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An Architecture for QoS Data Replication in Network Virtual Environments

George V. Popescu and Christopher F. Codella
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1. Introduction

Network Virtual Environment architectures have been successfully deployed over local
area networks (see [10] for a review of networked Virtual Environments). With the advance of
graphics capabilities on client platforms (PCs, game consoles) and availability of broadband
Internet access (DSL, Cable Modem, etc.) networked Virtual Environment (netVE) technology is
ready for deployment over the Internet. However the Internet is a much more heterogeneous
environment, requiring new architectural solutions. A central problem in netVE design is
geometry data replication. Replicating the whole database is not needed and may be prohibitive
in case of very large Virtual Worlds. 

Therefore the replication model proposed here assume the data is downloaded on
demand. This replication model can be used in several network applications such as online 3D
communities, network games, and 3D web browsing. The model is in contrast with currently
available 3D web plugins which download the whole scene content before allowing user
interaction. Browsing 3D content on the Internet uses VRML [12] files and 3D-enabled browsing
clients. User navigates the Web space by pointing to URL's and waiting for content to download.
This model, designed for browsing HTML pages, is not suited for interactive 3D content.
Navigation in 3D environments involves controlling the viewpoint. New content is typically
explored through continuous movement of the viewpoint. For large Virtual Worlds, data
visibility is also limited in order to achieve interactive frame rates. While navigating these
Worlds, the browser will have to download the 3D content just in time for the user to view it.
This can be achieved by tracking the viewpoint and prefetching geometry data in Client's cache. 

2. Related work

Reducing Web latencies motivated the early research on predictive prefetching.
Padmanaban and Mogul [8] showed that significant reduction of average access time of WWW
documents can be achieved at the expense of an increase in network traffic by a similar fraction.
In [6] prefetching was used to reduce latencies over a low-bandwith connection between client
and a caching proxy. A significant latency reduction was achieved without generating additional
Internet traffic in the backbone. 

Prefetching was used in distributed virtual environments for geometry streaming [9] [4].
Multiresolution geometries are stored at the server and send to the client just in time for being
rendered. This allows better resource utilization for very large geometry databases with complex
models. Chim et al. [4] also proposes a multiresolution caching mechanism optimized for Virtual
Environment navigation.
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A general framework for task-specific asset prioritization in distributed virtual
environments has been proposed in [3]. The framework performs resource management based on
quality, importance and cost (QUICK) ratings of each component of the Virtual Environment.
The approach attaches to the scenegraph a set of QUICK annotations used by resource managers
to decide how to optimize the scene at run-time. The framework has been implemented in a
prototype display and a distributed cache management system. 

These previous prefetch techniques can be characterized as “best effort”, as they do not
attempt to provide Quality of Service for the prefetching mechanism. The prefetch policies use
display optimization techniques, ignoring network related aspects. QUICK method consider the
cost of data download among other display optimization variables, but does not provide an
adaptive QoS method for data replication. Performance measures of previous methods were
obtained on LANs, which exhibit a stable behavior.

3. Client Server Interaction for netVE navigation and download

Client server interaction in network VEs is influenced by user navigation. Two popular
navigation models are continous navigation and portal navigation. In continous naviagation the
viewpoint moves incrementally between successive frames, controlled by an input device or by
an animation sequence. Portal-based navigation consist of switching to another 3D universe. The
C/S system uses a controller to manage data download based on viewpoint motion. A controller
for VE navigation processes user input differently than a Web browser. The controller model of a
HTML browser can be described by the following sequence:
<User action> à <Client request information from HTTP Server > à <Client receive content>
A 3D navigation controller uses two asynchronous loops - one for user input, the other for data
download control:
<User action> à <Change viewpoint> & 
<Check data visibility conditions> à <New data request> à <Get new data in Client cache>

The first loop updates the viewpoint position according to user input. The second one
performs data download transparent to the user. There are two choices for controlling the data
download:

1) Pull model: data flow is controlled by the client. This requires that the client has
acquired a description of the Virtual Environment before the navigation process starts.
A practical implementation of this model uses a scenegraph with "NULL" geometry
nodes. These nodes contain data indicating the URL of the geometry node and the
size of the geometry file. The client application switches the NULL nodes with
geometries as required by the visibility mechanism provided that they are available in
the client cache. 

2) Push model: the server keeps track of client viewpoint movement through frequent
updates and pushes new content into the client disk cache as needed. This model does
not require any additional annotations in the scenegraph, but requires a constant
client/server data flow and additional server CPU load for each client.

     Client controlled data replication is well suited for browsing  3D Web content while
dynamic netVEs (like multi-player 3D games) could be implemented more efficiently with server
control. We analize here the client controlled data replication.
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VE data is modeled using a scenegraph; the viewpoint motion is controled with input
devices or by animation. The scenegraph contains several nodes which describes 3D objects
geometries, transformation, behaviours, animations, etc. The client (viewer) import the
scenegraph description and control data replication based on the interest model of client viewer. 
The 3D web navigation model uses a three-level data accessibility model including: visible data,
area of interest (AOI) data and unknown data. Limiting the visibility of data is necessary for very
large Virtual Environments in order to achieve interactive frame rates. The shape of the visible
region was chosen circular for simplicity. In general it can be an arbitrary shape, obtained at
runtime through intersection of several geometries (e.g. intersecting room plan with a circular
visibility region). Visible data changes continuously as the viewpoint navigates the Virtual
Environment. As a consequence new data is constantly loaded in the main memory at run-time
from the local cache. Every time a scenegraph node become visible a new thread is dispatched to
load the geometry data which replaces the null geometry node. The node is now labeled visible
data for the time it stays in the memory. When the node moves out of the visible region it is
labeled AOI data, its geometry is discarded from memory and the null geometry is switched back
in.

Figure 1: Geometry prefetching in netVEs

Area of interest (AOI) specifies a surveillance region used by the client for prefetch
planning. AOI has a circular shape concentric with the visible data region. A collision detection
mechanism signals when a null geometry node enters the area of interest. The list of null
geometry nodes in the area of interest is continuously evaluated by the prefetch module. When
the prefetch condition is triggered, a new thread is dispatched to download the geometry file into
the cache. If the geometry is requested by a load thread before it is available in the cache, the
request is saved in a waiting queue. The load module is notified when the geometry becomes
available. 

The rest of the scenegraph, containing null geometries, is classified as unknown data. The
data accessibility model is presented in Fig. 1. We also show the cached area in order to contrast
it with AOI area. Part of data in the AOI is in the local cache if the prefetch manager downloaded
it. Please note that some geometry data might still be in the cache while not in the area of
interest. 
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An important measure is the average data density for a virtual world. This is calculated as
the size of the data contained in the virtual world over the extent of the virtual world. The
download bit rate when viewpoint move in the VE can be expressed as: 

BR = 2 *data density * speed * Radius(visible area) (eq 1)

The bit rate is the main QoS parameter for the data download. This is the minimum bit
rate that the client will accept during the QoS negotiation protocol.
  
4. Scene graph extension to support partial data replication

In order to support QoS prefetch, the scenegraph is extended with a data size field. This
additional field is added to any online node, such as geometry, texture, etc. The requires either  
extension of the scenegraph modeling language (VRML) to accommodate the data size labeling,
or querying at the run-time to obtain the data size. Labeling is different for static and dynamic
content. Static content can be pre labeled and doesn't add run-time load. Dynamic content
requires run-time data labeling to be done at the server. For each file containing dynamic objects
the server has to check and insert the correct data label.

The virtual world parameters necesarry for QoS download are: center (Cx, Cy, Cz)
extents (Ex, Ey, Ez) and data weigth (W[kB]) (see Fig. 2). Given the extended scenegraph, these
parameters are obtained using a graph traversal algorithm which compute the CEW parameters
for each node in the scenegraph. The CEW of root are used to calculate the average data density
virtual world: data_density = W(root) / Ex(root)*Ez(root) - for the planar viewpoint motion. A
volumetric data density can be calculated for 3D viewpoint motion: data_density = W(root) /
Ex(root)*Ez(root)* Ey(root). The CEW of each node in the hierarchy can be similarly used to
determine local average densities. The data density affect the AOI size as shown in section 5.3.

Figure 2: Scenegraph extensions

The scenegraph of large virtual worlds is tipically segmented in smaller local worlds.
Such local worlds are represented as portals to be explored at run-time. Assuming a run-time
replication model, the data behind these portals can be similarly prefetch just-in-time.  This can
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be achieved by labeling the hyperlink to a new of the new virtual world with the CEW (center,
extent and data weigth) parameters (Fig. 3). These parameters need to be calculated at run time
using the graph traversal algorithm described above.

Figure 3: Prefetching segmented virtual worlds

5 . QoS data replication
5.1 The QoS protocol
QoS data replication involve client/server negotiation of download bandwidth and

adaptation to varying network condition. The negotiation of download bandwidth is intended to
allow the server to control the network resources allocated per client. Server congestion is
avoided by limiting the number of connections accepted. The client uses negotiation to select the
server that satisfy its quality of service requirements. By using negotiation, application
requirements are shaped according to available network resources; as the clients and servers are
aware of these resources, they adjust the communication parameters according to availability.

The QoS tuple has the format <Bw_download, T_response, Download Class>. The
first parameter represent the average download bandwidth available for the connection. The
second term is the maximum allowable sever response time for a client request. The last term
indicate the class of the client (e.g. a Web 3D portal has a lower download class than a
subscription-based online network game). 

The protocol start with a preliminary step when the client is probing the network
resources. This include latency measurements and bandwidth availability on the routing path to
the server. A ping-like utility is used to determine latencies. Bandwidth estimation measurements
are performed next (TCP congestion window, rtt; network level: loss rate, ...). After collecting
these data, the QoS-tuple corresponding to client application profile is adjusted with network
measurements. Then the client starts the QoS negotiation process. The protocol consist of three
steps:

1.   Request: QoS client requirements are announced to the server. The requested bit rate
should be larger than the bit rate calculated with (eq. 1).

2. Adjustment: The server adjust the QoS-tuple based on its QoS serving policy and
available resources. The parameters can be accepted without modification, be degraded or
rejected. The QoS-tuple is returned to the Client. 

3. Confirmation: The client accept the adjusted parameters and set the download model
parameters.
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5.2 Prediction and Prefetching:  
The prefetching model uses the client negotiated download bandwidth for just-in-time

data replication. The prefetch manager keeps a table with time penalties, T_download,
(calculated for the estimated Client’s network bandwidth) for all NULL nodes in the AOI. The
size of the AOI is selected so that the largest virtual object can be downloaded just in time. The
time when the geometry becomes visible – T_visible - is also estimated. Whenever the time to
get to a node is less than the download penalty time plus buffer time (to account for variation in
connection bandwidth), a download thread is dispatched to get the geometry into the local cache:

T_download (obj_i) = Data_Size(obj_i) / Bw_download ;  
T_buffer =  T_response+T_parameter;
T_visible = Distance (visible boundary, C(obj_i)) / Estimated_speed ;
T_visible < T_download + T_buffer  à  start downloading the node
Radius (AOI)=max_speed*(T_buffer+T_download(maxsize obj))

Estimated speed parameter depends on the model used for viewpoint motion. A simple
choice is using a maximum speed value. A predictor with a good behaviour for rapid changes in
viewpoint dynamics is:   with =3/4. Inspeed_est[i] = a & speed[i − 1] + (1 − a) & speed_est[i − 1] a
cae the virtual object is moving, the estimated relative speed is used to calculate T_visible. The
buffering time depend on the response time of the server and the ratio between the average bit
rate calculated for the virtual world and the negotiated download bandwidth.

Figure 4 illustrate the just-in-time download mechanism. The prefetch is optimized in
order to reduce the wasted bandwidth and increase the saved requests. The saved requests will be
particularly impacted for small caches. Minimizing wasted resources is especially important for
the server, as the prefetch mechanism will require significant sever bandwidth and CPU load.

Figure 4: Prediction for just-in-time data download
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5.3 QoS Adaptation 

QoS adaptation is needed to perform the just-in-time download under varying network
conditions. The adaptation involve monitoring the bandwidth available for the data replication
application. Network statistic is collected periodically by the application. The statistic is obtained
through application level (download thread) measurements. The instant bandwidth is calculated
with the formula:

 for i=1 ... # of threads, where time_w is the time window usedBw_i = ( 1
time_w ) S(Bytes(i))

for bandwidth calculation (in the order of tens of seconds). The formula for conection bandwidth
estimation is:

   [Brian D. Noble, Li Li, Atul Prakash, 1999,Bw_est[i] = aBw_i + (1 − a)Bw_est[i − 1]
umich.edu/~llzz/papers/hotos99.ps] where Bw_est is the estimated bandwidth, Bw_i is the measured
(instant) bandwidth. 

The estimated bandwith is plugged in the prediction formula of section 5.2. Note that
some regions of the virtual world may have higher densities and require a bit rate higher than the
one estimated in (eq. 1). In case the required bit rate is higher than the one available for the
connection, degradation of the content quality (e.g. lossy geometry compression, lowering level
of detail) is required. 

6. Cache management

Cache management for continuous 3D navigation is driven by viewpoint motion. The
goal is to keep the nodes closer to the viewpoint in the cache as long as possible. That requires
continuous evaluation of distances from the viewpoint of the nodes in the cache. Using a
standard Last Recently Used algorithm will not give good performance unless viewpoint motion
is unidirectional. Since viewpoint motion includes some randomness, a different cache
management policy needs to be considered. The policy proposed here uses the same time labels
as in the prefetching mechanism. Each node in the cache is labeled with:

 T_replace = T_visible - T_download.
According to this formula, the nodes with the biggest score are the ones further away

from the viewpoint and which incur a smaller penalty to be downloaded again. Therefore the  
expiry policy replaces the nodes in the decreasing order of their T_replace label. These labels are
evaluated every time a new data request requires more space than is available in the cache. When
removed from the cache, such a node is again labeled unknown data and requires a new prefetch
if becomes of interest.

7. Implementation and Results

The prototype implementation uses Java (Client/Server interaction) and Java3D [11] (3D
Client). The client ran on an Pentium III 866 MHz PC with a GEForce2 graphics card. The
HTTP server was placed in a WAN; the average bandwidth of the connection was estimated at
600 Kbps. The VE consists of 1000 static 3D objects [1] arranged randomly on a terrain (a
textured surface). The terrain map is 2000 by 2000 units. Each object has a distinct URL. Data
size of geometry objects varies between 181 KB and 1085 KB; the corresponding size of the
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geometry database is between 181 MB and 1 GB. The local cache size is fixed at 10 MB. Doom
style keyboard navigation is used for viewpoint motion. The viewpoint moves with 1 unit
(normal speed) or 2 units (fast speed) per frame. A  screen capture of the Virtual Environment is
shown in Fig. 5. 

Figure 5: Screen capture of 3D browser

Figure 6: Frame rate vs. data density
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In the initialization stage, the objects within visual range are loaded in the memory and
the objects in the area of interest are downloaded in the local cache. Once the viewpoint starts
moving, the browser functions as described in section 5, downloading data from the HTTP
server. Interactive frame rates were achieved for geometry data densities between 16 to 80
B/(square unit)  as shown in Fig. 6. This experiment didn't include QoS adaptation or viewpoint
speed estimation.

We designed a separate set of experiments to measure caching and prefetching
performance. The performance metrics used in the experiments are: 

1) latency reduction for application startup - time from the client application request a
new 3D environment until the user can control the viewpoint ; 

2) saved requests - the number of times a client request hits the local cache as a
percentage of total number of user requests; this is an equivalent cache hit ratio; however, since
we are assuming the data is prefetched before being requested by the application, the saved
requests refer only to the already cached objects.

3) wasted bandwidth - the sum of bytes prefetched but not used at the client.
The prefetching method described in section 5.2 was compared with a simple AOI-based

method (with no estimate of download time). Preliminary results show a large decrease of wasted
bandwidth when "just-in-time" prefetch is used. This set of experiments is expected to be
completed shortly.
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