
RC22179 (W0109-034) September 19, 2001
Computer Science

IBM Research Report

A note on scheduling tall/small multiprocessor tasks with unit
processing time to minimize maximum tardiness

 Philippe J. Baptiste
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Note on Scheduling Tall/Small

Multiprocessor Tasks with Unit Processing

Time to Minimize Maximum Tardiness

Philippe Baptiste

IBM T. J. Watson Research Center

Mathematical Sciences, O�ce 35-214

P. O. Box 218, Yorktown Heights, NY 10598

baptiste@us.ibm.com

September 19, 2001

1

Scheduling Tall/Small Multiprocessor Tasks 2

Abstract

We study the scheduling situation where n tasks, subjected to re-

lease dates and due dates, have to be scheduled on m parallel pro-

cessors. We show that, when tasks have unit processing times and

either require 1 or m processors simultaneously, the minimum maxi-

mal tardiness can be computed in polynomial time. The complexity

status of this �tall/small� task scheduling problem P jri; pi = 1; sizei 2

f1;mgjTmax was unknown before, even for 2 processors.

Keywords: Multiprocessor Task Scheduling, Linear Programming,

Unit Processing Times

Scheduling Tall/Small Multiprocessor Tasks 3

1 Introduction

We study the scheduling situation where n tasks with unit processing times

have to be scheduled on m parallel identical processors. Each task i is as-

sociated with a release date ri before which it cannot start and a due date

di before which one would like it to be completed. Each task requires si-

multaneously a �xed number sizei of processors, yet the processors required

are not speci�ed. In the �tall/small� problem, there are no more than two

possible sizes, either 1 (small tasks) or m (tall tasks), while in the arbitrary

size problem, sizei 2 f1; : : : ; mg. In the following, T1 and Tm respectively

denote the sets of tasks of size 1 and m.

Throughout this paper, we consider the maximum tardiness objective

function. The tardiness of task i is de�ned as Ti = max (0; Ci � di), where

Ci is the completion time of Ji and the maximum tardiness is Tmax = maxi Ti.

Following the classical scheduling notation (see for instance [1, 2]), this prob-

lem is referred to as P jri; pi = 1; sizei 2 f1; mgjTmax.

When all release dates are equal, the arbitrary size problem can be solved

in polynomial time for any �xed number of di�erent sizes [3]. Hence, Pmjpi =

1; sizeijTmax and P jpi = 1; sizei 2 f1; mgjTmax can be solved in polynomial

time. When m is part of the input data, the arbitrary size problem is NP-

Scheduling Tall/Small Multiprocessor Tasks 4

Hard in the strong sense [4].

When preemption is allowed, even with arbitrary processing times and

release dates, the problem is easy to solve. Existing algorithms are based on a

Linear Programming formulation where a variable is associated to each sub-

set of tasks whose total resource requirement is less than m (see for instance

[1]). Unfortunately, there are some instances for which the non-preemptive

maximum tardiness is strictly larger than the preemptive maximum tardi-

ness. In the preemptive schedule of Figure 1, Tmax = 0, while the value of

Tmax is at least 1 for any non-preemptive schedule.

B D EA

CB FE
X

0 1 2 3 4

A, B, C: r= 0, d = 2

X: r = 1, d = 3

D, E, F: r = 2, d = 4

Processor 1

Processor 2

Figure 1: An optimal preemptive schedule.

On two machines, the tall/small problem and the arbitrary size problem

are exactly the same and the complexity status of P2jri; pi = 1; sizeijTmax is

still open. In this paper we show that P jri; pi = 1; sizei 2 f1; mgjTmax can

be solved in polynomial time by Linear Programming.

In Section 2 we focus on the decision version of the problem and we

Scheduling Tall/Small Multiprocessor Tasks 5

describe some linear constraints that must be met by any feasible schedule.

In Section 3 we show that if these constraints hold, we can build a preemptive

schedule of tall tasks that �implicitly� takes into account the small tasks. This

schedule is transformed in Section 4 into a non-preemptive schedule of both

small and tall tasks. Finally we draw some conclusions in Section 5.

2 Necessary Conditions

In the following, we focus on the decision variant of the maximal tardiness

problem. For a �xed value of Tmax, it is easy to compute a deadline Æi = di+

Tmax for each task i and a schedule is said to be feasible if tasks are completed

before their deadlines. To compute the minimal maximal tardiness, one can

�nd the smallest value of Tmax for which there is a feasible schedule. Since

one can easily build a feasible schedule with Tmax = n, there are no more than

n values to test. A dichotomic search could be used to reduce the number of

iterations. So, the Tmax problem can be solved in polynomial time provided

that the deadline scheduling problem is solvable in polynomial time.

To simplify the presentation of the algorithm we will introduce some time

indexed variables. There are few relevant time points so the total number of

Scheduling Tall/Small Multiprocessor Tasks 6

variables remains polynomial in n. Indeed, we can assume that the distance

between two consecutive release dates rx; ry is not larger than n (otherwise,

the jobs could be split in two subsets fi : ri � rxg and fi : ri � ryg that

could be scheduled independently). On top of that, we can also assume that

the largest deadline is not larger than the largest release date plus n. Thanks

to these assumptions, we have a polynomial number of relevant integer time

points t to consider. In the following, unless precisely stated, time points

and time slots are integral.

Consider a feasible schedule and, for each tall task i and for each integer

time point, let t, xti 2 [0; 1] be the total time during which i executes in the

time-slot [t; t+1). Each tall task has to be scheduled somewhere between its

release date and its deadline so,

8i 2 Tm;

Æi�1X
t=ri

xti = 1: (1)

On top of that, the total time during which tall tasks are processed in a

single time slot does not exceed the size of the time slot, i.e.,

8t;
X
i2Tm

xti � 1: (2)

Now let us focus on small tasks. For any time interval [t1; t2), let T1(t1; t2) be

Scheduling Tall/Small Multiprocessor Tasks 7

the set of small tasks that have to execute in the time interval [t1; t2), i.e.,

T1(t1; t2) = fi 2 T1 : t1 � ri � Æi � t2g:

Note that in a non-preemptive schedule, q small tasks cannot be scheduled

in less than d q

m
e time units. So, in a time interval [t1; t2) there are only

t2 � t1 �
Pt2�1

t=t1
xti time units available to schedule tall tasks, i.e.,

8[t1; t2);
X
i2Tm

t2�1X
t=t1

xti +

�
jT1(t1; t2)j

m

�
� t2 � t1: (3)

Hence, if there is feasible schedule, there is a feasible solution of the Linear

Program (4).

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

8i 2 Tm;

Æi�1X
t=ri

xti = 1

8t;
X
i2Tm

xti � 1

8[t1; t2);
X
i2Tm

t2�1X
t=t1

xti +

�
jT1(t1; t2)j

m

�
� t2 � t1

8i 2 Tm; 8t; x
t
i � 0

(4)

In the following, we show that a feasible schedule exists if there is a feasible

solution of (4).

Scheduling Tall/Small Multiprocessor Tasks 8

3 Preemptive Schedule of Tall Tasks

From now on, we assume that tasks 1; : : : ; jTmj are the tall ones and that

they are sorted in non-decreasing order of due dates, i.e., d1 � : : : � djTmj.

A solution x of (4), speci�es the duration xti during which the tall task i is

scheduled in [t; t+1). To precisely build a preemptive schedule of tall tasks, it

remains to decide how pieces of tall tasks are scheduled inside each time slot

[t; t+1). Let S(x) be the schedule where, in each time slot, pieces of tall tasks

are scheduled from left to right according to their initial numbering (i.e., in

non-decreasing order of deadlines). Now let us consider the solution �x that

lexicographically minimizes the vector of completion times (C1; : : : ; CjTmj).

Proposition 1. On S(�x), tall tasks are not interrupted and they start at

integer time points.

Proof. Let k be the �rst task for which the proposition does not hold (all tasks

with smaller indices are not interrupted and start at integer time points). Let

[t; t+1) and [t0; t0 +1) be the time slots in which k respectively starts and is

completed in S(�x).

First, we show that in [t; t + 1), k is the only tall task to execute. Indeed, if

there were another tall task l that would execute there, we would have l > k

Scheduling Tall/Small Multiprocessor Tasks 9

(because of our assumption on k). Therefore, we could exchange a small

piece of l that executes in [t; t + 1) with a small piece of k that executes in

[t0; t0 +1). In other terms, we could build a vector x̂ that equals �x except for

the following values: 8>>>>>>>>>><
>>>>>>>>>>:

x̂tk = �xtk + "

x̂t
0

k = �xt
0

k � "

x̂t
0

l = �xt
0

l + "

x̂tl = �xtl � "

Where " = min(�xt
0

k ; �x
t
l) > 0. In the resulting schedule S(x̂), k is completed

earlier than in S(�x) and task l is completed before its deadline (because

Æl � Æk). Moreover, the �load� of each time slot [�; � +1) is the same in both

schedule, i.e.,

8�;
X
i2Tm

�x�i =
X
i2Tm

x̂�i :

So, x̂ is a feasible solution of (4) and it is better than �x for the lexicographical

criterion. This contradicts our hypothesis on �x.

Second, note that some constraints of (4) must be tight for �x and prevent

us to increase �xtk of " and decrease �xt
0

k of ". Indeed, if we could perform this

exchange, we would obtain a �better� feasible solution for the lexicographical

criterion. Constraints (1) do not prevent us to make this exchange. Neither

Scheduling Tall/Small Multiprocessor Tasks 10

do Constraints (2) since k is the only tall task to execute in time slot t. Now,

let us examine Constraints (3). We are going to show that a slightly more

complex exchange is possible. In the following, the notation (t1; t2) refers to

the constraint (3) over the interval [t1; t2). Let
 be the set of constraints

(3) with t1 � t and t < t2 � t0 that are tight for �x. It is easy to see that

Constraints (3) that do not belong to
 do not prevent us to increase �xtk.

Among the constraints of
 let us pick one with maximum t1. Since the

constraint is tight, we have

X
i2Tm

t2�1X
t=t1

xti = t2 � t1 �

�
jT1(t1; t2)j

m

�
:

Hence,
P

i2Tm

Pt2�1
t=t1

xti takes an integer value and consequently, there is an-

other tall task u that is partially executed between t1 and t2. If u were

partially executed between t and t2 then we could exchange a piece of it

with the last piece of k that executes in [t0; t0 + 1) (we have Æu � Æk because

u is interrupted and so the exchange is feasible). We would decrease the

completion time of k; which would contradict our initial hypothesis. So u is

partially executed in a time slot [�; � + 1) between t1 and t. Let ~x be the

Scheduling Tall/Small Multiprocessor Tasks 11

vector that equals �x except for the following values:

8>>>>>>>>>><
>>>>>>>>>>:

~x�u = �x�u � "

~xt
0

u = �xt
0

u + "

~xt
0

k = �xt
0

k � "

~xtk = �xtk + "

Where " is a small positive value. Note that a piece of u can be scheduled

at t0 because Æu � Æk. Moreover, the only constraints that could be violated

by the exchange are those in the set
 (the value of ~xtk is consistent with (2)

because there is k is the only task that executes in [t; t + 1)). Let (t0
1
; t0
2
) be

a violated constraint of
. Because of our hypothesis on t1, we have t
0
1
� t1.

Hence, it is easy to verify that the load induced by the tall tasks between t1

and t2 does not increase.

4 From Preemptive to Non-Preemptive Sched-

ules

In Section 3, we have shown that there is a solution �x of (4) such that in S(�x),

tall tasks are not interrupted and start at integer time points. In Proposition

2 we show that small tasks can be scheduled in S(�x) too.

Scheduling Tall/Small Multiprocessor Tasks 12

Proposition 2. Small tasks can be scheduled in S(�x).

Proof. Let us sort small tasks in non-decreasing order of deadlines and let us

add them one after the other into S(�x). Each time, the current task starts

at the �rst time point after its release date where one processor is available.

Note that because tall tasks tall tasks are not interrupted and start at integer

time points, small tasks are not interrupted either and also start at integer

time points.

Let k be the �rst small task that is completed after its deadline and let t be

the earliest time point lower than or equal to rk such that all processors are

full between t and rk. Let 	 be the set of small tasks that are scheduled in

[t; Æk). Tasks in 	 have a release date greater than or equal to t (otherwise

they would be scheduled in [t � 1; t)) and a deadline smaller than or equal

to Æk (because tasks are sorted in non-decreasing order of deadlines). Since

all processors are full, there are exactly 2(Æk � t �
P

i2Tm

PÆk�1
t0=t xti) tasks in

	. On top of that, 	 � T1(t; Æk) and k =2 	 but k 2 T1(t; Æk). Hence,

T1(t; Æk) > 2(Æk � t�
X
i2Tm

Æk�1X
t0=t

xti):

This contradicts (3).

Scheduling Tall/Small Multiprocessor Tasks 13

5 Conclusion

We have presented a polynomial algorithm for scheduling tall/small multi-

processor tasks with unit processing time to minimize maximum tardiness.

Our approach relies on a Linear Programming formulation with implicit con-

straints. An interesting open question is whether the formulation presented

in this paper could be extended to solve a larger class of problem such as

P jri; pi = 1; sizeijTmax.

Acknowledgment

The author would like to thank Professor Peter Brucker who introduced the

author to the small/tall problem in 1998.

References

[1] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt and J. Weglarz. Schedul-

ing Computer and Manufacturing Processes. Springer, 1996.

[2] P. Brucker. Scheduling Algorithms, 3rd edition. Springer, 2001.

Scheduling Tall/Small Multiprocessor Tasks 14

[3] P. Brucker and A. Krämer. Polynomial algorithms for resource-

constrained and multiprocessor task scheduling problems. European

Journal of Operational Research, 90:214�226, 1996.

[4] E. L. Lloyd. Concurrent task systems. Operations Research 29:189�201.

