in record and replay modes, since the

modes do different things. The result can be unequal run-time activation-stack increments at corresponding invocations

of a DejaVu method. These can result in different behaviors should a run-time-stack overflow occur. DejaVu addresses

this problem by eagerly growing the run-time stack just before calling a DejaVu method whenever available stack space

falls below a heuristically determined value.

Symmetry in Updating the Logical Clock

DejaVu’s logical clock keeps track of the number of yield points executed by a thread. Since the instrumentation for

record and replay perform different tasks, one might entail more yield points than the other. To keep the logical clocks

in synch, yield points encountered in the course of executing instrumentation code are not reflected in the logical clock.

4.5 Java Native Interface

Native code can affect a Java program’s execution in two ways: through return values or through callbacks. JNI

callbacks can be made only through predefined JNI functions. DejaVu captures callback parameters and return values

from native calls during record, and it regenerates them at the corresponding execution points during replay. This

approach is sufficient since Jalapeño’s implementation of JNI does not allow native code to obtain pointers into the

Java heap.

DejaVu’s current support for JNI replay assumes that native code runs for brief periods and does not block. DejaVu

does not switch Jalapeño threads during native code execution. This has the effect of “freezing” time as a native method

executes. Thus it’s enough for DejaVu to record only return values and callback parameter values and not the time of

their occurrence.

9

JNI Callbacks

Jalapẽno generates a wrapper for each native method invocation. Each wrapper implements a prologue and epilogue,

with the invocation to the native method in between. DejaVu instruments every wrapper, including those for predefined

JNI callback functions. While recording, a callback function’s prologue records a unique ID for the function in the

DejaVu trace, and it records the native call’s parameter values being passed to the callback function.

During replay, a wrapper invokesJNIproxy, a DejaVu method written in native code, instead of the original native

method invoked during record. JNIproxy does two things. First, it reads the unique ID of the callback function

stored during recording in the DejaVu trace. Second, JNIproxy invokes the callback function. The callback function’s

instrumented prologue then builds the parameter values by reading them from the trace.

JNI Returns

When the native method returns control to its enclosing wrapper during recording, the instrumented epilogue of the

wrapper writes a value into the DejaVu trace. This value is guaranteed to be different from the unique ID of any

callback function. Then the epilogue records the return value of the native-method invocation.

During replay, the wrapper invokes JNIproxy instead of the real native method. JNIproxy reads a value from the

DejaVu trace and uses it to determine whether to return immediately (as indicated by having read an invalid callback

ID) or to invoke a callback function. If the value indicates a return, JNIproxy returns to the wrapper of the native-

method invocation. The epilogue of the wrapper then reads the returned value from the DejaVu trace and uses it as the

return value.

5 Remote Reflection

The primary design constraint on a DejaVu-based debugger is to preserve the execution of the application being

replayed. The execution must not be perturbed by basic debugger operations such as stopping and continuing, querying

objects and program states, setting breakpoints, and so forth.

Jalapẽno’s Java-based implementation introduces another constraint. Jalapeño uses reflection extensively in its

implementation. The debugger should thus exploit the same reflection interface in its interactions with the JVM and

applications rather than introducing an ad hoc interface.

5.1 Implementation Challenges

Adherence to these constraints yields many benefits, but it also presents difficulties. First, to use reflection, the

debugger must be an integral part of the system—that is, the debugger must execute in-process. But preserving

deterministic execution across the entire system becomes problematic.

Suppose the application has stopped at a breakpoint, and the user wants to see a stack trace. The JVM must execute

the debugger and its reflective methods to compute the requisite information. This action itself changes the state of the

JVM: thread scheduling occurs, classes may be loaded, garbage collection might take place, etc. As a result, it may

no longer be possible to resume deterministic execution.

Evidently, keeping the application JVM unperturbed during replay requires an out-of-process debugger—that is, a

debugger that runs on an independent JVM. But that will put the application’s reflection facilities out of the debugger’s

10

reach. Although the debugger can load the classes and execute reflection methods, the desired data resides in the

application JVM, not the tool JVM.

More generally, conventional reflection code is assumed to execute in the address space of the client seeking

reflection information. Reflection code is thus tightly coupled to the data it accesses.

5.2 Transparent Remote Access

Remote reflection solves this problem by decoupling reflection data and code. It allows a program running on one JVM

to execute a reflection method directly on an object in another JVM. This allows a DejaVu-based debugger to execute

out-of-process to avoid perturbing the application but still take full advantage of Jalapeño’s reflection interface.

The key to enabling remote reflection is an object in the local (i.e., tool) JVM called theremote object, which

serves as a proxy for the real object in the remote (i.e., application) JVM.

To set up the association between the two JVMs, a client (the debugger in our case) specifies a list of reflection

methods that aremapped: when they execute in the tool JVM, they return a remote object that represents the actual

object in the remote JVM. Typically, mapped methods are accessors that return internal state.

Once a remote object is obtained from a mapped method, all values or objects obtained from the remote object

will originate from the remote JVM. A standard reflection method can be invoked on the remote object in the same

manner as a normal object. From the client’s perspective, a remote object is indistinguishable from a normal object in

the local JVM save for the list of mapped methods.

The uniform treatment of local and remote objects offers the advantages of transparency. Because a remote object

is logically identical to a local object, a client uses the same reflection interface whether it executes in-process or

out-of-process. This simplifies maintenance of the reflection interface and the clients that use it.

A second advantage is that no overhead accrues in the remote JVM, since remote reflection relies on the operating

system to access the remote JVM address space. In other words, the remote JVM does not execute any code to respond

to queries from the debugger, and no JVM code is modified to support the debugger. This guarantees that the remote

JVM is not perturbed by the debugger unless the user specifically wants to modify the state of the remote JVM.

Further details on DejaVu’s implementation of remote reflection, along with examples of its use, appear else-

where [11].

6 Related Work

Repeated execution is a widely accepted technique for debugging and understanding deterministic sequential applica-

tions. Repeated execution, however, cannot reproduce execution behavior of nondeterministic applications by itself.

Replaying a nondeterministic application requires generating traces repeatedly until a given execution behavior is

reproduced.

Many approaches for replay [9, 14, 12] capture the interactions among processes—i.e., thecritical events—and

generate traces for them. A major drawback of such approaches is the overhead, in time and particularly in space, of

capturing critical events and generating traces.

Igor, Recap, andPPDare representative of early work in replay for debugging [6, 12, 10, 5]. All support replay (or

“reverse execution”) by checkpointing and re-executing from a previous checkpoint, as does recent work by Boothe [4].

Minimizing checkpoint overhead is the main challenge in such systems.

11

To reduce trace size,Instant Replay[9] assumes that applications access shared objects through coarse-grained

operations calledCREW(Concurrent-Read-Exclusive-Write). Instant Replay generates traces for just these coarse

operations. This approach will not work for applications that do not use the CREW discipline, of course, but it also

fails when critical events within CREW are nondeterministic.

Russinovich and Cogswell’s approach [13] is similar to ours in that it captures only thread switches (rather than all

critical events) on a uniprocessor. The Mach operating system was modified to notify the replay system on each thread

switch. Since the approach does not replay Mach’s thread package, the replay mechanism must tell the scheduler

which thread to schedule. This requires a mapping between the thread executing during record and during replay—a

significant execution cost that DejaVu avoids by replaying the entire Jalapeño thread package.

Holloman and Mauney’s approach [8, 7] is similar to (and has the same drawbacks as) Russinovich and Cogswell’s

except for the mechanism that captures process scheduling information. Application code is instrumented with excep-

tion handlers that capture all exceptions sent from the UNIX operating system to the application process, including

those for process scheduling.

Remote reflection integrates two common debugger features: out-of-process execution and reflection. Typical

debuggers such asdbxor gdbare out-of-process too, but they rely on convention instead of reflection to interpret the

data. The Sun JDK debugger [1] and the more recent Java Platform Debugger Architecture are out-of-process and

reflection-based; however, both differ significantly from remote reflection in their approach.

First, the JDK debugger is geared toward user applications because it calls for the cooperation of the virtual

machine. The reflection interface requires a dedicated JVM thread that responds to queries from the out-of-process

debugger. In comparison, remote reflection requires no effort with respect to the target JVM; it executes no remote

reflection code, and no JVM code is modified to support remote reflection. As a result, remote reflection can be used

even when the JVM itself is defective.

Second, the JDK debugger uses a reflection interface that is different and separate from the internal reflection

interface. The debugger’s reflection interface may thus be implemented in native code, thereby minimizing JVM

perturbation. But it also requires implementing and maintaining two reflection interfaces with similar functionalities.

Remote reflection allows the same reflection interface to be used internally or externally.

7 Conclusion

This paper addressed the problem of building a perturbation-free run-time tool, such as a debugger, for heavily mul-

tithreaded nondeterministic Java server applications cross-optimized with the Java Virtual Machine (JVM). Cross-

optimization improves overall performance. It also affords the precise instrumentation needed for run-time tools like

DejaVu. However, cross-optimization introduces new challenges for replay from its own side-effects. We showed how

DejaVu employs symmetry and remote reflection to meet these challenges.

We are working on two improvements to DejaVu. A third awaits further research.

7.1 Checkpointing Long Executions

It is usually inconvenient if not impossible to bring down a server to debug a client application. Since DejaVu captures

all calls to native code as nondeterministic operations, replay can be carried out on a machine external to the production

system.

12

For long-running server applications, replaying the application from the beginning may well be undesirable. We

would like to be able to checkpoint a running Jalapeño JVM periodically and replay from any of these checkpoints. A

checkpoint mechanism can leverage two existing Jalapeño mechanisms: bootstrap loading and garbage collection.

Initially, a specialboot image[3] of a ready-to-execute Jalapeño JVM is created on an independent JVM and then

written to a file. A short C program, theboot image runner, reads this file, copies the data to a predetermined location

in memory, and transfers control to Java code that starts up each of Jalapeño’s subsystems.

The format of a checkpointed Jalapeño image is a simple generalization of the boot image format. Instead of

one big chunk of data with an implicit length and address, there would be a sequence of smaller chunks, each with

an explicit length and address. The boot image runner would be adapted to handle such images. The Java code for

restarting execution will closely follow the startup code but will reestablish the checkpointed state.

It remains to be shown how to write the state of a running application to a file in an appropriate format. The first

task is to “quiesce” the system, halting all application activity in a state from which it can be restarted. Jalapeño’s

parallel, type-accurate, stop-the-world garbage collectors [2] already do this. The copying collector will also compact

small objects into a large contiguous chunk. (Large objects are kept in a separate, uncopied area.) At the end of

garbage collection, a Java method will write the image to a file in the proper format.

In general, checkpointing a system with open files (or sockets) is problematic, because a file might not be available

when execution is restarted. This is not a problem for DejaVu since replay mode already simulates all I/O accesses.

7.2 Less-Intrusive Debugging Interface

Some debugging classes must execute on the tool JVM to enable remote reflection. But the debugger’s Java-based

graphical user interface (GUI) would be unacceptably slow if it were thus interpreted. Furthermore, the researchers

working on Jalapẽno typically execute the virtual machine remotely from a Windows machine, since both application

and tool JVMs run on AIX. This too incurs overhead. Hence the GUI is designed to run on yet a third JVM, communi-

cating with the debugger JVM through TCP. Developers can run the debugger remotely and the GUI locally, realizing

both simple integration and satisfactory performance.

Remote reflection provides an effective debugging interface that exerts complete control over the JVM, allowing

low-level debugging without perturbing the JVM. However, the JVM is frozen while the debugger runs. That makes

remote reflection unsuitable for a production environment where the user application may be suspended but the JVM

must remain running.

To accomplish that, we are investigating a more traditional approach that employs a debugging daemon in the JVM

to serve a debugger client. The debugger is no longer isolated from the JVM; therefore the daemon must take care to

avoid perturbing the application being replayed. Specifically, the daemon’s side-effects must be recorded. The activity

of the daemon itself is not recorded, and the daemon executes out of the scheduling control of DejaVu during replay.

7.3 SMP Record and Replay

On a uniprocessor, the interaction between threads can be completely characterized by the points at which the processor

moves from one thread to another. By exploiting Jalapeño’s quasi-preemptive thread-switching mechanism, DejaVu

minimizes the overhead of recording this information.

Naturally, we would like to be able to record and replay the interaction of threads executing on a multiprocessor.

But the multiprocessor problem is much more difficult, as threads potentially interact whenever they access a shared

13

object. Systems that record and replay each shared-memory access on a multiprocessor could typically experience a

hundredfold degradation in performance.

We hope to do substantially better than that by leveraging the features of the Java Memory Model [1]. Still,

the problem is severe, and it seems unlikely that the overhead of multiprocessor record and replay can be reduced

to the 15% or so level that would make it tolerable for production use. Even with a factor of five or ten overhead,

however, record and replay in conjunction with a checkpoint and restart facility (itself a more difficult problem on a

multiprocessor) could still be a useful tool for debugging and perhaps tuning multiprocessor applications.

References

[1] Java Development Kit 1.1. Technical report, Sun Microsystems.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,

M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,

J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño virtual machine.IBM

Systems Journal, 39(1), 2000.

[3] Bowen Alpern, Dick Attanasio, John J. Barton, Anthony Cocchi, Derek Lieber, Stephen Smith, and Ton Ngo.

Implementing Jalapẽno in Java. InACM Conference on Object-Oriented Programming Systems, Languages, and

Applications, pages 314–324, 1999.

[4] Bob Boothe. Efficient algorithms for bidirectional debugging. InProceedings of the ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI), pages 299–310, June 2000.

[5] Jong-Deok Choi, Barton P. Miller, and Robert H. B. Netzer. Techniques for debugging parallel programs with

flowback analysis.ACM Transactions on Programming Languages and Systems, 13(4), October 1991.

[6] Stuart I. Feldman and Channing B. Brown. Igor: A system for program debugging via reversible execution.

In Proceedings of the ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging, pages

112–123, May 1988.

[7] Edward Dean Holloman. Design and implementation of a replay debugger for parallel programs on unix-based

systems.Master’s Thesis, Computer Science Department, North Carolina State University, June 1989.

[8] Edward Dean Holloman and Jon Mauney. Reproducing multiprocess executions on a uniprocessor.Unpublished

paper, August 1989.

[9] Thomas J. Leblanc and John M. Mellor-Crummy. Debugging parallel programs with instant replay.IEEE

Transactions on Computers, C-36(4):471–481, April 1987.

[10] Barton P. Miller and Jong-Deok Choi. A mechanism for efficient debugging of parallel programs. InProceedings

of ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages 135–144,

June 1988.

[11] Ton Ngo and John Barton. Debugging by remote reflection.Proc. of EURO-PAR 2000, August 2000.

14

[12] Douglas Z. Pan and Mark A. Linton. Supporting reverse execution of parallel programs. InProceedings of the

ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging, pages 124–129, May 1988.

[13] Mark Russinovich and Bryce Cogswell. Replay for concurrent non-deterministic shared-memory applications.

In Proceedings of ACM SIGPLAN Conference on Programming Languages and Implementation (PLDI), pages

258–266, May 1996.

[14] K. C. Tai, Richard H. Carver, and Evelyn E. Obaid. Debugging concurrent ada programs by deterministic

execution.IEEE Transactions on Software Engineering, 17(1):45–63, January 1991.

15

