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1. Introduction 

XML has started a revolution on the World Wide Web, moving it from static formatted content to dynamic, 
self-describing information with real semantics.  The addition of semantics is  only the first step to 
providing real applications, known as “web services,” to Internet users.  The first generation of web-service 
infrastructure is already under development, and it will allow one web service to issue a request to another 
and to register/describe/find a service to use (e.g., SOAP [1], WSDL [2], UDDI [3]), thus creating 
interconnected sets of cooperating web service components. 

Eventually, web services will grow beyond the new distributed computing infrastructure of SOAP, WSDL, 
UDDI, etc., to become electronic utilities (eUtilities) that are delivered to end users over the Internet.  
EUtilities represent a critical new application domain in electronic commerce.  Like traditional utilities, 
such as telephone and electricity, web services will be metered and customers will pay for their use of the 
eUtility. The terms  of use (called service level agreements, or  SLAs) of the eUtilities will include 
functionality, availability, performance, resources, and reliability.  These terms of use may vary from 
customer to customer, and they may change over time. This, in turn, necessitates  dynamic monitoring of 
eUtilities, dynamic control over SLAs, and the ability to respond quickly to changing customer needs and 
available resources.  Providing these important eUtility capabilities impose some challenging requirements 
on the design, development, deployment, and evolution of web services.  SLAs represent a legal description 
of a service—not simply in terms of its functional interface, but also in terms of performance, payment, 
legal consequences of non-compliance, and levels of support and access. Because SLAs are legal 
agreements, it must be possible to monitor web services to verify that the services being provided conform 
to those that were negotiated, and to redress any conformance failure immediately. 

As soon as web services must satisfy serious, demanding SLAs, developers will have to confront the task of 
designing, building, configuring, deploying, and managing software that must meet, and continue to meet, 
constraints beyond the simple functional correctness with which we have been struggling for 50 years.  
Web service applications must include both the conventional APIs, and also interfaces for metering, 
performance, manageability, auditability, replication, and reliability.  These interfaces, though distinct, 
reflect capabilities that must interact with one another in deep and profound ways.  Supporting the 
description, realization, integration, and separate evolution of these interfaces will be a major challenge 
facing eUtility engineers. 

To increase the complexity even further, we note that web services must be dynamically configurable.  Just 
as the telephone company depends on the electric utility in providing its phone services, so future web 
service applications will depend on web eUtilities provided by others.  So the environment in which this 
software runs will be subject to change without notice – both in terms of the underlying eUtilities and in 
terms of the number and kind of users (where some of those users may be higher-level web services).  
Other services on which a given eUtility depends may disappear or may change in some way that affects 
the eUtility, and it must be able to detect and respond to such changes whenever possible.  When it is not 
possible, they must be able to degrade gracefully, since organizations may rely on them for critical parts of 
their business. 



Our research is based on, but goes beyond, notions of Aspect-Oriented Software Development (AOSD) and 
Multidimensional Separation of Concerns (MDSOC) [4], applied to the software engineering of web 
services.  AOSD (and notably, Hyper/J™ [5] and AspectJ™ [6]) has, up to this point, focused 
predominantly on the “programming” part of the software development lifecycle.  In particular, aspect-
oriented approaches  support the identification and creation of “crosscutting” concerns that affect many 
modules throughout an object-oriented system.  By modularizing aspects  of a system that do not 
conveniently fit the dominant hierarchy (e.g., inheritance), one can avoid duplication and error in 
implementation and isolate changes during maintenance.  These various aspects  are then woven into the 
base code to form a new program.   The “base code” itself imposes a dominant structure on the software and 
on the aspects, which must be written with knowledge of the semantics and structure of the base code.  
MDSOC supports aspect-oriented development, but it also  supports the reconciliation and integration of 
separately developed class hierarchies, eliminating the distinction between “base code” and “aspect code.”  
Within the development of web services, we expect to see the need for both aspects  (AOSD) and for 
multiple domain models  (MDSOC).  Aspects will be useful in the definition of particular web services, for 
example interfaces for one particular subset of customers of the eUtility.  However, particularly because 
different web services that must ultimately work together will be developed independently (and will be able 
to run as standalone applications), by different organizations, we do not believe the “base” vs. “aspect” 
distinction will be appropriate to support the composition of different web services.  MDSOC will be 
needed to achieve this, and to permit the separation of interacting concerns, such as a monitoring service 
from one supplier along with a multileveled-performance service from another supplier.   

Our approach to the engineering of web services is to identify a set of key concerns—both functional and 
non-functional, such as performance, manageability, and monitoring—implement the software to realize 
and address these concerns, and to integrate some set of these concerns together—possibly dynamically—
to produce web services that can be configured differently to meet the needs of different customers.  We 
expect that performance management, for example, will impact many portions of an eUtility (what level of 
resources are available for a user or class of users, who has legal requirements that must be met, and so on).  
Hence, collecting those issues together in a concern can serve both as a design, implementation, and 
evolution tactic.  Dependence on remote services can also be modularized as another dimension, so that the 
underlying application can be prepared to switch between a variety of competing (or failing) suppliers – 
this concern, then, becomes a configuration/deployment tactic.  Providing run-time interfaces during 
execution for monitoring/control will meet the legal needs without cluttering up the functional APIs.  
Finally, maintenance will enjoy the usual simplification that having a multidimensional separation of 
concerns provides. 

We will discuss the application of MDSOC and AOSD to the domain of web services and, perhaps more 
importantly, explore how these areas  must grow to support all of the software lifecycle in order to be a 
solution for the wealth of challenges that web services will present to the software engineers of the future. 

2. Issues in building and deploying eUtility applications 

To motivate the issues we are addressing, we begin with a description of our view of an object-oriented 
web service (OOWS).  As shown in Figure 1, we view an OOWS as a software component that is built on 
top of a highly reliable infrastructure and possibly other OOWS, providing such services as  those listed 
above.  Like other kinds of components, OOWSs provide functional interfaces (APIs), and each API 
supports some set of capabilities.  Unlike other components, however, OOWSs must be dynamically 
controllable by SLAs, so that they can change their behavior and characteristics in response to changes in 
SLAs.  Thus, they must also provide management interfaces, which permit control over such attributes as 
performance, reliability, monitoring, metering, level of service, and potentially, the set of capabilities the 
OOWS provides and the particular components on which it is built.  Because SLAs may change at any 
time, it must be possible to control a service’s functional and non-functional properties at any time during 
the software lifecycle—build-time, integration-time, or runtime. 
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Figure 1: Web Services (eUtilities), SLAs, and Interaction Among Functional, Management, and 
Infrastructure Interfaces 

Interaction among functional, management, and infrastructure APIs: web service applications 
challenge the software engineering models that have dominated application development for traditional 
clients and server platforms.  In particular, note that traditional applications are specified and implemented 
in terms of a single set of functional requirements. These requirements are generally uniform for all end 
users; thus, these applications define one or more functional interfaces (APIs).  A web service (and the 
components that comprise it) also addresses traditional functional requirements, but each customer also 
negotiates for the particular functionalities, levels of service, performance and reliability that they will 
obtain from the service, and they will pay for their use of the service.  Thus, a web service must define one 
or more functional APIs (possibly different ones for different customers), but it must also present interfaces 
that permit control over performance, reliability, metering, and level of service.  These interfaces must 
interact with one another in some deep and fundamental ways, as suggested by Figure 1.  For example, 
obtaining high performance may necessitate the use of different communication protocols, search 
algorithms, and concurrency control models, or it may preclude the use of certain functions that cannot be 
made to achieve that performance.  The definition and support for such deeply interacting interfaces 
presents a significant challenge to service engineering and deployment. 

MDSOC and AOSD technologies may help to achieve these goals.  They facilitate the separation and 
integration of many types of concerns, and could, therefore, help OOWS builders to achieve 
decompositions that permit pluggable, mix-and-match functional and management capabilities.  



 

Figure 2: Different capabilities are implemented using different domain models and different class 
hierarchies.  These hierarchies are reconciled and integrated when they are composed. 

Figure 2 suggests two key characteristics of web services.  One is that capabilities embodied in 
management interfaces may crosscut capabilities present in APIs, making them good targets of aspect-
oriented technologies.  The other characteristic is  that some functional and management capabilities may 
require their own class and interface hierarchy to implement the necessary domain model, and that these 
different hierarchies must be integrated as the capabilities are combined into a particular OOWS.  In fact, 
the same issue arises when different OOWSs are composed together to help build a new service.  MDSOC 
supports  this, while other kinds of aspect technologies do not.  This is likely to be a critical problem for 
OOWS developers, who do not have control over the domain models used in either underlying eUtilities.  
For this reason, we believe the MDSOC approach, which permits the reconciliation and integration of 
somewhat different domain models, is more appropriate for engineering web services than other AOSD 
approaches . 

While both MDSOC and AOSD technologies are promising, they do not, at present, address some critical 
issues in the interaction of functional and management interfaces: 

?? Semantic mismatch:  A semantic mismatch will occur when two or more capabilities have mutually 
incompatible assumptions or requirements.  For example, a client may negotiate for a level of service 
that cannot be attained with a given concurrency control mechanism or with the particular strategy 
employed to implement some feature.  For OOWSs, it is necessary to be able to identify semantic 
mismatches before they bite a client.  Thus, for example, it is important to be able to tell that a 
particular set of requirements in a client’s SLA cannot be satisfied simultaneously, or that doing so will 
necessitate new components, algorithms, or infrastructure, and this must be determined before the 
capabilities are promised to the client.   

The problem of semantic mismatch is not a new one—it can occur in any piece of software.  In many 
cases, however, semantic mismatches caused by compositional approaches, like MDSOC and AOSD, 
cannot be identified until late in the software engineering process—typically at runtime.  This is far too 
late for the web services domain, where SLAs represent legal contracts with customers, and where 
SLAs may change dynamically.  It is imperative to be able to detect semantic mismatches early enough 
to fix them, or to prevent agreement on an unsatisfiable SLA .  Neither MDSOC nor AOSD currently 



addresses semantic mismatch in any form, yet because they can modify an encapsulated module, they 
have even more potential to introduce semantic mismatches than standard OO mechanisms . 

?? Interference:  Interference is a common kind of semantic mismatch problem in concurrent software, 
but there is real potential for interference to occur in OOWSs between and within the management and 
functionality interfaces.  It happens when an action taken by one part of the software interacts with 
another’s actions in an undesirable manner, causing an effect that does not occur when the actions 
occur independently.  An example of interference can be found when messaging and transactions are 
present together.  To allow a transaction manager to preserve atomicity and serializability, messages 
should not generally be sent until a transaction commits.  A messaging capability could easily send 
messages independently, thus interfering with the ability of the transaction manager to satisfy its 
requirements. 

The problem of interference, while present in other areas of software engineering, is, like other 
semantic mismatches, particularly severe when using AOSD mechanisms , because such mechanisms  
integrate separately encapsulated, separately tested entities.  It is not possible to detect all kinds of 
potential interference by inspecting just the code, because the composition operations themselves add 
logic when integrating the individual concerns or aspects.  The interference problem, while prevalent 
and potentially devastating (particularly in an OOWS context), is not one that is addressed in current 
work on AOSD.  Without reasonable mechanisms for doing so, the technology may be more harmful 
than helpful in the engineering of OOWSs. 

?? Unpredictability:  As the discussions of semantic mismatch and interference suggest, it is not always 
possible to determine, a priori, what a piece of composed software will look like. Unlike non-
compositional paradigms, where one does not get behaviors that one did not directly program 
(excluding problems like concurrency errors), developers using compositional paradigms will 
encounter circumstances where their composed software behaves  unexpectedly and unpredictably.  
This is , in part, because compositors add logic, as noted earlier, but it is also because compositors 
break existing encapsulations to integrate concerns.  The developers of those encapsulations made 
certain assumptions about the behavior of the module, and those assumptions are easy to violate when 
code from new concerns is interposed within an existing module.  The unpredictable effects of 
composition tend not to be found until they manifest as erroneous behavior at runtime.  This will not 
be acceptable in an OOWS context. 

Verifiable and controllable conformance to SLAs: Each customer’s contract for a service is described 
and governed by an SLA (see Figure 1). It must, therefore, be possible to determine whether the 
appropriate SLA(s) is/are being satisfied, to determine how and why it is not being satisfied, and to control 
the service to bring it into compliance with the SLA(s). This suggests again the need for programmatic 
interfaces to control metering, performance, and other crosscutting, non-functional capabilities.  It also 
potentially requires dynamic addition, removal, and replacement of capabilities, which could be supported 
eventually by AOSD and MDSOC but is not at present1.  The interaction between these management 
capabilities and the functional capabilities is again apparent here, since an OOWS may not provide certain 
functionality or performance for users who request lower levels of service.  Finally, our assumption that 
OOWSs cooperate with the ultra-reliable infrastructure to satisfy SLAs requires some interfaces to support 
that cooperation. 

Building services when the “components” are neither local nor locally controllable: As with all 
software, it is reasonable to assume that “composite” OOWSs may be built—i.e., where one service 
depends on other (lower level) services, each with their own SLAs.  Hence, the designer/builder of a 
service may—indeed, should—spend more effort in integrating services than in constructing new ones 
from scratch.  But this designer/builder is confronted with a body of services (comparable to traditional 

                                                                 

1 Some AOSD mechanisms can support degree of dynamic addition, but we are not aware of any that 
support dynamic removal, and only MDSOC supports the on-demand remodularization capability needed 
to identify and remove parts that were not originally encapsulated as concerns. 



components) that may not be under his/her direct control, since some else may own the service and may be 
delivering it over the network.  Thus, such a designer/builder will not be able to use traditional software 
engineering methodologies in developing composite services, since these methodologies depend on the 
centralized control and static deployment assumptions that clearly do not hold. 

Note that the assumption in most of AOSD of a distinguished base vs. aspect is inconsistent with the 
composition of independent web services.  MDSOC does not have this limitation, but most existing 
techniques assume that the compositor has control over all the software that is to be composed.  Thus, here 
again, these approaches will have to grow to accommodate the requirements of OOWSs. 

Inevitable, unpredictable, dynamic changes and need to limit the impact of such changes: Any given 
OOWS may change or become unavailable without notice, thus potentially causing a cascaded impact on 
all the services that depend upon it.  Services are subject to significant reliability and availability 
constraints, so the change or loss of an underlying service cannot, in general, be allowed to crash or impede 
other services.  Thus, services mu st come with integration and runtime support systems that can identify 
service change or loss and respond to it.  This likely includes, though is not limited to, the ability to handle 
real-time version control, configuration management and “hot swapping” of bits and pieces of services, and 
the ability to upgrade and degrade gracefully.  Note again that changes and unavailability affects both the 
functional and non-functional (management) aspects of a dependent service (and the legal implications of 
such a change).  The version control and configuration management problem is considerably more complex 
than its traditional build-time analogue. At build-time, a version control or configuration management 
system need only be concerned with choosing a set of modules to put together, but at runtime, it must be 
possible to replace much smaller-grained pieces, to ensure the lowest impact of change on the modified 
service (the larger the pieces that are replaced, the larger the potential impact on other parts of the service, 
and on any services that depend on it).  Advanced configuration management approaches, like [7], may be 
of use here. 

SLAs are software, too:  SLAs themselves must be considered a key component in the software 
engineering of services.  In particular, they both define and configure the functional and non-functional 
aspects of a service.  They are, therefore, a specification for the service, and it must be possible to ensure 
that they are satisfied both statically and dynamically.  If SLAs are to be monitored and their requirements 
satisfied, they must be treated as software artifacts in their own right—perhaps as declarative specifications 
of services, or as some kind of operational semantics.  In either case, they must have their own 
build/integrate/test/deploy cycle, which must tie in directly with the capacity planning, design, and 
architecture of the OOWS, the monitoring/execution/control of the service, and the compliance checking 
and reporting to the provider and the end-user of the service.  Given the competitive nature of the first 
generation of OOWS-like vendors (ASPs), one can expect rapid evolution of SLAs (at least in terms of cost 
of service options provided).  Hence these SLA “programs” will have to accommodate change during 
execution. 

3. Conclusions and Future Work 

Object-oriented web services represent a critical new application domain in electronic commerce.  Like 
more traditional utilities, such as electricity and telephony, eUtilities will be metered services, and 
customers pay for their use of the service. Customers negotiate the terms of the service provided, such as 
the functionality they require, the performance, reliability, resources, etc. These terms are represented using 
service level agreements (SLAs). The need to control the terms of service—probably dynamically—and to 
respond to changing customer needs and available resources imposes some challenging requirements on the 
design, development, deployment, and evolution of OOWSs. 

As we have noted, traditional software engineering methodologies and programming paradigms are 
completely inadequate to permit the engineering and deployment of these critical new applications.  
Advanced separation of concerns paradigms and technologies , like AOSD and MDSOC, overcome some of 
these limitations, but they are not, at this time, sufficiently powerful or predictable to enable the 
engineering of OOWSs and, indeed, their limitations may render them of more harm than help at present.  



Considerably more research is needed to push these paradigms to the point where they will satisfy the 
requirements of this  challenging new application domain.  
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