
RC22184 (W0109-054) September 25, 2001
Computer Science

IBM Research Report

Software Engineering for Web Services: A Focus on
Separation of Concerns

Brent Hailpern, Peri L. Tarr
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Software Engineering for Web Services:
A Focus on Separation of Concerns

Authors:

Brent Hailpern (bth@watson.ibm.com) and
Peri Tarr (tarr@watson.ibm.com)

IBM Thomas J. Watson Research Center

1. Introduction

XML has started a revolution on the World Wide Web, moving it from static formatted content to dynamic,
self-describing information with real semantics. The addition of semantics is only the first step to
providing real applications, known as “web services,” to Internet users. The first generation of web-service
infrastructure is already under development, and it will allow one web service to issue a request to another
and to register/describe/find a service to use (e.g., SOAP [1], WSDL [2], UDDI [3]), thus creating
interconnected sets of cooperating web service components.

Eventually, web services will grow beyond the new distributed computing infrastructure of SOAP, WSDL,
UDDI, etc., to become electronic utilities (eUtilities) that are delivered to end users over the Internet.
EUtilities represent a critical new application domain in electronic commerce. Like traditional utilities,
such as telephone and electricity, web services will be metered and customers will pay for their use of the
eUtility. The terms of use (called service level agreements, or SLAs) of the eUtilities will include
functionality, availability, performance, resources, and reliability. These terms of use may vary from
customer to customer, and they may change over time. This, in turn, necessitates dynamic monitoring of
eUtilities, dynamic control over SLAs, and the ability to respond quickly to changing customer needs and
available resources. Providing these important eUtility capabilities impose some challenging requirements
on the design, development, deployment, and evolution of web services. SLAs represent a legal description
of a service—not simply in terms of its functional interface, but also in terms of performance, payment,
legal consequences of non-compliance, and levels of support and access. Because SLAs are legal
agreements, it must be possible to monitor web services to verify that the services being provided conform
to those that were negotiated, and to redress any conformance failure immediately.

As soon as web services must satisfy serious, demanding SLAs, developers will have to confront the task of
designing, building, configuring, deploying, and managing software that must meet, and continue to meet,
constraints beyond the simple functional correctness with which we have been struggling for 50 years.
Web service applications must include both the conventional APIs, and also interfaces for metering,
performance, manageability, auditability, replication, and reliability. These interfaces, though distinct,
reflect capabilities that must interact with one another in deep and profound ways. Supporting the
description, realization, integration, and separate evolution of these interfaces will be a major challenge
facing eUtility engineers.

To increase the complexity even further, we note that web services must be dynamically configurable. Just
as the telephone company depends on the electric utility in providing its phone services, so future web
service applications will depend on web eUtilities provided by others. So the environment in which this
software runs will be subject to change without notice – both in terms of the underlying eUtilities and in
terms of the number and kind of users (where some of those users may be higher-level web services).
Other services on which a given eUtility depends may disappear or may change in some way that affects
the eUtility, and it must be able to detect and respond to such changes whenever possible. When it is not
possible, they must be able to degrade gracefully, since organizations may rely on them for critical parts of
their business.

Our research is based on, but goes beyond, notions of Aspect-Oriented Software Development (AOSD) and
Multidimensional Separation of Concerns (MDSOC) [4], applied to the software engineering of web
services. AOSD (and notably, Hyper/J™ [5] and AspectJ™ [6]) has, up to this point, focused
predominantly on the “programming” part of the software development lifecycle. In particular, aspect-
oriented approaches support the identification and creation of “crosscutting” concerns that affect many
modules throughout an object-oriented system. By modularizing aspects of a system that do not
conveniently fit the dominant hierarchy (e.g., inheritance), one can avoid duplication and error in
implementation and isolate changes during maintenance. These various aspects are then woven into the
base code to form a new program. The “base code” itself imposes a dominant structure on the software and
on the aspects, which must be written with knowledge of the semantics and structure of the base code.
MDSOC supports aspect-oriented development, but it also supports the reconciliation and integration of
separately developed class hierarchies, eliminating the distinction between “base code” and “aspect code.”
Within the development of web services, we expect to see the need for both aspects (AOSD) and for
multiple domain models (MDSOC). Aspects will be useful in the definition of particular web services, for
example interfaces for one particular subset of customers of the eUtility. However, particularly because
different web services that must ultimately work together will be developed independently (and will be able
to run as standalone applications), by different organizations, we do not believe the “base” vs. “aspect”
distinction will be appropriate to support the composition of different web services. MDSOC will be
needed to achieve this, and to permit the separation of interacting concerns, such as a monitoring service
from one supplier along with a multileveled-performance service from another supplier.

Our approach to the engineering of web services is to identify a set of key concerns—both functional and
non-functional, such as performance, manageability, and monitoring—implement the software to realize
and address these concerns, and to integrate some set of these concerns together—possibly dynamically—
to produce web services that can be configured differently to meet the needs of different customers. We
expect that performance management, for example, will impact many portions of an eUtility (what level of
resources are available for a user or class of users, who has legal requirements that must be met, and so on).
Hence, collecting those issues together in a concern can serve both as a design, implementation, and
evolution tactic. Dependence on remote services can also be modularized as another dimension, so that the
underlying application can be prepared to switch between a variety of competing (or failing) suppliers –
this concern, then, becomes a configuration/deployment tactic. Providing run-time interfaces during
execution for monitoring/control will meet the legal needs without cluttering up the functional APIs.
Finally, maintenance will enjoy the usual simplification that having a multidimensional separation of
concerns provides.

We will discuss the application of MDSOC and AOSD to the domain of web services and, perhaps more
importantly, explore how these areas must grow to support all of the software lifecycle in order to be a
solution for the wealth of challenges that web services will present to the software engineers of the future.

2. Issues in building and deploying eUtility applications

To motivate the issues we are addressing, we begin with a description of our view of an object-oriented
web service (OOWS). As shown in Figure 1, we view an OOWS as a software component that is built on
top of a highly reliable infrastructure and possibly other OOWS, providing such services as those listed
above. Like other kinds of components, OOWSs provide functional interfaces (APIs), and each API
supports some set of capabilities. Unlike other components, however, OOWSs must be dynamically
controllable by SLAs, so that they can change their behavior and characteristics in response to changes in
SLAs. Thus, they must also provide management interfaces, which permit control over such attributes as
performance, reliability, monitoring, metering, level of service, and potentially, the set of capabilities the
OOWS provides and the particular components on which it is built. Because SLAs may change at any
time, it must be possible to control a service’s functional and non-functional properties at any time during
the software lifecycle—build-time, integration-time, or runtime.

E-Utility
Service

Level of Service

Gold
Silver

Basic

Performance

Metering

Monitoring
query,
control

Figure 1: Web Services (eUtilities), SLAs, and Interaction Among Functional, Management, and
Infrastructure Interfaces

Interaction among functional, management, and infrastructure APIs: web service applications
challenge the software engineering models that have dominated application development for traditional
clients and server platforms. In particular, note that traditional applications are specified and implemented
in terms of a single set of functional requirements. These requirements are generally uniform for all end
users; thus, these applications define one or more functional interfaces (APIs). A web service (and the
components that comprise it) also addresses traditional functional requirements, but each customer also
negotiates for the particular functionalities, levels of service, performance and reliability that they will
obtain from the service, and they will pay for their use of the service. Thus, a web service must define one
or more functional APIs (possibly different ones for different customers), but it must also present interfaces
that permit control over performance, reliability, metering, and level of service. These interfaces must
interact with one another in some deep and fundamental ways, as suggested by Figure 1. For example,
obtaining high performance may necessitate the use of different communication protocols, search
algorithms, and concurrency control models, or it may preclude the use of certain functions that cannot be
made to achieve that performance. The definition and support for such deeply interacting interfaces
presents a significant challenge to service engineering and deployment.

MDSOC and AOSD technologies may help to achieve these goals. They facilitate the separation and
integration of many types of concerns, and could, therefore, help OOWS builders to achieve
decompositions that permit pluggable, mix-and-match functional and management capabilities.

Figure 2: Different capabilities are implemented using different domain models and different class
hierarchies. These hierarchies are reconciled and integrated when they are composed.

Figure 2 suggests two key characteristics of web services. One is that capabilities embodied in
management interfaces may crosscut capabilities present in APIs, making them good targets of aspect-
oriented technologies. The other characteristic is that some functional and management capabilities may
require their own class and interface hierarchy to implement the necessary domain model, and that these
different hierarchies must be integrated as the capabilities are combined into a particular OOWS. In fact,
the same issue arises when different OOWSs are composed together to help build a new service. MDSOC
supports this, while other kinds of aspect technologies do not. This is likely to be a critical problem for
OOWS developers, who do not have control over the domain models used in either underlying eUtilities.
For this reason, we believe the MDSOC approach, which permits the reconciliation and integration of
somewhat different domain models, is more appropriate for engineering web services than other AOSD
approaches .

While both MDSOC and AOSD technologies are promising, they do not, at present, address some critical
issues in the interaction of functional and management interfaces:

?? Semantic mismatch: A semantic mismatch will occur when two or more capabilities have mutually
incompatible assumptions or requirements. For example, a client may negotiate for a level of service
that cannot be attained with a given concurrency control mechanism or with the particular strategy
employed to implement some feature. For OOWSs, it is necessary to be able to identify semantic
mismatches before they bite a client. Thus, for example, it is important to be able to tell that a
particular set of requirements in a client’s SLA cannot be satisfied simultaneously, or that doing so will
necessitate new components, algorithms, or infrastructure, and this must be determined before the
capabilities are promised to the client.

The problem of semantic mismatch is not a new one—it can occur in any piece of software. In many
cases, however, semantic mismatches caused by compositional approaches, like MDSOC and AOSD,
cannot be identified until late in the software engineering process—typically at runtime. This is far too
late for the web services domain, where SLAs represent legal contracts with customers, and where
SLAs may change dynamically. It is imperative to be able to detect semantic mismatches early enough
to fix them, or to prevent agreement on an unsatisfiable SLA . Neither MDSOC nor AOSD currently

addresses semantic mismatch in any form, yet because they can modify an encapsulated module, they
have even more potential to introduce semantic mismatches than standard OO mechanisms .

?? Interference: Interference is a common kind of semantic mismatch problem in concurrent software,
but there is real potential for interference to occur in OOWSs between and within the management and
functionality interfaces. It happens when an action taken by one part of the software interacts with
another’s actions in an undesirable manner, causing an effect that does not occur when the actions
occur independently. An example of interference can be found when messaging and transactions are
present together. To allow a transaction manager to preserve atomicity and serializability, messages
should not generally be sent until a transaction commits. A messaging capability could easily send
messages independently, thus interfering with the ability of the transaction manager to satisfy its
requirements.

The problem of interference, while present in other areas of software engineering, is, like other
semantic mismatches, particularly severe when using AOSD mechanisms , because such mechanisms
integrate separately encapsulated, separately tested entities. It is not possible to detect all kinds of
potential interference by inspecting just the code, because the composition operations themselves add
logic when integrating the individual concerns or aspects. The interference problem, while prevalent
and potentially devastating (particularly in an OOWS context), is not one that is addressed in current
work on AOSD. Without reasonable mechanisms for doing so, the technology may be more harmful
than helpful in the engineering of OOWSs.

?? Unpredictability: As the discussions of semantic mismatch and interference suggest, it is not always
possible to determine, a priori, what a piece of composed software will look like. Unlike non-
compositional paradigms, where one does not get behaviors that one did not directly program
(excluding problems like concurrency errors), developers using compositional paradigms will
encounter circumstances where their composed software behaves unexpectedly and unpredictably.
This is , in part, because compositors add logic, as noted earlier, but it is also because compositors
break existing encapsulations to integrate concerns. The developers of those encapsulations made
certain assumptions about the behavior of the module, and those assumptions are easy to violate when
code from new concerns is interposed within an existing module. The unpredictable effects of
composition tend not to be found until they manifest as erroneous behavior at runtime. This will not
be acceptable in an OOWS context.

Verifiable and controllable conformance to SLAs: Each customer’s contract for a service is described
and governed by an SLA (see Figure 1). It must, therefore, be possible to determine whether the
appropriate SLA(s) is/are being satisfied, to determine how and why it is not being satisfied, and to control
the service to bring it into compliance with the SLA(s). This suggests again the need for programmatic
interfaces to control metering, performance, and other crosscutting, non-functional capabilities. It also
potentially requires dynamic addition, removal, and replacement of capabilities, which could be supported
eventually by AOSD and MDSOC but is not at present1. The interaction between these management
capabilities and the functional capabilities is again apparent here, since an OOWS may not provide certain
functionality or performance for users who request lower levels of service. Finally, our assumption that
OOWSs cooperate with the ultra-reliable infrastructure to satisfy SLAs requires some interfaces to support
that cooperation.

Building services when the “components” are neither local nor locally controllable: As with all
software, it is reasonable to assume that “composite” OOWSs may be built—i.e., where one service
depends on other (lower level) services, each with their own SLAs. Hence, the designer/builder of a
service may—indeed, should—spend more effort in integrating services than in constructing new ones
from scratch. But this designer/builder is confronted with a body of services (comparable to traditional

1 Some AOSD mechanisms can support degree of dynamic addition, but we are not aware of any that
support dynamic removal, and only MDSOC supports the on-demand remodularization capability needed
to identify and remove parts that were not originally encapsulated as concerns.

components) that may not be under his/her direct control, since some else may own the service and may be
delivering it over the network. Thus, such a designer/builder will not be able to use traditional software
engineering methodologies in developing composite services, since these methodologies depend on the
centralized control and static deployment assumptions that clearly do not hold.

Note that the assumption in most of AOSD of a distinguished base vs. aspect is inconsistent with the
composition of independent web services. MDSOC does not have this limitation, but most existing
techniques assume that the compositor has control over all the software that is to be composed. Thus, here
again, these approaches will have to grow to accommodate the requirements of OOWSs.

Inevitable, unpredictable, dynamic changes and need to limit the impact of such changes: Any given
OOWS may change or become unavailable without notice, thus potentially causing a cascaded impact on
all the services that depend upon it. Services are subject to significant reliability and availability
constraints, so the change or loss of an underlying service cannot, in general, be allowed to crash or impede
other services. Thus, services mu st come with integration and runtime support systems that can identify
service change or loss and respond to it. This likely includes, though is not limited to, the ability to handle
real-time version control, configuration management and “hot swapping” of bits and pieces of services, and
the ability to upgrade and degrade gracefully. Note again that changes and unavailability affects both the
functional and non-functional (management) aspects of a dependent service (and the legal implications of
such a change). The version control and configuration management problem is considerably more complex
than its traditional build-time analogue. At build-time, a version control or configuration management
system need only be concerned with choosing a set of modules to put together, but at runtime, it must be
possible to replace much smaller-grained pieces, to ensure the lowest impact of change on the modified
service (the larger the pieces that are replaced, the larger the potential impact on other parts of the service,
and on any services that depend on it). Advanced configuration management approaches, like [7], may be
of use here.

SLAs are software, too: SLAs themselves must be considered a key component in the software
engineering of services. In particular, they both define and configure the functional and non-functional
aspects of a service. They are, therefore, a specification for the service, and it must be possible to ensure
that they are satisfied both statically and dynamically. If SLAs are to be monitored and their requirements
satisfied, they must be treated as software artifacts in their own right—perhaps as declarative specifications
of services, or as some kind of operational semantics. In either case, they must have their own
build/integrate/test/deploy cycle, which must tie in directly with the capacity planning, design, and
architecture of the OOWS, the monitoring/execution/control of the service, and the compliance checking
and reporting to the provider and the end-user of the service. Given the competitive nature of the first
generation of OOWS-like vendors (ASPs), one can expect rapid evolution of SLAs (at least in terms of cost
of service options provided). Hence these SLA “programs” will have to accommodate change during
execution.

3. Conclusions and Future Work

Object-oriented web services represent a critical new application domain in electronic commerce. Like
more traditional utilities, such as electricity and telephony, eUtilities will be metered services, and
customers pay for their use of the service. Customers negotiate the terms of the service provided, such as
the functionality they require, the performance, reliability, resources, etc. These terms are represented using
service level agreements (SLAs). The need to control the terms of service—probably dynamically—and to
respond to changing customer needs and available resources imposes some challenging requirements on the
design, development, deployment, and evolution of OOWSs.

As we have noted, traditional software engineering methodologies and programming paradigms are
completely inadequate to permit the engineering and deployment of these critical new applications.
Advanced separation of concerns paradigms and technologies , like AOSD and MDSOC, overcome some of
these limitations, but they are not, at this time, sufficiently powerful or predictable to enable the
engineering of OOWSs and, indeed, their limitations may render them of more harm than help at present.

Considerably more research is needed to push these paradigms to the point where they will satisfy the
requirements of this challenging new application domain.

References
[1] SOAP web site, http://www.w3.org/TR/SOAP.

[2] WSDL web site, http://www.w3.org/TR/wsdl.

[3] UDDI web site, http://www.uddi.org/about.html.

[4] P. Tarr, H. Ossher, W. Harrison and S.M. Sutton, Jr. “N Degrees of Separation: Multi-Dimensional
Separation of Concerns.” In Proc. ICSE 21, May 1999.

[5] H. Ossher and P. Tarr. “Multi-Dimensional Separation of Concerns and the Hyperspace Approach.” In
Proc. Symp. Software Architectures and Component Technology: The State of the Art in Software
Development. Kluwer, 2001.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. “An Overview of
AspectJ.” In Proc. ECOOP 2001, June 2001.

[7] M.C. Chu-Carroll and S. Sprenkle. “Coven: brewing better collaboration through software
configuration management.” Proc. 8th International Symposium on Foundations of Software
Engineering, 2000.

