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1 Introduction

Indexing plays a fundamental role in supporting efficient retrieval of sequences of images, of
individual images and of selected subimages from multimedia repositories.

Three categories of information are extracted and indexed in image databases: metadata,
objects and features, and relations between objects [129]. This chapter is devoted to indexing
structures for objects and features.

Content-based retrieval (CBR) of imagery has become synonym of retrieval based on low-
level descriptors, such as texture, color and shape. Similar images map to high-dimensional
feature vectors that are close to each other in terms of Euclidean distance. A large body of
literature exists on the topic, and different aspects have been extensively studied, including
the selection of appropriate metrics, the inclusion of the user in the retrieval process, and,
particularly, on indexing structures to support query-by-similarity.

Indexing of metadata and relations between objects are not covered here, since their
scope far exceeds image databases. Metadata indexing is a complex application-dependent
problem. Active research areas include the automatic extraction of information from un-
structured textual description, the definition of standards (for example, for remotely sensed
images), and the translation between different standards (such as in medicine). The tech-
niques required to store and retrieve spatial relations from images are analogous to those
used in geographic information systems (GIS), and the topic has been extensively studied in
this context.

This chapter is organized as follows. The current section is concluded by a paragraph on
notation. Section 2 is devoted to background information on representing images using low-
level features. Section 3 introduces three taxonomies of indexing methods, two of which are
used to provide primary and secondary structure to the following Section 4.1, dealing with
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vector-space methods, and Section 4.2, which describe metric-space approaches. Section 5
contains a discussion on how to select among different indexing structures. Conclusions and
future directions are in Section 6. The Appendix contains a description of numerous methods
introduced in Section 4.

The bibliography that concludes the chapter also contains numerous references not di-
rectly cited in the text.

1.1 Notation

A database or a database table X is a collection of n items that can be represented in a
d−dimensional real space, denoted by Rd. Individual items that have a spatial extent are
often approximated by a minimum bounding rectangle (MBR) or by some other represen-
tation. The other items, such as vectors of features, are represented as points in the space.
Points in a d−dimensional space are in 1 : 1 correspondence with vectors centered at the
origin, and therefore the words vector, point, and database item are used interchangeably. A
vector is denoted by a lower-case bold face letter, as in x, and the individual components are
identified using the square bracket notation; thus x[i] is the ith component of the vector x.
Upper case bold letters are used to identify matrices; for instance, I is the identity matrix.
Sets are denoted by curly brackets enclosing their content, like in {A,B,C}. The desired
number of nearest neighbors in a query is always denoted by k. The maximum depth of a
tree is denoted by L, while the dummy variable for level is 
.

A significant body of research is devoted to retrieval of images based on low-level fea-
tures (such as shape, color and texture,) represented by descriptors – numerical quantities
computed from the image that try to capture specific visual characteristics. For example,
the color histogram and the color moments are descriptors of the color feature. Since in the
literature the terms “feature” and “descriptor” are almost invariably used as synonyms, we
will also use them interchangeably.

2 Feature-Level Image Representation

In this section, we discuss several different aspects of feature-level image representation. First
we contrast full image match and subimage match, and discuss the corresponding feature
extraction methodologies. We then describe a taxonomy of query types used in content-based
retrieval systems. We next discuss the concept of distance function as a means of computing
similarity between images, represented as high-dimensional vectors of features. When dealing
with high-dimensional spaces our geometric intuition is extremely misleading. The nice
properties of the low-dimensional spaces we are familiar with do not carry over to high-
dimensional spaces, and a class of phenomena arises, known as the “curse of dimensionality”,
to which we devote a section. A way of coping with the curse of dimensionality is to reduce
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the dimensionality of the search space, and appropriate techniques are discussed in Section
2.5.

2.1 Full Match, Subimage Match and Image Segmentation

Similarity retrieval can be divided into whole image match, where the query template is an
entire image and is matched against entire images in the repository, and subimage match,
where the query template is a portion of an image and the results are portions of images
from the database. A particular case of subimage match consists of retrieving portions of
images containing desired objects.

Whole match is the most commonly used approach to retrieve photographic images. A
single vector of features, which are represented as numeric quantities, is extracted from each
image, and used for indexing purposes. Early content-based retrieval systems such as QBIC
[126], adopt this framework.

Subimage match is more important in scientific datasets, such as remotely sensed images,
medical images, or seismic data for the oil industry, where the individual images are extremely
large (several hundred megabytes or larger) and the user is generally interested in subsets of
the data (e.g., regions showing beach erosion, portions of the body surrounding a particular
lesion etc.).

Most existing systems support subimage retrieval by segmenting the images at database
ingestion time, and associating a feature vector with each interesting portion. Segmentation
can be data-independent (windowed or block-based), or data-dependent (adaptive).

Data-independent segmentation commonly consists of dividing an image into overlapping
or non-overlapping, fixed-size sliding rectangular regions of equal stride, and extracting and
indexing a feature vector from each such region [107, 35]. The selection of the window size and
stride are application-dependent. For example, in [107] texture features are extracted from
satellite images using non-overlapping square windows of size 32×32, while in [61] texture is
extracted from well-bore images acquired with the Formation Micro-scanner Imager, which
are 192 pixel wide and tens-to-hundreds of thousand pixels high. Here the extraction windows
have size 24 × 32, have a horizontal stride of 24, and a vertical stride of 2.

Numerous approaches to data-dependent feature extraction have been proposed. The
blobworld representation [37] (where images are segmented using simultaneously color and
texture features by an Expectation-Maximization (EM) algorithm [57],) is well-tailored to-
wards identifying objects in photographic images, provided that they stand out from the
background. Each object is efficiently represented by replacing it with a “blob” - an ellipse
identified by its centroid and its scatter matrix. The mean texture and the two dominant
colors are extracted and associated with each blob. The Edge-Flow algorithm [116, 115] is
designed to produce an exact segmentation of an image by using a smoothed texture field
and predictive coding to identify points where edges exist with high probability. The MMAP
algorithm [154] divides the image into overlapping rectangular regions, extracts from each
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regions a feature vector, quantizes is, constructs a cluster index map by representing each
window with the label produced by the quantizer, and applies a simple random field model
to smooth the cluster index map. Connected regions having the same cluster label are then
indexed by the label.

Adaptive feature extraction produces a much smaller feature volume than data-inde-
pendent block-based extraction, and the ensuing segmentation can be used for automatic
semantic labeling of image components. It is typically less flexible than image-independent
extraction, since images are partitioned at ingestion time. Block-based feature extraction
yields a larger number of feature vectors per image, and can allow very flexible, query-
dependent segmentation of the data (this is not surprising, since often a block-based algo-
rithm is the first step of an adaptive one). An example is presented in [22, 61] where the
system retrieves subimages containing objects which are defined by the user at query speci-
fication time and constructed during the execution of the query using finely-gridded feature
data.

2.2 Types of Content-Based Queries

In this section, we describe the different types of queries typically used for content-based
search.

The search methods used for image databases differ from those of traditional databases.
Exact queries are only of moderate interest, and, when they apply, are usually based on meta-
data, managed by a traditional Data Base Management System (DBMS). The quintessential
query method for multimedia databases is retrieval-by-similarity. The user search, expressed
through one of a number of possible user interfaces, is translated into a query on the feature
table or tables. We group similarity queries into three main classes:

1. Range search: “Find all images where feature 1 is within range r1, and feature 2 is
within range r2, and . . ., and feature n is within range rn.” Example: Find all images
showing a tumor of size between sizemin and sizemax, within a given region.

2. k−Nearest-neighbor search: “Find the k most similar images to the template”.
Example: Find the 20 tumors that are most similar to a specified example, where
similarity is defined in terms of location, shape and size, and return the corresponding
images.

3. Within-distance (or α-cut): “Find all images with a similarity score better than
α with respect to a template”, or “Find all images at distance less than d from a
template”. Example: Find all the images containing tumors with similarity scores
larger than α0 with respect to an example provided.

This categorization is the fundamental taxonomy used in this chapter.
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Note that nearest-neighbor queries are required to return at least k results, possibly
more in case of ties, no matter how similar the results are to the query, while within-distance
queries do not have an upper bound on the number of returned results, but are allowed to
return an empty set. A query of type 1 requires a complex interface or a complex query
language, such as SQL. Queries of type 2 and 3 can, in their simplest incarnations, be
expressed through the use of simple, intuitive interfaces that support query-by-example.

Nearest-neighbor queries (type 2) rely on the definition of a similarity function. Section
2.3 is devoted to the use of distance functions for measuring similarity. Nearest-neighbor
search problems have wide applicability beyond information retrieval and GIS data man-
agement. There is a vast literature dealing with nearest-neighbor problems in the fields
of pattern recognition, supervised learning, machine learning, and statistical classification
[54, 59, 58, 55], as well as in the areas of unsupervised learning, clustering and vector quan-
tization [109, 140, 141].

α−cut queries (type 3) rely on a distance or scoring function. A scoring function is non-
negative, bounded from above, and assigns higher values to better matches. For example, a
scoring function might order the database records by how well they match the query, and
then use the record rank as the score. The last record, which is the one that best satisfies
the query, has the highest score. Scoring functions are commonly normalized between 0 and
1.

In our discussion, we have implicitly assumed that query processing has three properties1:

Exhaustiveness – Query processing is exhaustive if it retrieves all the database items satis-
fying it. A database item that satisfies the query and does not belong to the result set
is called a miss. Non-exhaustive range-query processing fails to return points that lie
within the query range. Non-exhaustive α−cut-query processing fails to return points
that are closer than α to the query template. Non-exhaustive k-nearest-neighbor-query
processing either returns fewer than k results, or returns results that are not correct.

Correctness – Query processing is correct if all the returned items satisfy it. A database
item that belongs to the result set and does not satisfy the query is called a false
hit. Non-correct range-query processing returns points outside the specified range.
Non-correct α−cut-query processing returns points that are farther than α from the
template. Non-correct k−nearest-neighbor query processing miss some of the desired
results, and therefore is also non-exhaustive.

1In this chapter we restrict the attention to properties of indexing structures. The content-based retrieval
community has concentrated mostly on properties of the image-representation: as discussed in other chapters,
numerous studies have investigated how well different feature-descriptor sets perform by comparing results
selected by human subjects with results retrieved using features. Different feature sets produce different
number of misses and of false hits, and have different effects on the result rankings. In this chapter we
are not concerned with the performance of feature descriptors: an indexing structure that is guaranteed to
return exactly the k nearest feature vectors of every query, is, for the purpose of this chapter, exhaustive,
correct, and deterministic. This same indexing structure, used in conjunction with a specific feature set
might yield query results that a human would judge as misses, false hits, or incorrectly ranked.
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Determinism – Query processing is deterministic if it returns the same results every time
a query is issued, and for every construction of the index2. It is possible to have
non-deterministic range, α−cut and k-nearest-neighbor queries.

We will use the term exactness to denote the combination of exhaustiveness and correct-
ness. It is very difficult to construct indexing structures that have all three properties and
that are at the same time efficient (namely, that perform better than brute-force sequential
scan) as the dimensionality of the dataset grows. Much can be gained, however, if one or
more of the assumptions are relaxed.

Relaxing Exhaustiveness Relaxing exhaustiveness alone means allowing misses but not
false hits, and retaining determinism. There is a widely used class of non-exhaustive
methods that do not modify the other properties. These methods support fixed-
radius queries, namely, they return only results that have distance smaller than r
from the query point. The radius r is either fixed at index construction time, or
specified at query time. Fixed-radius k-nearest-neighbor queries are allowed to return
less than k results, if less than k database points lie within distance r of the query
sample.

Relaxing Exactness It is impossible to give up correctness in nearest-neighbor queries
while retaining exhaustiveness, and we are not aware of methods that achieve this goal
for α−cut and range queries. There are two main approaches to relax exactness:

• 1 + ε queries return results whose distance is guaranteed to be less than 1 + ε
times the distance of the exact result;

• approximate queries operate on an approximation of the search space, ob-
tained, for instance, through dimensionality reduction (Section 2.5).

Approximate queries usually constrain the average error, while 1 + ε queries limit the
maximum error. Note that it is possible to combine the approaches, for instance by
first reducing the dimensionality of the search space, and indexing the result with a
method supporting 1 + ε queries.

Relaxing Determinism There are three main categories algorithms yielding non-determi-
nistic indexes where the lack of determinism is due to a randomization step in the index
construction [50, 100]:

• methods yielding indexes that relax exhaustiveness or correctness, and that are
slightly different every time the index is constructed – repeatedly reindexing the
same database produces indexes with very similar but not identical retrieval char-
acteristics;

2While this definition may appear cryptic, it will soon be clear that numerous approaches exist that yield
non-deterministic queries.
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• methods yielding yields “good” indexes (e.g., both exhaustive and correct) with
arbitrarily high probability, and poor indexes with low probability – repeatedly
reindexing the same database yields mostly indexes with the desired characteris-
tics, and very rarely an index that performs poorly;

• methods whose indexes perform well (e.g., are both exhaustive and correct) on the
vast majority of queries, and poorly on the remaining – if queries are generated
“at random”, with high probability the results will be accurate.

A few non-deterministic methods rely on a randomization step during the query exe-
cution – the same query on the same index might not return the same results.

Exhaustiveness, exactness and determinism can be individually relaxed for all three main
categories of queries. It is also possible to relax any combination of these properties: for
example CSVD (described in Appendix A) supports nearest-neighbor searches that are both
non-deterministic and approximate.

2.3 Image Representation and Similarity Measures

In general, systems supporting k−nearest-neighbor and α−cut queries rely on the following
assumption:

“Images (or image portions) can be represented as points in an appropriate metric space
where dissimilar images are distant from each other, similar images are close to each other,
and where the distance function captures well the user’s concept of similarity.”

Since query-by-example has been the main approach to content-based search, a substan-
tial literature exists on how to support nearest-neighbor and α−cut searches, both of which
rely on the concept of distance (a score is usually directly derived from a distance). A
distance function (or metric) D(·, ·) is by definition non-negative, symmetric, satisfies the
triangular inequality, and has the property that D(x, y) = 0 if and only if x = y. A metric
space is a pair of items: a set X , the elements of which are called points, and a distance
function defined on pairs of elements of X .

The problem of finding a universal metric that acceptably captures photographic image
similarity as perceived by human beings is unsolved and indeed ill-posed, since subjectivity
plays a major role in determining similarities and dissimilarities. In specific areas, however,
objective definitions of similarity can be provided by experts, and in these cases it might be
possible to find specific metrics that solve exactly the problem.

When images or portions of images are represented using a collection of d features
x[1], . . . ,x[d] (containing texture, shape, color descriptors or combinations thereof), it seems
natural to aggregate the features into a vector (or, equivalently, a point) in the d−dimensional
space Rd, by making each feature correspond to a different coordinate axis. Some specific
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features, such as the color histogram, can be interpreted both as point and as probability
distributions.

Within the vector representation of the query space, executing a range query is equivalent
to retrieving all the points lying within a hyperrectangle aligned with the coordinate axes.
To support nearest-neighbor and α−cut queries, however, the space must be equipped with
a metric or a dissimilarity measure. Note that, although the dissimilarity between statis-
tical distributions can be measured with the same metrics used for vectors, there are also
dissimilarity measures that were specifically developed for distributions.

We now describe the most common dissimilarity measures, provide their mathematical
form, discuss their computational complexity, and mention when they are specific to proba-
bility distributions.

Euclidean or D(2). Computationally simple (O(d) operations) and invariant with respect
to rotations of the reference system, the Euclidean distance is defined as

D(2)(x,y) =

√√√√ d∑
i=1

(x[i] − y[i])2.

Rotational invariance is important in dimensionality reduction, as discussed in Section
2.5. The Euclidean distance is the only rotationally invariant metric in this list (the
rotationally invariant correlation coefficient described later is not a distance). The set
of vectors of length d having real entries, endowed with the Euclidean metric is called
the d−dimensional Euclidean space. When d is a small number, the most expensive
operation is the square root. Hence, the square of the Euclidean distance is also
commonly used to measure similarity.

Chebychev or D(∞). Less computationally expensive than the Euclidean distance (but
still requiring O(d) operations), it is defined as

D(∞)(x,y) =
d

max
i=1

|x[i] − y[i]|.

Manhattan or D(1) or city-block. As computationally expensive as a squared Euclidean
distance, this distance is defined as

D(1)(x,y) =

d∑
i=1

|x[i] − y[i]|.

Minkowsky or D(p). This is really a family of distance functions, parameterized by p.
The three previous distances belong to this family, and correspond to p = 2, p = ∞
(interpreted as limp→∞Dp) and p = 1 respectively.

D(p)(x,y) =

[
d∑

i=1

|x[i] − y[i]|p
] 1

p

.
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Minkowsky distances have the same number of additions and subtractions as the Eu-
clidean distance. With the exception of D1, D2 and D∞, the main computational cost
is due to computing the power functions. Often Minkowsky distances between func-
tions are also called Lp distances, and Minkowsky distances between finite or infinite
sequences of numbers are called lp distances.

Weighted Minkowsky. Again, this is a family of distance functions, parameterized by p,
where the individual dimensions can be weighted differently using non-negative weights
wi. Their mathematical form is

D(p)
w (x,y) =

[
d∑

i=1

wi |x[i] − y[i]|p
] 1

p

.

The Weighted Minkowsky distances require d more multiplications than their un-
weighted counterpart.

Mahalanobis. A computationally expensive generalization of the Euclidean distance, it is
defined in terms of a covariance matrix C

D(x,y) = |det C |1/d (x− y)TC−1(x− y),

where det is the determinant, C−1 is the matrix inverse of C, and the superscript T
denotes transposed. If C is the identity matrix I, the Mahalanobis distance reduces to
the Euclidean distance squared, otherwise the entry C[i, j] can be interpreted as the
joint contribution of the ith and jth feature to the overall dissimilarity. In general the
Mahalanobis distance requires O(d2) operations. This metric is also commonly used
to measure the distance between probability distributions.

Generalized Euclidean or quadratic, is a generalization of the Mahalanobis distance
where the matrix K is positive definite but not necessarily a covariance matrix, and
the multiplicative factor is omitted:

D(x,y) = (x− y)TK(x− y).

It requires O(d2) operations.

Correlation Coefficient. Defined as

ρ(x,y) =

∑d
i=1 (x[i] − x[i]) (y[i] − x[i])√∑d

i=1 (x[i] − x[i])2 ∑d
i=1 (y[i] − x[i])2

,

(where x = [x[1], . . . ,x[d]] is the average of all the vectors in the database,) the cor-
relation coefficient is not a distance. However, if the points x and y are projected
onto the sphere of unit radius centered at x, then the quantity 2 − 2ρ(x,y) is exactly
the Euclidean distance between the projections. The correlation coefficient is invariant
with respect to rotations and scaling of the search space. It requires O(d) operations.
This measure of similarity is used in statistic to characterize the joint behavior of pairs
of random variables.
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Figure 1: The unit spheres under Chebychev, Euclidean, D(4) and Manhattan distance

Relative Entropy or Kullback-Leibler Divergence. This information-theoretical quan-
tity is defined, only for probability distributions, as

D(x‖y) =

d∑
i=1

x[i] log
x[i]

y[i]
.

It is meaningful only if the entries of x and y are non-negative and
∑d

i=1 x[i] =∑d
i=1 y[i] = 1. Its computational cost is O(d), however it requires O(d) divisions

and O(d) logarithm computations. It is not a distance, since it is not symmetric,
nor it satisfies a triangle inequality. When used for retrieval purposes, the first argu-
ment should be the query vector, and the second argument the database vector. It
is also known as Kullback-Leibler distance, Kullback-Leibler cross-entropy or just as
cross-entropy.

χ2−Distance. Defined, only for probability distributions, as

Dχ2(x,y) =
d∑

i=1

x2[i] − y2[i]

y[i]
.

It lends itself to a natural interpretation only if the entries of x and y are non-negative
and

∑d
i=1 x[i] =

∑d
i=1 y[i] = 1. Computationally, it requires O(d) operations, the most

expensive of which is the division. It is not a distance, since it is not symmetric.

It is difficult to convey an intuitive notion of the difference between distances. Concepts
derived from geometry can assist in this task. As in topology, where the structure of a
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topological space is completely determined by its open sets, the structure of a metric space
is completely determined by its balls. A ball centered at x having radius r is the set of points
having distance r from x. The Euclidean distance is the starting point of our discussion,
since it can be measured using a ruler. Balls in Euclidean spaces are the spherical surfaces
we are familiar with (Figure 1). A ball in D∞ is a hyper-square aligned with the coordinate
axes, inscribing the corresponding Euclidean ball. A ball in D1 is a hyper-square having
vertices on the coordinate axes and inscribed in the corresponding Euclidean ball. A ball
in Dp, for p > 2 looks like a “fat sphere” that lies between the D2 and D∞ balls, while
for 1 < p < 2 lies between the D1 and D2 balls, and looks like a “slender sphere”. It is
immediately possible to draw several conclusions. Consider the distance between two points
x and y, and look at the absolute values of the differences di = |x[i] − y[i]|.

• The Minkowsky distances differ in the way they combine the contributions of the di’s.
All the di’s contribute equally to D1(x,y), irrespective of their values. However, as p
grows, the value Dp(x,y) is increasingly determined by the maximum of the di, while
the overall contribution of all the other differences becomes less and less relevant. In
the limit, D∞(x,y) is uniquely determined by the maximum of the differences di, while
all the other values are ignored.

• If two points have distance Dp equal to zero, for some p ∈ [1∞], then they have distance
Dq equal to zero for all q ∈ [1,∞]. Hence, one cannot distinguish points that have,
say, Euclidean distance equal to zero by selecting a different Minkowsky metric.

• If 1 ≤ p < q ≤ ∞ the ratio Dp(x,y)/Dq(x,y), is bounded from above Kp,q and from
below by 1. The constant Kp,q is never larger than 2d and depends only on p and q,
but not on x and y. This property is called equivalence of distances. Hence, there are
limits on how much the metric structure of the space can be modified by the choice of
Minkowsky distance.

• Minkowsky distances do not take into account combinations of di’s. In particular, if
two features are highly correlated, differences between the values of the first feature are
likely reflected in distances between the values of the second feature. The Minkowsky
distance combines the contribution of both differences, and can overestimate visual
dissimilarities.

We argue that Minkowsky distances are substantially similar to each other from the viewpoint
of information retrieval, and that there are very few theoretical arguments supporting the
selection of one over the others. Computational cost and rotational invariance are probably
more important considerations in the selection.

If the covariance matrix C and the matrix K have full rank, and the weights wi are
all positive, then the Mahalanobis distance, the Generalized Euclidean distance and the
unweighted and weighted Minkowsky distances are equivalent.
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Weighted D(p) distances are useful when different features have different ranges. For
instance, if a vector of features contains both the fractal dimension (which takes values
between 2 and 3) and the variance of the gray-scale histogram (which takes values between
0 and 214 for an 8-bit image), the latter will be by far the main factor in determining the
D(p) distance between different images. This problem is commonly corrected by selecting
an appropriate weighted D(p) distance. Often each weight is the reciprocal of the standard
deviation of the corresponding feature computed across the entire database.

The Mahalanobis distance solves a different problem. If two features i and j have signif-
icant correlation, then |x[i] − y[i]| and |x[j] − y[j]| are correlated: if x and y differ signifi-
cantly in the ith dimension, they will likely differ significantly in the jth dimension, and if
they are similar in one dimension, they will likely be similar in the other dimension. This
means that the two features capture very similar characteristics of the image. When both
features are used in a regular or weighted Euclidean distance, the same dissimilarities are
essentially counted twice. The Mahalanobis distance offers a solution consisting of correct-
ing for correlations and differences in dispersion around the mean. A common use of this
distance is in classification applications, where the distributions of the classes are assumed
to be Gaussian. Both Mahalanobis distance and Generalized Euclidean distances have unit
spheres shaped as ellipsoids, aligned with the eigenvectors of the weights matrices.

The characteristics of the problem being solved should suggest the selection of a distance
metric. In general, the Minkowsky distance considers only the dimension where x and y
differ the most, the Euclidean distance captures our geometric notion of distance, and the
Manhattan distance combines the contributions of all dimensions where x and y are different.
Mahalanobis distances and Generalized Euclidean distances consider joint contributions of
different features.

Empirical approaches exist, typically consisting of constructing a set of queries, for which
the correct answer is determined manually, and comparing different distances in terms of
efficiency and accuracy. Efficiency and accuracy are often measured using the information-
retrieval quantities precision and recall defined as follows. Let D be the set of desired (correct)
results of a query, usually manually selected by a user, and A be the set of actual query
results. We require that |A| be larger than |D|. Some of the results in A will be correct, and
form a set C. Precision and recall for individual queries are then respectively defined as

P =
|C|
|A| = fraction of returned results that are correct;

R =
|C|
|D| = fraction of correct results that are returned.

Precision and recall of individual queries are For the approach to be reliable, the database
size should be very large, and precision and recall should be averaged over a large number
of queries.

J.R. Smith [153] observed that, on a medium-sized, diverse photographic image data-
base, and for a heterogeneous set of queries, when retrieval is based on color histogram or
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on texture, precision and recall vary only slightly with the choice of (Minkowsky or weighted
Minkowsky) metric.

2.4 The “Curse of Dimensionality”

The operations required to perform content-based search are computationally expensive, and
therefore indexing schemes are commonly used to speed up the queries.

Indexing multimedia databases is a much more complex and difficult problem than in-
dexing traditional databases. The main difficulty stems from using long feature vectors to
represent the data. This is especially troublesome in systems supporting only whole image
matches where individual images are represented using extremely long feature vectors.

Our geometric intuition (based on experience with the 3-dimensional world in which we
live) leads us to believe that numerous geometric properties hold in high-dimensional spaces,
while in reality they cease to be true very early on as the number of dimensions grows. For
example, in 2 dimensions a circle is well approximated by the minimum bounding square:
the ratio of the areas is 4/π. However, in 100 dimensions the ratio of the volumes becomes
approximately 4.2 · 1039: most of the volume of a 100-dimensional hypercube is outside the
largest inscribed sphere – hypercubes are poor approximations of hyperspheres, and the large
majority of indexing structures partition the space into hypercubes or hyperrectangles.

Two classes of problems then arise. The first is algorithmic: indexing schemes that rely
on properties of low-dimensionality spaces do not perform well in high-dimensional spaces
because the assumptions on which they are based do not hold there. For example, R-trees
are extremely inefficient for performing α−cut queries using the Euclidean distance, because
they execute the search by transforming it into the range query defined by the minimum
bounding rectangle of the desired search region, which is a sphere centered on the template
point, and by checking whether the retrieved results satisfy the query. In high dimensions,
the R-tree retrieve mostly irrelevant points, that lie within the hyperrectangle but outside
the hypersphere.

The second class of difficulties, called the “curse of dimensionality”, is intrinsic in the
geometry of high-dimensional hyperspaces, which entirely lack the“nice” properties of low-
dimensional spaces.

One of the characteristics of high-dimensional spaces is that points randomly sampled
from the same distribution appear uniformly far from each other, and each point sees itself as
an outlier (see [46, 24, 26, 92, 73] for formal discussions of the problem). More specifically, a
randomly selected database point does not perceive itself as surrounded by the other database
points; on the contrary, the vast majority of the other database vector appear to be almost
at the same distance and to be located in the direction of the center. Note that, while the
semantics of range queries are unaffected by the curse of dimensionality, the meaning itself
of nearest-neighbor and of α−cut queries is now in question.
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Figure 2: Distances between a query point and database points. Database size = 20,000 points,
in 100 dimensions.

Consider the following simple example: let a database be composed of 20,000 indepen-
dent 100-dimensional vectors, with the features of each vector independently distributed as
standard Normal random (i.e., Gaussian) variables. Normal distributions are very concen-
trated: the tails decay extremely fast, and the probability of sampling observations far from
the mean is negligible. A large Gaussian sample in 3-dimensional space looks like a tight,
well concentrated cloud, a nice “cluster”. Not so in 100 dimensions. In fact, sampling an
independent query template according to the same 100-dimensional standard Normal, and
computing the histogram of the distances between this query point and the points in the
database, yields the result shown in Figure 2. In the data used for the figure, the minimum
distance between the query and a database point is 10.1997, and the maximum distance
is 18.3019. There are no “close” points to the query, and there are no “far” points from
the query. A α−cut queries become very sensitive to the choice of the threshold. With a
threshold smaller than 10, no result is returned; with a threshold of 12.5, the query returns
5.3% of the database; barely increasing the threshold to to 13 returns almost three times as
many results, 14% of the database.

2.5 Dimensionality Reduction

If the high-dimensional representation of images actually behaved as described in the previous
section, queries of type 2 and 3 would be essentially meaningless. Luckily, two properties
come to the rescue. The first, noted in [24] and, from a different perspective, in [157, 156], is
that the feature space often has a local structure, thanks to which query images have, in fact,
close neighbors, and therefore nearest-neighbor and α−cut searches can be meaningful. The
second is that the features used to represent the images are usually not independent, and are
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often highly correlated: the feature vectors in the database can be well approximated by their
“projections” onto a lower-dimensionality space, where classical indexing schemes work well.
Pagel, Korn and Faloutsos [137] propose a method for measuring the intrinsic dimensionality
of data sets in terms of their fractal dimensions. By observing that the distribution of real
data often displays self-similarity at different scales, they express the average distance of the
kth nearest neighbor of a query sample in terms of two quantities, called the Haussdorff and
the Correlation fractal dimension, which are usually significantly smaller than the number
of dimensions of the feature space, and effectively deflate the curse of dimensionality.

The mapping from a higher-dimensional to a lower-dimensional space, called dimension-
ality reduction, is normally accomplished through one of three classes of methods: variable-
subset selection (possibly following a linear transformation of the space), multidimensional
scaling, and geometric hashing.

2.5.1 Variable-Subset Selection

Variable-subset selection consists of retaining some of the dimensions of the feature space
and discarding the remaining ones. This class of methods is often used in statistics or in
machine learning [25]. In CBIR systems, where the goal is to minimize the error induced
by approximating the original vectors with their lower-dimensionality projections, variable-
subset selection is often preceded by a linear transformation of the feature space. Almost
universally, the linear transformation (a combination of translation and rotation) is chosen so
that the rotated features are uncorrelated, or, equivalently, so that the covariance matrix of
the transformed dataset is diagonal. Depending on the perspective of the author and on the
framework, the method is called Karhunen-Loève transform (KLT) [59, 77], Singular Value
Decomposition (SVD) [90], or Principal Component Analysis (PCA) [94, 125] (while the
setup and numerical algorithms might differ, all the above methods are essentially equiva-
lent). A variable-subset selection step then discards the dimensions having smaller variance.
The rotation of the feature space induced by these methods is optimal in the sense that
it minimizes the mean squared error of the approximation resulting from discarding the d

′

dimensions with smaller variance, for every d
′
. This implies that, on average, the original

vectors are closer (in Euclidean distance) to their projections when the rotation decorrelates
the features than with any other rotation.

PCA, KLT and SVD are data-dependent transformations and are computationally ex-
pensive. They are therefore poorly suited for dynamic databases where items are added and
removed on a regular basis. To address this problem Ravi Kanth, Agrawal and Singh [142]
proposed an efficient method for updating the SVD of a dataset, and devised strategies to
schedule and trigger the update.
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2.5.2 Multidimensional Scaling

Non-linear methods can reduce the dimensionality of the feature space. Numerous authors
advocate the use of multidimensional scaling [105] for content-based retrieval applications.
Multidimensional scaling comes in different flavors, hence it lacks a precise definition. The
approach described in [162] consists of remapping the space Rn into Rm (m < n) using m
transformations each of which is a linear combination of appropriate radial basis functions.
This method was adopted by [11] for database image retrieval. The metric version of mul-
tidimensional scaling [158] starts from the collection of all pairwise distances between the
objects of a set, and tries to find the smallest-dimensionality Euclidean space where the
objects can be represented as points whose Euclidean distances are “close enough” to the
original input distances. Numerous other variants of the method exist.

Faloutsos and Lin [67] proposed an efficient solution to the metric problem, called FastMap.
The gist of this approach is pretending that the objects are indeed points in an n-dimensional
space (where n is large and unknown) and trying to project these unknown points onto a
small number of orthogonal directions.

In general, multidimensional scaling algorithms can provide better dimensionality reduc-
tion than linear methods, but are computationally much more expensive, modify the metric
structure of the space in a fashion that depends on the specific data set, and are poorly
suited for dynamic databases.

2.5.3 Geometric Hashing

Geometric Hashing [36, 166] consists of hashing from a high-dimensional space to a very
low-dimensional space (the real line or the plane). In general hashing functions are not
data-dependent. The metric properties of the hashed space can be significantly different
from those of the original space. Additionally, an ideal hashing function should spread
the database uniformly across the range of the low-dimensionality space, but the design of
such a function becomes increasingly complex with the dimensionality of the original space.
Hence, geometric hashing can be applied to image database indexing only when the original
space has low-dimensionality, and when only local properties of the metric space need to be
maintained.

A few approaches have been proposed that do not fall in any of the three classes described
above. An example is the indexing scheme called Clustering and Singular Value Decomposi-
tion (CSVD) [157, 156], in which the index preparation step includes recursively partitioning
the observation space into non-overlapping clusters, and applying SVD and variable-subset
selection independently to each cluster. Similar approaches have since appeared in the liter-
ature, that confirm the conclusions [4, 42]. Aggarwal et al. [4] describes an efficient method
for combining the clustering step with the dimensionality reduction, but the paper does
not contain applications to indexing. A different decomposition algorithm is described in
[42], where the empirical results on indexing performance and behavior are in remarkable

16



agreement with those in [157, 156].

2.5.4 Some Considerations

Dimensionality reduction allows the use of efficient indexing structures. However, the search
is now no longer performed on the original data.

The main downside of dimensionality reduction is that it affects the metric structure
of the search space in at least two ways. First, all the mentioned approaches introduce an
approximation, which might affect the ranks of the query results. The results of type 2
or 3 queries executed in the original space and in the reduced-dimensionality space need
not be the same. This approximation might or might not negatively affect the retrieval
performance: since feature-based search is in itself approximate, and since dimensionality
reduction partially mitigates the “curse of dimensionality”, improvement rather than dete-
rioration is possible. To quantify this effect, experiments measuring precision and recall of
the search can be used, where users compare the results retrieved from the original and the
reduced dimensionality space. Alternatively, the original space can be used as the reference
(in other words, the query results in the original space are used as baseline), and we can
measure the difference in retrieval behavior [157].

The second type of alteration of the search space metric structure depends on the indi-
vidual algorithm. Linear methods, such as SVD (and the non-linear CSVD), use rotations
of the feature space. If the same non-rotationally-invariant distance function is used before
and after the linear transformation, then the distances between points in the original and in
the rotated space will be different, even without accounting for the variable-subset selection
step (for instance, when using D(∞), the distances could vary by a factor of

√
d). However,

this problem does not exist when a rotationally invariant distance or similarity index is used.
When non-linear multidimensional scaling is used, the metric structure of the search space
is modified in a position-dependent fashion, and the problem cannot be mitigated by an
appropriate choice of metric.

The methods that can be used to quantify this effect are the same ones proposed to quan-
tify the approximation induced by the dimensionality reduction. In practice, distinguishing
between the contributions of the two discussed effects is very difficult and probably of minor
interest, and as a consequence a single set of experiments is used to determine the overall
combined influence on retrieval performance.

3 Taxonomies of Indexing Structures

After feature selection and dimensionality reduction, the third step in the construction of
an index for an image database is the selection of an appropriate indexing structure, a data
structure that simplifies the retrieval task. The literature on the topic is immense, and an
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exhaustive overview would require an entire book.

Here, we will quickly review the main classes of indexing structures, describe their salient
characteristics and discuss how well they can support queries of the three main classes and
four categories defined in Section 2.2. The appendix describes in detail the different indexes
and compares their variations. This section describes different ways of categorizing indexing
structures. A taxonomy of spatial access methods can also be found in [79], which also
contains an historical perspective on the evolution of spatial access methods, a description
of several indexing methods, and references to comparative studies.

A first distinction, adopted in the rest of the chapter, is between vector space indexes
and metric space indexes. The former represent objects and feature vectors as sets or points
in a d−dimensional vector space. For example, 2-dimensional objects can be represented
as regions of the x − y plane, and color histograms as points in high-dimensional space
where each coordinate corresponds to a different bin of the histogram. After embedding
the representations in an appropriate space, a convenient distance function is adopted, and
indexing structures to support the different types of queries are constructed accordingly.
Metric space indexes start from the opposite end of the problem: given the pairwise distances
between objects in a set, an appropriate indexing structure is constructed for these distances.
The actual representation of the individual objects is immaterial; the index tries to capture
the metric structure of the search space.

A second division is algorithmic. We can distinguish between non-hierarchical, recursive
partitioning, projection-based, and miscellaneous methods. Non-hierarchical schemes divide
the search space into regions having the property that the region to which a query point
belongs can be identified in a constant number of operations. Recursive partitioning methods
organize the search space in a way that is well captured by a tree, and try to capitalize on the
resulting search efficiency. Projection-based approaches, usually well-suited for approximate
or probabilistic queries, rely on clever algorithms that perform searches on the projections
of database points onto a set of directions.

We can also take an orthogonal approach and divide the indexing schemes into spatial
indexing methods (SAM), that index spatial objects (lines, polygons, surfaces, solids etc.),
and point access methods (PAM), that index points in multidimensional spaces. Spatial data
structures are extensively analyzed in [148]. Point access methods have been used in pattern
recognition applications, especially for nearest-neighbor searches [55]. The distinction be-
tween SAMs and PAMs is somewhat fuzzy. On the one hand, numerous schemes exist that
can be used as either SAMs or PAMs with very minor changes. On the other, many authors
have mapped spatial objects (especially hyperrectangles) into points in higher dimensional
spaces, called parameter space [130, 131, 112, 113, 128], and used PAMs to index the param-
eter space. For example, a d−dimensional hyperrectangle aligned with the coordinate axes
is uniquely identified by its two vertices lying on its main diagonal, that is, by 2d numbers.
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4 The Main Classes of Multidimensional Indexing Struc-

tures

This section contains a high-level overview of the main classes of multidimensional indexes.
We have organized them taxonomically, dividing them into vector-space methods and metric-
space methods, and further subdividing each category. The appendix contains a detailed
descriptions, discusses individual methods belonging to each subcategory, compares methods
within each class and provides references to the immense literature.

4.1 Vector-Space Methods

We divide vector-space approaches into non-hierarchical methods, recursive decomposition
approaches, projection-based algorithms, and miscellaneous indexing structures.

4.1.1 Non-Hierarchical Methods

Non-hierarchical methods constitute a wide class of indexing structures. Ignoring the brute-
force approach (namely, the sequential scan of the database table), we divide them into two
classes.

The first group (described in detail in Appendix A.1) maps the d−dimensional spaces
onto the real line by means of a space-filling curve (such as the Peano curve, the z-order,
and the Hilbert curve), and indexes the mapped records using a one-dimensional indexing
structure. Since space-filling curves tend to map nearby points in the original space into
nearby points on the real line, range queries, nearest-neighbor queries and α−cut queries
can be reasonably approximated by executing them in the projected space.

The second group of methods partitions the search space into a predefined number of
non-overlapping fixed-size regions, that do not depend on the actual data contained in the
database.

4.1.2 Recursive Partitioning Methods

Recursive partitioning methods (see also Appendix B) recursively divide the search space
into progressively smaller regions which depend on the dataset being indexed. The resulting
hierarchical decomposition can be well-represented by a tree.

The three most commonly used categories of recursive partitioning methods are quadtrees,
k-d-trees and R-trees.

Quadtrees divide a d−dimensional space into 2d regions by simultaneously splitting all
axes into two parts. Each non-terminal node has therefore 2d children, and, as in the other
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Figure 3: Two-dimensional space decomposition using a depth-3 quadtree. Database vectors are
represented as diamonds. Different line types correspond to different levels of the tree. Starting
from the root, these line types are: solid, dashed and dotted.

two classes of methods, correspond to hyperrectangles aligned with the coordinate axes.
Figure 3 shows a typical quadtree decomposition in a two-dimensional space.

K-d-trees divide the space using (d − 1)−dimensional hyperplanes perpendicular to a
specific coordinate axis. Each non-terminal node has therefore at least two children. The
coordinate axis can be selected using a round-robin criterion, or as a function of the properties
of the data indexed by the node. Points are stored at the leaves, and, in some variations of
the method, at internal nodes. Figure 4 is an example of a k-d-tree decomposition of the
same dataset used in Figure 3.

R-trees divide the space into a collection of possibly overlapping hyperrectangles. Each
internal node corresponds to a hyperrectangular region of the search space, which generally
contain the hyperrectangular regions of the children. The indexed data is stored at the leaf
nodes of the tree. Figure 5 shows an example of R-tree decomposition of the same dataset
used in Figures 3 and 4. From the figure, it is immediately clear that the hyperrectangles of
different nodes need not be disjoint. This adds a further complication that was not present
in the previous two classes of recursive decomposition methods.

Variations of the three types of methods exist that use hyperplanes (or hyperrectan-
gles) having arbitrary orientations, or non-linear surfaces (such as spheres or polygons) as
partitioning elements.

Though these methods were originally conceived to support point queries and range
queries in low-dimensional spaces, they also support efficient algorithms for α−cut and
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Figure 4: Two-dimensional space decomposition using a depth-4 k-d-b-tree, a variation of the
k-d-tree characterized by binary splits. Database vectors are denoted by diamonds. Different line
types correspond to different levels of the tree. Starting from the root, these line types are: solid,
dash-dot, dashed and dotted. The dataset is identical to that of Figure 3.

nearest-neighbor queries (described in the Appendix).

Recursive-decomposition algorithms have good performance even in 10-dimensional spaces,
and can occasionally be useful to index up to 20-dimensions.

4.1.3 Projection-based methods

Projection-based methods are indexing structures that support approximate nearest-neighbor
queries. They can be further divided into two categories, corresponding to the type of ap-
proximation performed.

The first subcategory, described in Appendix C.1, supports fixed-radius queries. Several
methods project the database onto the coordinate axes, maintain a list for each collection
of projections, and use the list to quickly identify a region of the search space containing a
hypersphere of radius r centered on the query point. Other methods project the database
onto appropriate (d+ 1)−dimensional hyperplanes, and find nearest neighbors by tracing an
appropriate line3 query point and finding its intersection with the hyperspaces.

The second subcategory, described in Appendix C.2, supports (1 + ε)-nearest-neighbor
queries, and contains methods that project high-dimensional databases onto appropriately

3Details on what constitutes an appropriate line are contained in Appendix C.1.

21



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Depth−3 Rtree

Figure 5: Two-dimensional space decomposition using a depth-3 R-tree. The dataset is identical
to that of Figure 3. Database vectors are represented as diamonds. Different line types correspond
to different levels of the tree. Starting from the root, these line types are: solid, dashed and dotted.

selected or randomly generated lines, and index the projections. Although probabilistic and
approximate in nature, these algorithms support queries whose cost grows only linearly in
the dimensionality of the search space and are therefore well-suited for high-dimensional
spaces.

4.1.4 Miscellaneous Partitioning Methods

There are several methods that do not fall into any of the previous categories. Appendix C.2
describes three of them: CSVD, the Onion index, and Berchtold’, Böhm’, and Kriegel’s Pyra-
mid (not to be confused with the homonymous quadtree-like method described in Appendix
B.1).

CSVD recursively partitions the space into “clusters”, and independently reduces the di-
mensionality of each using Singular Value Decomposition. Branch-and-bound algorithms ex-
ist to perform approximate nearest-neighbor and α−cut queries. Medium- to high-dimensional
natural data, such as texture vectors, appear to be well-indexed by CSVD.

The Onion index indexes a database by recursively constructing the convex hull of its
points and “peeling it off”. The data is hence divided into nested layers, each of which consist
of the convex hull of the contained points. The onion index is well suited for search problems
where the database items are scored using a convex scoring function (for instance, a linear
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function of the feature values), and the user wishes to retrieves the k items with highest
score, or all the items with score exceeding a threshold. We immediately note a similarity
with k−nearest-neighbor and α−cut queries; the difference is that k−nearest-neighbor and
α− cut queries usually seek to maximize a concave rather than a convex scoring function.

The Pyramid divides the d−dimensional space into 2d pyramids centered at the origin
and with heights aligned with the coordinate axes. Each pyramid is then sliced by (d −
1)−dimensional equidistant hyperplanes, perpendicular to the coordinate axes. Algorithms
exist to perform range queries.

4.2 Metric-Space Methods

Metric-space methods index the distances between database items rather than the individ-
ual database items. They are useful when the distances are provided with the dataset (for
example, as result of psychological experiments), or where the selected metric is too compu-
tationally complex for interactive retrieval (and therefore it is more convenient to compute
pairwise distances while adding items to the database).

Most metric-space methods are tailored towards solving nearest-neighbor queries, and
are not well-suited for α−cut queries. Few metric-space methods have been specifically
developed to support α−cut queries, but are not well-suited for nearest-neighbor searches.
In general, metric-space indexes do not support range queries4.

We can distinguish two main classes of approaches: those that index the metric structure
of the search space and those that rely on vantage points.

4.2.1 Indexing the Metric Structure of a Space

There are two main ways of indexing the metric structure of a space to perform nearest-
neighbor queries. The first is applicable when the distance function is known, and consists
of indexing the Voronoi regions of each database item. Given a database, we can associate
with each point of the feature space the closest database item. The collection of feature
space points associated with a database item is called its Voronoi region. Different distance
functions produce different sets of Voronoi regions. An example of this class of indexes is
the cell method [19] (Appendix A), which approximate Voronoi regions by means of their
minimum-bounding rectangles (MBR), and indexes the MBRs with a X-tree [20] (Appendix
B.3).

The second approach is viable when all the pairwise distances between database items
are given. In principle, then, it is possible to associate with each database item an ordered
list of all the other items, sorted in ascending order of distance. Nearest-neighbor queries

4It is worth recalling that algorithms exist to perform all the three main similarity query types on each
of the main recursive-partitioning vector-space indexes.
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Figure 6: Selecting vector-space methods by dimensionality of the search space and query type.

are then reduced to a point query followed by walking the list. Methods of this category
are variations of this basic scheme, and try to reduce the complexity of constructing and
maintaining the index.

4.2.2 Vantage-Point Methods

Vantage-point methods (Appendix B rely on a tree structure to search the space. The vp-tree
is a typical example of this class of methods. Each internal node indexes a disjoint subset
of the database, has two children, and is associated with a database item called the vantage
point. The items indexed by an internal node are sorted in increasing distance from the
vantage point, the median distance is computed, the items closer to the vantage point than
the median distance are associated with the left subtree and the remaining ones with the
right subtree. The indexing structure is well-suited for fixed-radius nearest-neighbor queries.

5 Choosing an Appropriate Indexing Structure

It is very difficult to select an appropriate method for a specific application. There is currently
no recipe to decide which indexing structure to adopt. In this section we provide very general
data-centric guidelines to narrow the decision to a few categories of methods.

The characteristics of the data and the metric used dictate whether it is most convenient
to represent the database items as points in a vector space or to index the metric structure
of the space.

The useful dimensionality is the other essential characteristics of the data. If we require
exact answers, the useful dimensionality is the same as the original dimensionality of the
dataset. If approximate answers are allowed and dimensionality-reduction techniques can be
used, then the useful dimensionality depends on the specific database and on the tolerance to
approximations (specified, for example, as the allowed region in the precision-recall space).
Here, we (somewhat arbitrarily) distinguish between low-dimensional spaces (with 2 or 3
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Figure 7: Selecting metric-space methods by dimensionality of the search space and type of query.

dimensions), medium-dimensional spaces (with 4 to 20 dimensions) and high-dimensional
spaces, and use this categorization to guide our selection criterion.

Finally, we will select a category of methods that supports the desired type of query
(range, α−cut or nearest-neighbor).

Figure 6 provides rough guidelines to selecting vector-space methods given the dimen-
sionality of the search space and the type of query. Non-hierarchical methods are in general
well-suited for low-dimensionality spaces, and algorithms exist to perform the three main
types of queries. In general their performance decays very quickly with the number of di-
mensions. Recursive-partitioning indexes perform well in low- and medium-dimensionality
spaces, they are designed for point and range queries, and the Appendix describe algorithms
to perform nearest-neighbor queries, which can also be adapted to α−cut queries. CSVD
can often capture well the distribution of natural data, and can be used for nearest-neighbor
and α−cut queries in up to 100 dimensions, but not for range queries. The Pyramid tech-
nique can be used to cover this gap, although it does not gracefully support nearest-neighbor
and α−cut queries in high dimensions. The Onion index supports a special case of α−cut
queries (where the score is computed using a convex function). Projection-based methods
are well-suited for nearest-neighbor queries in high-dimensional spaces, however their com-
plexity does not make them competitive with recursive-partitioning indexes in less than 20
dimensions.

Figure 7 guides the selection of metric-space methods, the vast majority of which support
nearest-neighbor searches. A specific method, called the M-tree (Appendix D) can support
range and α−cut searches in low- and medium-dimensionality spaces, but is a poor choice
for high-dimensional spaces. The remaining methods are only useful for nearest-neighbor
searches. List methods can be used in medium-to-high dimensional spaces, but their com-
plexity precludes their use in low-dimensional spaces. Indexing Voronoi regions is a good
solution to the 1−nearest-neighbor search problem except in high-dimensionality spaces.
Vantage point methods are well-suited for medium-dimensionality spaces.

Once a few large classes of candidate indexing structures have been identified, the other
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constraints of the problem can be used to further narrow the selection. We can ask whether
probabilistic queries are allowed, whether there are space requirements, limits on the pre-
processing cost, constraint on dynamically updating the database, etc. The appendix details
this information for numerous specific indexing schemes.

The class of recursive-partitioning methods is especially large. Often structures and
algorithms have been developed to suit specific characteristics of the datasets, which are
difficult to summarize, but are described in detail in the appendix.

5.1 A Caveat

Comparing indexing methods based on experiments is always extremely difficult. The main
problem, is of course, the data. Almost invariably, the performance of an indexing method
on real data is significantly different from the performance on synthetic data, sometimes
by almost an order of magnitude. Extending conclusions obtained on synthetic data to
real data is therefore questionable. On the other hand, due to the lack of an established
collection of benchmarks for multidimensional indexes, each author performs experiments
on data at hand, which makes it difficult to generalize the conclusions. Theoretical analysis
is often tailored towards worst-case performance or probabilistic worst-case performance,
more rarely to average performance. Unfortunately, it also appears that some of the most
commonly used methods are extremely difficult to analyze theoretically.

6 Future Directions

In spite of the large body of literature, the field of multidimensional indexing appears to still
be very active. Aside from the everlasting quest for newer, better indexing structures, there
appear to be at least three new directions for research, which are especially important for
image databases.

In image databases, often the search is based on a combination of heterogeneous types of
features (i.e., both numeric and categorical), specified at query-formulation time. Traditional
multidimensional indexes do not readily support this type of query.

Iterative refinement is an increasingly popular way of dealing with the approximate nature
of query specification in multimedia databases. The indexing structured described in this
chapter are not well-suited to support iterative refinements, except when a query-rewrite
strategy is used, namely, when the system does not keep a history of the previous refinement
iterations.

Finally, it is interesting to note that the vast majority of the multidimensional indexing
structures are designed and optimized for obsolete computer architectures. There seems to
be a consensus that most of the index should reside on disk and that only a part of it should
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be cached in main memory. This view made sense in the mid-eighties, when a typical 1 MIPS
machine would have 64-128 KB of RAM (almost as fast as the processor). In the meantime,
several changes have occurred: the speed of the processor has increased by three orders of
magnitude (and dual-processor PC-class machines are very common), the amount of RAM
has increased by four orders of magnitude, and the size of disks has increased by five or six
orders of magnitude. At the same time, the gap in the speed between processor and RAM
has become increasingly wide, prompting the need for multiple levels of cache, while the
speed of disks has barely tripled. Accessing a disk is essentially as expensive today as it was
15 years ago. However, if we think of accessing a processor register as opening a drawer of
our desk to get an item, accessing a disk is the equivalent of going from New York to Sidney
to retrieve the same information (though latency hiding techniques exist in multitasking
environments). Systems supporting multimedia databases are now sized in such a way that
the indexes can comfortably reside in main memory, while the disks contain the bulk of the
data (images, video clips etc.) Hence, metrics such as the average number of pages accessed
during a query are nowadays of lesser importance. The concept of a page itself is not well-
suited to current computer architectures, where performance is strictly related to how well
the memory hierarchy is used. Cache-savvy algorithms can potentially be significantly faster
than similar methods that are oblivious to memory hierarchy.
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Vector-Space Methods In this appendix we describe non-hierarchical methods, recursive
decomposition approaches, projection-based algorithms, and several miscellaneous indexing
structures.

A Non-Hierarchical Methods

A significant body of work exists on non-hierarchical indexing methods. The brute-force
approach (sequential scan), where each record is analyzed in response to a query, belongs to
this class of methods. The inverted list of Knuth [102] is another simple method, consisting
of separately indexing each coordinate in the database. One coordinate is then selected (e.g.,
the first), and the index is used to identify a set of candidates, which is then exhaustively
searched.

We describe in detail two classes of approaches. The first maps a d−dimensional space
onto the real line through a space-filling curve, the second partitions the space into non-
overlapping cells of known size.

Both methods are well-suited to index low-dimensional spaces, where d ≤ 10, but their
efficiency decays exponentially when d > 20. Between these two values, the characteristics
of the specific datasets determine the suitability of the methods. Numerous other methods
exist, such as the BANG file [72], but are not analyzed in detail here.

A.1 Mapping High-Dimensional Spaces onto the Real Line

A class of method exists that addresses multidimensional indexing by mapping the search
space onto the real line and then using one-dimensional indexing techniques. The most
common approach consists of ordering the database using the positions of the individual
items on a space-filling curve [81], such as the Hilbert or Peano-Hilbert curve [86], or the z-
ordering, also known as Morton ordering [122, 1, 32, 80, 132, 136]. We describe the algorithms
introduced in [130] that rely on the z-ordering, as representative. For a description of the
zkdb-tree, the interested reader is referred to the paper by Orenstein and Merret [132].

The z-ordering works as follows. Consider a database X , and partition the data into two
parts, by splitting along the x axis according to a predefined rule (e.g., by dividing positive
and negative values of x). The left partition will be identified by the number 0 and the right
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by the number 1. Recursively split each partition into two parts, identifying the left part by a
0 and the right part by a 1. This process can be represented as a binary tree, the branches of
which are labeled with zeros and ones. Each individual subset obtained through s recursive
steps is a strip perpendicular to the x axis, and is uniquely defined by a string of s zeros
or ones, corresponding to the path from the root of the binary tree to the node associated
with this subset. Now, partition the same database by recursively splitting along the y axis.
In this case, a partition is a strip perpendicular to the y axis. We can then represent the
intersection of two partitions (one obtained by splitting the x axis and the other obtained by
splitting the y axis) by interleaving the corresponding strings of zeros and ones. Note that, if
the search space is 2-dimensional, this intersection is a rectangle, while in d dimensions the
intersection is a (d−2)−dimensional cylinder (that is, a hyperrectangle which is unbounded
in d− 2 dimensions) whose axis is perpendicular to the x− y plane and whose intersection
with the x − y plane is a rectangle. The z−ordering has several interesting properties. If
a rectangle is identified by a string s, it contains all the rectangles whose strings have s as
a prefix. Additionally, rectangles whose strings are close in lexicographic order are usually
close in the original space, which allows one to perform range and nearest-neighbor queries,
as well as spatial joins.

The HG-tree of Cha and Chung [38, 39, 40] also belongs to this class. It relies on the
Hilbert Curve to map n-dimensional points onto the real line. The indexing structure is
similar to a B∗−tree [53]. The directory is constructed and maintained using algorithms
that keep the directory coverage to a minimum, and control the correlation between storage
utilization and directory coverage.

When the tree is modified, the occupancy of the individual nodes is kept above a mini-
mum, selected to meet requirements on the worst-case performance. Internal nodes consists
of pairs (minimum bounding interval, pointer to child), where minimum bounding intervals
are similar to minimum bounding rectangles, but are not allowed to overlap. In experiments
on synthetically generated 4-dimensional datasets containing 100,000 objects, the HG-tree
shows improvements on the number of accessed pages of 4 to 25% over the Buddy-Tree [149]
on range queries, while on nearest-neighbor queries the best result was a 15% improvement
and the worst a 25% degradation.

A.2 Multidimensional Hashing and Grid Files

Grid files [114, 88, 128, 133, 135, 143, 134] are extensions of the fixed-grid method [102].
The fixed-grid method partitions the search space into hypercubes of known, fixed size, and
group all the records contained in the same hypercube into a bucket. These characteristics
make it very easy to identify (for instance, via a table lookup) and search the hypercube
that contains a query vector. Well-suited for range queries in small dimensions, fixed grids
suffer from poor space utilization in high-dimensional spaces, where most buckets are empty.
Grid files attempt to overcome this limitation by relaxing the requirement that the cells be
fixed-size hypercubes, and by allowing multiple blocks to share the same bucket, provided
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that their union is a hyperrectangle.

The index for the grid file is very simple: it consists of d one-dimensional arrays, called
linear scales, each of which contains all the splitting points along a specific dimension, and of
a set of pointers to the buckets, one for each grid block. The grid file is constructed using a
top-down approach, by inserting one record at a time. Split and merge operations are possible
during construction and index maintenance. There are two types of split: overflowed buckets
are split, usually without any influence on the underlying grid; the grid can also be refined by
defining a new splitting point, when an overflowed bucket contains a single grid cell. Merges
are possible when a bucket becomes underutilized.

To identify the grid block to which a query point belongs, the linear scales are searched,
and the one-dimensional partitions to which an attribute belongs are found. The index of
the pointer is then immediately computed and the resulting bucket exhaustively searched.
Algorithms for range queries are rather simple, and based on the same principle. Nievergelt,
Hinterberger and Sevcik [128] showed how to index spatial objects using grid files, by trans-
forming the d−dimensional minimum bounding rectangle into a 2d−dimensional point. The
cost of identifying a specific bucket is O(d logn), and the size of the directory is linear in the
number of dimensions and (in general) superlinear in the database size.

Since the directory size is linear in the number of grid cells, non-uniform distributions
that result in most cells being empty adversely affect the space requirement of the index.
A solution is to use a hashing function to map data points into their corresponding bucket.
Extendible hashing, introduced by Fagin, Nievergelt, Pippenger and Strong [62], is a com-
monly used and widely studied approach [120, 70, 33, 136]. Here we describe a variant due
to Otoo [134] (the BMEH-tree), suited for higher-dimensional spaces. The index contains
a directory and a set of pages. A directory entry corresponds to an individual page and
consists of a pointer to the page, a collection of local depths, one per dimension, describing
the length of the common prefix of all the entries in the page along the corresponding di-
mension, and a value specifying the dimension along which the directory was last expanded.
Given a key, a d−dimensional index is quickly constructed that uniquely identifies, through
a mapping function, a unique directory entry. The corresponding page can then be searched.
A hierarchical directory can be used to mitigate the negative effects of non-uniform data
distributions.

G-trees [106, 110] combine B+−trees [53] with grid-files. The search space is partitioned
using a grid of variable size partitions, individual cells are uniquely identified by a string
describing the splitting history, and the strings are stored in a B+−tree. Exact queries and
range queries are supported. Experiments in [110] show that, when the dimensionality of the
search space is moderate (< 16) and the query returns a significant portion of the database,
the method is significantly superior to the Buddy Hash Tree [104] the BANG file [72], the
hB-tree [113] (Section B.2), and the 2-level grid file [87]. Its performance is somewhat worse
when the number of retrieved items is small.
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B Recursive Partitioning Methods

As the name implies, recursive partitioning methods recursively divide the search space into
progressively smaller regions, usually mapped into nodes of trees or tries5, until a termi-
nation criterion is satisfied. Most of these methods were originally developed as SAM or
PAM, to execute point or range queries in low-dimensionality spaces (typically, for images,
geographic information systems applications, and volumetric data), and have subsequently
been extended to higher-dimensional spaces. In more recent times, algorithms to perform
nearest-neighbor have been proposed for several of them. In this section, we describe three
main classes of indexes: quadtrees, k-d-trees and R-trees, which differ in the partitioning
step. In each section, we first describe the original method from which all the indexes in
the class were derived, then we discuss its limitations and how different variants try to over-
come them. For k-d-trees and R-trees a separate subsection is devoted to how to perform
nearest-neighbor searches.

We do not describe in detail numerous other similar indexing structures, such as the
range tree [16], and the priority search tree [118].

Note, finally, that recursive partitioning methods were originally developed for low-
dimensionality search spaces. It is therefore unsurprising that they all suffer from the curse-
of-dimensionality and generally become ineffective when d > 20, except in rare cases where
the datasets have a peculiar structure.

B.1 Quadtrees and Extensions

Quadtrees [147] are a large class of hierarchical indexing structures, that perform recursive
decomposition of the search space. Originally devised to index 2-dimensional data, they have
been extended to multidimensional spaces. Three-dimensional quadtrees are called octrees;
since there is no commonly used name for the d-dimensional extension, we will refer to them
simply as quadtrees. Quadtrees are extremely popular in Geographic Information System
(GIS) applications, where they are used to index points, lines, and objects.

Typically, quadtrees are trees of degree 2d, where d is the dimension of the sample space;
hence, each non-terminal node has 2d children. Each step of the decomposition consists
of identifying d splitting points (one along each dimension), and partitioning the space by
means of (d−1)-dimensional hyperplanes passing through the splitting point and orthogonal
to the splitting point coordinate axis. Splitting a node of a d-quadtree consists of dividing
each dimension into two parts, thus defining 2d hyperrectangles. A detailed analysis of the
retrieval performance of quadtrees can be found in [71].

The various flavors of these indexing structures correspond to the type of data indexed
(i.e., points or regions), to specific splitting rules (i.e., strategies for selecting the splitting

5With an abuse of terminology, we will not make explicit distinctions between tries and trees, both to
simplify the discussion and because the distinction is actually rarely made in the literature.
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points) and tree-construction methods, to different search algorithms, and to where the data
pointers are contained (just at the leaves or also at intermediate nodes).

The region quadtree [101] decomposes the space into squares aligned with the axes, and
is well-suited to represent regions. A full region quadtree is also commonly known as a
pyramid.

The point quadtree introduced by Finkel and Bentley [69] use an adaptive decomposition
where the splitting points depending on the distribution of the data, and is well-suited to
represent points.

While the implementations of region quadtrees and linear quadtrees rely on pointers,
more efficient representations are possible. The key observation is that individual nodes
of a quadtree can be uniquely identified by strings, called location codes, of 4 symbols,
representing the four quadrants (NE, NW,SW,SE). Linear quadtrees [6, 80] rely on location
codes to represent the quadtree as an array of nodes, without using pointers.

Extensions to spatiotemporal indexing include the Segment Indexes of Kolovson and
Stonebraker [103] (which are really general extensions of multidimensional indexing tech-
niques), and the Overlapping Linear Quadtrees [159].

Point queries (exact searches) using quadtrees are trivial, and are executed by descending
the tree until the result is found. Due to the geometry of the space partition, which relies
on hyperplanes aligned with the axes, the quadtree can be easily used to perform range
queries. In low dimensionality spaces, fast algorithms for range queries exist for quadtrees
and pyramids [5].

Quadtrees, however, are not especially well-suited for high-dimensional indexing. Their
main drawback is that each split node has always 2d children, irrespective of the splitting rule.
Thus, even in search spaces that are of small dimensions for image databases applications,
for instance d = 20, the quadtree is in general very sparse, that is, most of its nodes are
empty. Faloutsos et al. [66] derive the average number of blocks that need to be visited to
satisfy a range query, under the assumption that the conditional distribution of the query
hyperrectangle given its dimensions is uniform over the allowable range, and show that it
grows exponentially in the number of dimensions. Quadtrees are also rather inefficient for
exact α−cut and nearest-neighbor queries, since hyperspheres are not well approximated by
hyperrectangles (see Section 2.4).

Quadtrees can be used in image databases to index objects segmented from images, and
to index features in low-dimensionality spaces. In spite of their simplicity, quadtrees are
rarely used for high-dimensional feature indexing, due to their poor performance in high-
dimensional spaces.
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B.2 K-Dimensional Trees

The k-dimensional tree, known as k-d tree [14, 15], is another commonly used hierarchical
indexing structure.

The original version, due to Bentley, operates by recursively subdividing the search space
one dimension at a time, using a round-robin approach. Each splitting step is essentially
identical to that of a binary search tree [102]. Points are stored at both internal nodes and
leaves, which somewhat complicates the deletion process. In its original incarnation, the tree
is constructed by inserting one point at a time, and the splitting hyperplanes are constrained
to pass through one of the points. A subsequent version [16], called the adaptive k-d-tree,
selects splitting points that divide the number of points in the node into two equal sets.

A dynamic version, called k-d-b-tree, supporting efficient insertion and deletion of points,
was proposed by Robinson [144]. K-d-b-trees consist of collections of pages: region pages,
which correspond to disjoint regions of the search space, and point pages, which contain
collections of points. The leaves of the tree are point pages, the internal nodes are region
pages. Several splitting strategies, as well as algorithms for efficient insertion, deletion and
reorganization, are described in [144]. The method is quite elegant and is amenable to very
efficient and compact implementations. As a consequence, it is still commonly used, and is
often one of the reference methods in experiments.

A limitation of the k-d-tree is that, in some cases, the index and data nodes cannot be ef-
ficiently split, and the result is a significant utilization imbalance. The hB-trees (holey brick
trees) [113] address this problem by allowing nodes to represent hyperrectangular regions
with hyperrectangular holes. This last property makes them also a multidimensional exten-
sion of the DL∗-tree [111]. The shape of the holey hyperrectangles indexed by an internal
node is described by a k-d-tree, called local k-d-tree. Several mechanisms for constructing
and maintaining the data structure are derived from the 1−dimensional B+−tree [53]. Node
splitting during construction is a distinguishing feature of hB-trees: corner splits remove a
quadrant from a hyperrectangle or a holey hyperrectangle. Most of the complexity associ-
ated with the data structure is concentrated in the splitting algorithms, which guarantees
robustness in worst cases. This index supports both exact and range queries.

While most k-d-tree variations split the space along one coordinate at a time, and the
partitioning hyperplanes at adjacent levels are perpendicular or parallel, this restriction can
be relaxed. For example, the BSP-tree (Binary Space Partition Tree) [76, 75, 155] uses
general partitioning hyperplanes.

Nearest-Neighbor queries using k-d-trees

K-d-trees and variations are well-suited for nearest neighbor searches when the number
of indexed dimensions is moderate.

Kim and Park [99] proposed an indexing structure, called the ordered partition, which
can be considered a variation of the k-d-tree. The database is recursively divided across
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individual dimensions, in a round-robin fashion, and the split points are selected to produce
subsets of equal size. The recursive decomposition can be represented as a tree, where a node
at level 
 corresponds to a region which is unbounded in the last d − 
 + 1 dimensions, and
bounded between pair of hyperplanes parallel to the first 
 − 1 dimensions. A branch-and-
bound search strategy [78, 97] is used to retrieve the k nearest points (in Euclidean distance)
to the query sample. First the node to which the query sample belongs (primary node) is
identified by descending the tree, and exhaustively searched, thus producing a current k-
nearest-neighbor set. The distance of the kth neighbor becomes the bound B. The distances
between the query sample and the hyperrectangles of the siblings of the primary node are then
computed, and a candidate set is created which includes all nodes at distance less than B.
The candidate nodes are exhaustively searched in order of increasing distance from the query.
The bound B and the candidate set are updated at the end of every exhaustive search. When
all candidates have been visited, a backtracking step is taken by considering the siblings of
the parent of the primary node and applying the same algorithm recursively. The search
terminates when the root is reached. If the Euclidean distance is used, distance computations
can be performed during the traversal of the tree, and require only one subtraction, one
multiplication and one addition per node. The method is also suited for general Minkowsky
and weighted Minkowsky distances. The authors suggest a fan-out equal to the (average)
number of points stored at the leaves. The approach is extremely simple to implement in
a very efficient fashion, and produces very good results in few dimensions. However, for
synthetic data, the number of visited terminal and non-terminal nodes appears to grow
exponentially in the number of dimensions. For real data, the method significantly benefits
from a rotation (using SVD) of the feature spaces into uncorrelated coordinates ordered by
descending eigenvalues. A similar method was proposed by Niemann and Goppert [127].
The main difference lies in the partitioning algorithm, which is not recursive, and divides
each dimension into a fixed number of intervals. A matrix containing the split points along
each coordinate is maintained and used during the search. Niemann’s approach seems to be
twice as fast as previous versions [97].

A data structure that combines properties of quadtrees and of k-d-trees is the balanced
quadtree [23, 43, 44], which can be used to efficiently perform approximate nearest-neighbor
queries provided that the allowed approximation is large. A balanced quadtree, like a k-d-
tree, is a binary tree. Coordinates are split in a round-robin fashion, as in the construction of
the region quadtree, and, in the same spirit, splits divide the hyperrectangle of inner nodes
into (two) hyperrectangles of equal size. To efficiently process nearest-neighbor queries on
a database X , a set of vectors {vj} is considered, and a balanced quadtree is constructed
for each translated version X + vj of the database. Several algorithms belonging to this
class have been proposed, and are summarized in Table 1. They differ on the number of
representative vectors and on the selection criterion for the vectors. They yield different
approximations (the ε), and have different index construction and search costs.

The BBD-tree (balanced-box-decomposition), of Arya, Mount, Netanyahu, Silverman and
Wu [8, 9], is an extension that supports (1+ε)−approximate nearest-neighbor. The recursive
decomposition associates nodes with individual cells, each of which is either a hyperrectangle
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Author and Nr. of Vector Value Search Construction
Reference Vectors Selection of ε Time Time

Bern [23]
√
d Deterministic 2d d · 2d · log n d · 8d · n · log n

Bern [23]∗ t · log n∗ Randomized d3/2

Chan [43, 44] d Deterministic 4d
3
2 + 4d

1
2 + 1 d2 log n

Table 1: Comparison of (1+ ε) nearest neighbors (see Section 2.2 for the definition of this type of
queries) relying on balanced quadtrees. As described in the text, this type of searches are supported
by constructing a set of vectors, adding each vector to all the database records, and constructing a
balanced quadtree. Hence, the index is composed of one balanced quadtree per each vector in the
set. The methods summarized differ in the number of required vectors and in the procedure used to
select them. These parameters determine the magnitude of the approximation (ε), the construction
time and the search time. Time values are O(·)-order costs; ε and the number of vectors are actual
values.
∗ Bern’s second algorithm depends on the parameter t: this parameter determines the probability
that the algorithm actually finds (1+ ε)-neighbors (which is equal to 1−O(1/nt)), and the number
of vectors used in the construction of the index.

Author 1-nn k-nn Space Construction
seach time seach time requirement time

Arya d ·
(
d

ε

)d

d ·
(
d

ε

)d

d · n d · n · log n

et al. [8, 9] · logn +k · d · logn

Clarkson [51] ε
1−d
2 · log n - ε

1−d
2 · n · log ρ ε1−d · n2 · log

1

ε

Chan [43, 44] ε
1−d
2 · log n - ε

1−d
2 · n · log n ε

1−d
2 · n · logn

Table 2: The table compares the costs of different algorithms to perform 1 + ε approximate
nearest-neighbor queries using BBD-trees. The values reported are the search times for 1 and k
nearest-neighbor queries, the space requirement for the index and the preprocessing time. The
reported values describe the O(·)-order costs. Recall that d is the number of dimensions, n is the
database size, and k is the number of desired neighbors. Clarkson’s algorithm is a probabilistic
method (guarantees results with high probability) that relies on results in [7]. The quantity ρ is
the ratio between the distance between the two furthest points and the distance between the two
closest points in the database.
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aligned with the axes or the set-theoretic difference between two such nested hyperrectangles.
Each leaf contains a single database item. As it is often the case, the tricky part of the tree
construction algorithm is the splitting of nodes: here a decision must be made whether
to use a hyperplane perpendicular to one of the coordinate axes, or an inner box (called
shrinking box). Searching a BBD-tree consists of first finding the cell containing the query
point, computing the distances from the other cells, and finally searching the terminal cells
in order of increasing distance. A list of current results is maintained during the search. The
algorithm terminates when the closest unsearched cell is at a distance larger than (1−ε) times
the distance of the farthest current result. The search is therefore approximate, since cells
that could contain exact neighbors can be discarded. The decomposition into cells achieves
exponential decrease in the number of points and in the volume of the space searched while
the tree is visited, and in this sense the BBD-tree combines properties of the optimized k-d-
tree and of quadtrees with bounded aspect ratio. Theoretical analysis shows that the number
of boxes intersected by a sphere of radius r is O(rd), thus it grows exponentially in the number
of dimensions. The number of leaf cells visited by a k-nearest-neighbor search is O(k+dd) for
any Minkowsky metric, where k is the desired number of neighbors. Experimental results on
synthetic datasets containing 100000 points in 15 dimensions, show that, depending on the
distribution, the BBD-tree can perform from slightly better than the optimized k-d-tree up
to 100 times faster. Additionally, the quality of the search is apparently very good, in spite
of the approximation, and the number of missed nearest neighbors is small. Search times,
space requirements and construction times for this method and for subsequent improvements
are reported in Table 2.

B.3 R-Trees and Derived Methods

The R-tree [85] and its numerous variations (such as [82]) are probably the most studied
multidimensional indexing structure, hence we devote a long section to their description.
The distinctive feature of the R-tree is the use of hyperrectangles, rather than hyperplanes,
to partition the search space. The hyperrectangle associated with a particular node contains
all the hyperrectangles of the children.

The most important properties for R-tree performance are overlap, space utilization,
rectangle elongation and coverage.

• Overlap between k nodes is the area (or volume) contained in at least two of the
rectangles associated with the nodes. Overlap for a level is the overlap of all the nodes
at that level. If multiple overlapping nodes intersect a query region, they need to be
visited, even though only one might contain relevant data.

• Utilization. Nodes in a R-tree contain a predefined number of items, often selected
to ensure that the size of the node is a multiple of the unit of storage on disk. The
utilization of a node is the ratio of the actual number of contained items to its maximum
value. Poor utilization affects performance. If numerous nodes have a small number

48



of descendants, the size of the tree grows, and consequently, the number of nodes to
be visited during searches becomes large. Another effect, relevant when the index is
paged on disk and only a maximum number of nodes is cached, is the increase in the
I/O cost.

• Node elongation is the ratio of the lengths of the longest and the shortest sides of
the associated hyperrectangle. Bounding rectangles that are very elongated in some
directions while thin in others are visited fruitlessly more often than rectangles that
are close to squares (or hypercubes). A measure of skewness or elongation is the ratio
of surface area to volume, which is minimized by hypercubes.

• Coverage is defined for each level of the tree as the total area (or volume) of the
rectangles associated with the level. Excessive coverage is a small problem in low
dimensions, but it can become significant in high dimensions, where the dataset is
sparser and a large part of the covered space is, in fact, empty (dead space).

Since the tree is constructed by inserting one item at a time, the result is highly dependent
on the order in which the data is inserted. Different orders of the same data can produce
highly optimized trees or very poorly organized trees.

Although some authors, for instance, Faloutsos [65], have reported that the R-tree shows
some robustness with respect to the curse-of-dimensionality, being efficient in up to 20 di-
mensions, over the years there have been numerous extensions of the basic scheme, that
attempt to minimize the different causes of inefficiency.

The first class of extensions retain most of the characteristics of the original R-tree. In
particular, the partitioning element is a hyperrectangle, data is stored at the leaves, and
each data point is indexed by a unique leaf.

R+-trees [151] address the problem of minimizing overlap. They are constructed in a top-
down fashion using splitting rules that generate non-overlapping rectangles. The rectangle
associated with each node is constrained to strictly contain the rectangles of its children,
if the children are internal nodes, and can overlap the rectangles of its children only if the
children are leaves. Copies of a spatial object are stored in each leaf it overlaps. The similarity
with k-d-b-trees is not accidental: R+-trees can, in fact, be thought of as extensions of k-d-
b-trees that add two properties: the ability to index spatial objects (rather than points in
k-dimensional spaces), and an improvement in coverage, since the coverage of the children of
a node need not be equal to the coverage of their parent, and can be significantly smaller. The
search algorithms are essentially identical to those used for regular R-trees. The insertion
algorithm is a derivation of the downwards split used in the k-d-b-trees. Splitting when a
node overflow occurs involves a partitioning and a packing step, which maintain the desired
properties of the tree. The R+-tree shows significant performance improvement over R-trees,
especially for large database sizes.

R∗-trees [12] are an attempt to optimize the tree with respect to all four main causes
of performance degradation described above. The node selection procedure of the insertion
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algorithm selects the node that results in smaller overlap enlargement and resolve ties by
minimizing area enlargement. Alternatively, to reduce the high computational cost of the
procedure, the nodes are first sorted in increasing value of area enlargement, and the selection
algorithm is applied to the first p nodes of the list. When splitting a node, different algorithms
can be used that minimize the overall volume increase (area in 2-d), the overall surface area
(perimeter in 2-d), the overall overlap, and combinations of the above. A forced reinsertion
algorithm is also proposed to mitigate the dependence of the tree on the order in which the
data are inserted: during the insertion of a new item, when a split occurs at a particular
level, the node is reorganized by selecting an appropriate subset of its children, removing
them from the node, and reinserting them from the top. Note that the procedure could
induce new splits at the same level from which it was initiated; Forced reinsertion is applied
at most once per level during each insertion of a new item. In experiments reported in [12]
based on a database containing 100,000 points, the R∗-tree outperforms the original R-tree
by a factor of 1.7 to 4, and Greene’s version [82] by a factor of 1.2 to 2

Packed R-trees are a family of methods that attempt to improve space utilization. The
strategy proposed by Roussopoulos and Leifker [146] consists of sorting the data on the one
of the coordinates of a selected corner of the minimum bounding rectangle representing the
objects. Let n be the maximum number of objects that a leaf of an R-tree can contain.
Then the first n items in the sorted list are assigned to the first leaf of the R-tree, the
following n to the second leaf and so on. The resulting leaves correspond to rectangles that
are elongated in one direction and rather thin in the other. Experimental results suggest
that, in 2 dimensions, the approach outperforms quadratic split R-trees and R∗-trees for
point queries on point data, but not on range queries or for spatial data represented as
rectangles. Kamel and Faloutsos introduced a different packed R-tree [95], which overcomes
these limitations. Instead of ordering the data according to a chosen dimension, the authors
use a space-filling curve, and they select the Hilbert curve over the z-ordering [130], and the
Gray-code [63], because results in [68] show that it achieves better clustering than the other
two methods. The Hilbert curve induces an ordering on the k-dimensional grid; the authors
describe several methods that rely on this ordering to assign a unique numeric index to each
of the minimum bounding rectangle (MBR) of the objects. The R-tree is then constructed by
first filling the leaves and then building higher level nodes. The first leaf (leaf no1̇) contains
the first n items in the Hilbert order, the second leaf contains the following n items and so
on. Higher level nodes are generated by grouping nodes from the previous level in order of
creation. For instance, the first node at level 1, which correspond to a set of L leaves, will
contain pointers to leaves 1, 2, . . . , L. In experiments on two-dimensional real and synthetic
data, the number of pages touched by Kamel’s and Faloutsos’ packed R-tree during range
queries is between 1/4 and 1/2 of those touched by Roussopoulos’ and Leifker’s version,
and always outperforms (by a factor of up to 2) the R∗-tree and the quadratic split R-tree.
The Hilbert R-tree [96] is a further development, characterized by sorting hyperrectangles by
the Hilbert ordering of their centers, and having intermediate nodes contain information on
the Hilbert values of the items stored at its descendant leaves. The Hilbert R-tree has also
improved index management properties.
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A different approach to minimizing overlap is used in the X-tree [20]. Three types of
nodes are used: the first two are the data nodes (corresponding to a set of objects, and
containing, for each of them, a MBR and a pointer), and the directory nodes (containing,
for each child, a MBR and a pointer), have fixed size and are essentially identical to those of
a traditional R-tree. The third type of nodes are called supernodes, contain large directories
and have variable size. They are used to avoid splits that would produce inefficient directory
structures. Appropriate construction and management algorithms ensure that the X-tree
maintains minimum node overlap. Experimental comparisons using real data in 2 to 16
dimensions show that insertion is up to 10 time faster than with R∗-trees. When performing
nearest-neighbor queries on synthetic data, the R∗-trees require up to twice the CPU of the
X-trees, and access up to 6 times more leaf nodes. When operating on real data, the X-trees
are up to 250 times faster than the corresponding R∗-trees. When performing point queries
on a database of 25000 synthetically generated data points in up to 10 dimensions, the X-
tree is essentially equivalent to the TV-Tree [108] (described later), but becomes significantly
faster in more than 10 dimensions. Berchtold [17] also proposed a parallel version of the X-
tree, where the search space is recursively decomposed into quadrants and a graph coloring
algorithm is used to assign different portions of the database to different disks for storage
and to different processors during nearest neighbor search. Experimental results, on 8 to 15
dimensional real and artificial data. show that declustering using the Hilbert curve [64] (a
well-known competitive approach) is slower than the parallel X-Tree, typically by a factor
of a(ndisks − 2) + b, where ndisks is the number of available disks, b varies between 1 and 2,
and a is between .3 and .6.

The VAMSplit R-Tree [164] optimizes the R-tree construction by employing techniques
derived from the k-d-tree. The main gist of this top-down approach is the recursive parti-
tioning of the data space using a hyperplane perpendicular to the coordinate along which the
variance of the data is maximum. The split-point selection algorithm minimizes the number
of disk blocks required to store the information. In experiments, it appears to outperform
both SS-trees and R∗-trees.

The S-Tree [3] (skew tree) is a data structure for range queries and point queries that
tries to minimize the number of pages touched during the search. It combines properties of
the R-tree and of the B-Tree [53]. Leaves and internal nodes are identical to the data and
directory nodes of the R-tree. Each internal node has a fanout exactly equal to its maximum
value, except for “penultimate” nodes, whose children are all leaves. Two parameters of the
index are the skew factor p, taking values between 0 and 1/2, and the maximum allowed
overlap. Given any pair of sibling nodes, and calling N1 and N2 the number of leaves in
the subtrees rooted at these nodes, the index construction and maintenance try to minimize
the total coverage while guaranteeing that p ≤ N1/N2 ≤ p−1 and that the allowable overlap
is not exceeded. The index construction time is O(d · n · log n), where d is the number of
dimensions, and n is the database size. Experiments on 2-dimensional synthetic data showed
that the method performs better than Hilbert R-tree, but we do not know results in higher
dimensions.
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Let x be the query point and R be a hyperrectangle. Let s and t be the

vertices on the main diagonal of R, with the convention that s[i] ≤ t[i], ∀i.

MINDIST(x, R)
�
=

d∑
i=1

(x[i] − r[i])2 ,

MINMAXDIST(x, R)
�
= min

k

{
(x[k] − rm[k])2 +

d∑
i=1, i�=k

(x[i] − rM[i])2

}
,

where

r[i] = x[i] if s[i] ≤ x[i] ≤ t[i],
= s[i] if x[i] ≤ s[i],
= t[i] if x[i] ≥ t[i].

rm[k] = s[k] if x[k] ≤ (s[k] + t[k])/2,
= t[k] otherwise.

rM[i] = s[i] if x[i] ≥ (s[k] + t[k])/2,
= t[i] otherwise.

Table 3: Definition of the metrics MINDIST and MINMAXDIST used by branch-and-bound
nearest-neighbor search algorithms using R-trees.

Nearest-Neighbor Queries using R-trees

While range queries (both for overlap and for containment) are easily performed using
R-trees, and spatial joins can be performed by transforming them into containment queries
[29], the first method for nearest-neighbor queries was proposed by Roussopoulos, Kelley
and Vincent [145]. The search relies on two metrics, called MINDIST and MINMAXDIST,
defined in Table 3, which measure the distance between a point x and a hyperrectangle R
using the two vertices on the main diagonal, s and t. MBR’s whose MINDIST is larger than
the distance to the farthest current result will be pruned, and MBR’s whose MINMAXDIST
is smaller than the distance to the farthest current result will be visited.

Methods derived from the R-tree

We now devote the rest of the section to indexing structures that, although derived
from the R-tree, significantly depart from its basic paradigm, by using partitioning elements
other than hyperrectangles, by storing pointers to database elements in internal nodes, or by
allowing multiple pointers to the same database elements. These methods are often tailored
to specific types of queries.

Some data types are not well-suited for indexing with R-trees or multidimensional index-
ing structures based on recursive decomposition. These are typically objects whose bound-
ing box is significantly more elongated in one dimension than in another. An example are
segments aligned with the coordinate axes. A paradigm was introduced by Kolovson and
Stonebraker [103] aimed at solving this difficulty. The resulting class of indexing approaches,
called Segment Indexes, can be used to modify other existing techniques. When the method-
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Figure 8: Two-dimensional space decomposition using a depth-3 SS-tree. Database vectors are
denoted by diamonds. Different line types correspond to different levels of the tree. Starting from
the root, these line types are: solid, dash-dot, dashed and dotted. The dataset is identical to that
of Figure 3.

ology is applied to an R-tree, the resulting structure is called a Segment R-tree or SR-tree.
SR-trees can store data items at different levels, not only at leaves. If a segment spans the
rectangles of several nodes, it is stored in the one closest to the root. If necessary, the end
portions of the segment are stored in other nodes. A variation of the index is the Skeleton
SR-tree, where the data domain is recursively partitioned into non-overlapping rectangles
using the distribution of the entire database, and items are subsequently inserted in any
order. The resulting tessellation of the search space resembles more closely that of a non-
balanced quadtree than that of an R-tree. Experimental results in 2 dimensions show that
the SR-tree has essentially the same performance as the R-tree, while 10-fold gains can be
obtained using the Skeleton version.

When the restriction that the hyperplanes defining a hyperrectangle be perpendicular to
one of the cartesian coordinate axes is removed, a bounding polyhedron can be used as the
base shape of an indexing scheme. Examples are the Cell-tree [84], and the P-tree [93]. In
the Polyhedron-tree or P-tree, a set of vectors V , of size larger than the number of dimensions
of the space, is fixed, and bounding hyperplanes are constrained to be orthogonal to these
vectors. The constraint significantly simplifies the index construction, maintenance and
search operations over the case where arbitrary bounding hyperplanes are allowed, while
yielding tighter bounding polyhedra than the traditional R-tree. Two properties are the
foundations of the approach. First, one can map any convex polyhedron having n faces into
a m−dimensional hyperrectangle, where m ≤ n ≤ 2m. The corresponding m−dimensional
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space is called orientation space. Thus, if the number of vectors in V is m, and the con-
straint on the hyperplanes is enforced, any bounding polyhedron can be mapped into a
m−dimensional hyperrectangle, and indexing methods that efficiently deal with rectangles
can then be applied. The second property is that intersection of bounding polyhedra in the
feature space (again assuming that the constraint is satisfied) is equivalent to intersection of
the corresponding hyperrectangles in orientation space. A P-tree is a data structure based
on a set of orientation axes, defining a mapping to an orientation space, and an R-tree which
indexes hyperrectangles in orientation space. Compared to a traditional R-tree, the P-tree
trades off dimensionality of the query space, resulting in “curse of dimensionality” type of
inefficiencies, for (potentially significantly) better coverage, resulting in better discrimina-
tion of the data structure. Algorithms exist to select the appropriate axes, and to manage
the data structure. Variations of the scheme rely on different variants of the R-tree, and
one could conceivably construct P+-trees, P∗-trees, PX -trees (using X-trees) etc. Due to the
higher dimensionality of the orientation space, the P-tree is better suited to representing
two or three-dimensional objects (for instance in GIS applications) than high-dimensional
features.

When used for nearest-neighbor queries, R-tree-like structures suffer from the fact that
hyperrectangles are poor approximations of high-dimensional Minkowsky balls (except for
D(∞)), and, in particular, of Euclidean balls. The similarity search tree or SS-tree [165] is a
variation of the R∗-tree that partitions the search space into hyperspheres rather than hyper-
rectangles. The nearest-neighbor search algorithm adopted is the one previously mentioned
[145]. On 2− to 10−dimensional synthetic datasets, containing 100,000 points (Normally and
Uniformly distributed), the SS-tree has storage utilization of about 85%, compared to the
70%− 75% achieved by the R∗-tree. The index construction also requires 10% to 20% CPU
time. During searches, when d > 5, the SS-tree is almost invariably faster than the R∗-tree,
though it appears to suffer from a similar performance degradation as the dimensionality of
the search space increases.

While hyperrectangles are not particularly well-suited to represent Minkowsky balls, hy-
perspheres do not pack particularly well, and cover too much volume. These considerations
were used by Katayama and Satoh [98] to develop the Sphere-Rectangle Tree, also called
SR-tree (not to be confused with the SR-tree in [103]). The partitioning elements are the
intersection of a bounding rectangle with a bounding sphere. Pointers to the data items
are contained in the leaves, while intermediate nodes contain children descriptors, each con-
sisting of bounding rectangle, a bounding sphere, and the number of points indexed by the
subtree rooted at the child. The insertion algorithm is similar to that of the SS-tree, except
that here both bounding sphere and bounding rectangle must be updated. The center of
the bounding sphere of a node is the centroid of all the database elements indexed by the
subtree rooted at the node. To determine the radius of the bounding spheres, two values are
computed: the first is the radius of the sphere containing all the bounding spheres of the chil-
dren nodes, the second is the radius of the sphere containing the bounding rectangles of the
children. The radius of the bounding sphere is defined as the minimum of these values. The
space refinement approach is similar in spirit to that of the P-tree [93]. The tree construction
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is less CPU intensive than that of the R∗-tree and of the SS-tree, however the number of
required disk accesses is larger. During nearest-neighbor search, the methods outperforms
the SS-tree as it requires up to 33% less CPU time, 32% fewer disk accesses, and visits a
smaller number of leaves. Only smaller gains are observed over the VAMSplit R-tree, and
only for certain datasets, while for other datasets, the SR-tree can be significantly worse.

All the variants of the R-tree examined so far partition the space using all the dimensions
simultaneously. The Telescopic-Vector tree or TV-tree [108] is a variant of the R∗-tree that
attempts to address the curse of dimensionality by indexing only a selected subset of dimen-
sions at the root, and increasing the dimensionality of the indexed space at intermediate
nodes whenever further discrimination is needed. Each internal node of the tree considers a
specified number of active dimensions, α, and corresponds to an α-cylinder, that is, to an
infinite region of the search space whose projection on the subspace of the active dimensions
is a sphere. The number of active dimensions is not fixed, but changes with the distance
from the root. In general, higher levels of the tree will use fewer dimensions, while lower
levels use more dimensions to achieve a desired discrimination ability. The tree need not be
balanced, and different nodes at the same level generally have different active dimensions.
The strategy proposed in the original paper to select the active dimensions consists of sort-
ing the coordinates of the search space in increasing order of discriminatory ability through
a transformation (such as the Karhunen-Loève Transform, the Discrete Cosine Transform
[139], or the wavelet transform [56]), and specifying the number α of active coordinates at
each node. The α most discriminatory coordinates are then used. The search algorithm
relies on the branch-and-bound algorithm of Fukunaga and Narendra [78]. Experiments on
a database, in which words are represented as 27-dimensional histograms of letter counts,
show that the scheme scales very well with the database size. In the experiments, the best
value of α appears to be 2. The TV-tree accesses 1/3 to 1/4 of the leaves accessed by the
R∗-tree for exact match queries.

C Projection-Based Methods

The projection-based indexing methods (Table 4) support nearest-neighbor searches. We can
divide them into at least two classes: indexing structures returning results that lie within a
prespecified radius of the query point, and methods supporting approximate (1 + ε) queries.

C.1 Approaches Supporting Fixed-Radius Nearest-Neighbor Searches

The first category is specifically tailored to fixed-radius searches, and was originally intro-
duced by Friedman, Baskett and Shustek [74]. Friedman’s algorithm projects the database
points onto the individual coordinate axes, and produces d sorted lists, one per dimension.
In response to a query, the algorithm retrieves from each list the points whose coordinate lie
within r of the corresponding coordinate of the query point. The resulting d sets of candi-
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Author k-nn Space Construction Query
and Reference Seach Time Requirement Time Type

Friedman ndr nd dn logn fixed radius
et al. [74] (r)

Yunck [171] ndr - - fixed radius

Nene and Shree∗ nd + n
1 − rd

1 − r
nd dn logn fixed radius

[123, 124] (r)

Agarwal† and n log3 nm−1/�d/2	 m1+δ m1+δ ray tracing:
Matoušek [2] +k log2 n exact

Meiser [119] d5 logn nd+δ - exact

Kleinberg [100] (d log2 d) n · (d log2 d · n2)d n · (d log d)2 1 + ε,
·(d + logn) +(d · log2 d · n2)d+1 probabilistic

Kleinberg [100]� n + d · log3 n d2 · n · p(n) d2 · n · p(n) probabilistic

Indyk and ◦ d · n1/ε n Pl(n) n1+1/ε + d · n 1 + ε
Motwani [92] +Pl(n) +Pl(n)

Indyk and d + Pl(n)⊕ n · Pl(n) [n + Pl(n)] 1 + ε,
Motwani [92] ·(1/ε)d (0<ε<1)

Table 4: Comparison of projection-based methods. All the values are order O(·) results.
∗ The expression for Nene and Shree’s search time assumes that the database points are uniformly
distributed in the unit d−dimensional hypercube.
† The expressions for Agarwal and Matoušek results hold for each m ∈ [

n, n�d/2	]; δ is an arbitrarily
small but fixed value.
� In the second method by Kleinberg, p(n) is a polynomial in n.
⊕ The term “Pl(n)” denotes a polynomial in log (n).
◦ The method works for Dp distances, p ∈ [1, 2].
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date points are finally searched exhaustively. If the data points are uniformly distributed, the
complexity of the search is roughly O(ndr). An improvement to the technique was proposed
by Yunck [171], but the overall complexity of the search is still O(ndr).

In the same spirit as Friedman [74], Nene and Shree [123, 124] order the database points
according to their values along individual coordinates, and for each ordered list maintain
a forward mapping from the database to the list and a backward mapping from the list to
the database. In response to a nearest-neighbor query, the first list is searched for points
whose first coordinate lies within r of the 1st coordinate of the query point. This candidate
set is then pruned in d − 1 steps. At the ith iteration, the ith forward map is used to
remove those points whose ith coordinate does not lie within r of the ith coordinate of the
query. The procedure returns a set of points that lie within a hypercube of side 2r centered
at the query point, which are then searched exhaustively. The selection of the parameter
r is critical: too small and the result set will be empty most of the times, too large and
the scheme does not perform significantly better than Friedman’s. Two selection strategies
are suggested. The first finds the smallest hypersphere that will contain at least one point
with high (prespecified) probability, and uses the radius of the hypersphere as the value of
r. As discussed in Section 2.4 the drawback of the approach is that the hypercube returned
by the search procedure quickly becomes too large as the number of dimensions increases.
The second approach directly finds the smallest hypercube that contains at least a point
with high, prespecified, probability. Experiments on a synthetic dataset containing 30, 000
points show that the proposed algorithm is comparable to or slightly better than the k-d-
tree for d < 10, and significantly better in higher dimensionality spaces. For d = 15, where
the k-d-tree has the same efficiency as linear scan, the proposed method is roughly 8 times
faster. Interestingly, for d ∈ [5, 25] the difference in search time between exhaustive search
and the proposed method does not vary significantly. As the database size grows to 100, 000,
the k-d-tree appears to perform better for d ≤ 12 when the data is normally distributed
and for d ≤ 17 for normally distributed data. Beyond these points, the k-d-tree performance
quickly deteriorates and the method becomes slower than exhaustive search. Nene’s method,
however, remains better than exhaustive search over the entire range of analyzed dimensions.
The approach appears to be better suited for pattern recognition and classification than for
similarity search in feature space, where often no results would be returned.

A substantially different projection method was proposed by Agarwal and Matoušek [2].
Their algorithm maps d−dimensional database points x into d+1−dimensional hyperplanes
through the functions

hx(t) = 2t[1]x[1] + . . . + 2t[d]x[d] − (x[1]2 + . . . + x[d]2).

The approach relies on a result from [60], which says that x is closest point in the database
X to the query q if and only if

hx(q) = max
y∈X hy(q).

Then, nearest-neighbor searching is equivalent to finding the first hyperplane in the upper
envelope of the database hit by the line parallel to the (d+ 1)st coordinate axis, and passing
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through the augmented point [q[1], . . . ,q[d],∞]. The actual algorithms rely on results from
[117]. Another algorithm based on hyperplanes is described by Meiser [119].

C.2 Approaches Supporting (1 + ε) Nearest-Neighbor Searches

Data structures based on projecting the database onto random lines passing through the
origin are extremely interesting members of this class. A random line is defined as follows:
Let d be the dimensionality of the search space, let B0(1) be the unit radius ball centered
on the origin, and call S be its surface. Endow S with the uniform distribution, and sample
a point accordingly. Then a random line is defined as the line that passes through the
random point and the origin of the space. The fundamental property on which methods of
this class rely is that, if a point x is closer in Euclidean distance to y than to z, then, with
probability greater than 1/2, its projection x

′
on a random line is closer to the projection y

′

than to the projection z
′
. Given ε and an acceptable probability of error, the index is built

by independently sampling L vectors {v�} from the uniform distribution on the sphere S.
L is chosen to be of order d log2 d, where the multiplicative constants depend on ε and the
probability of error. If x1, . . . ,xN are the points in the database, the collection of midpoints
{xij = (xi + xj)/2 | 1 ≤ i, j ≤ N} is then generated. For each random vector vl, the xij

are ordered by the value of their inner product with v�, thus producing L lists Si, . . . , S�. A
pair of entries in a list is called an interval, a pair of adjacent entries is a primitive interval,
and a sequence of L primitive intervals, one from each list, is called a trace. A trace is
realizable if there exist a point in Rd such that its inner product with the 
th vector v� lies
in the 
th primitive interval of the trace, for all values of 
. For each realizable trace, build
a complete directed graph on the database with an edge from xi to xj if xi dominates xj in
more than L/2 lists, and from xj to xi otherwise. xi dominates xj in list S� with respect
to a trace, if, in S�, pij lies between the 
th primitive interval of the trace and the point pjj

(equal to pj). The nodes of the directed graph are ordered in such a way that there is a path
of length at most 2 from each node to any of the ones following it in the ordering (called
an apex ordering). Each realizable trace σ is stored together with the corresponding apex
ordering S∗

σ. Note that there are O(n log d)2d realizable traces. Index construction requires
the computation of nL inner products in d dimensions, enumerating the realizable traces
(which requires O(Ldn2d) operations [60]) computing the corresponding digraph (O(Ln2))
and storing the derived sorted list (O(n)). Note the exponential dependencies on the number
of dimensions. To search for neighbors of the query point q, for each 
 the inner product
v� · q is computed and its position in the list S� found by binary search. The primitive
interval σq

� of S� in which v� · q falls is determined, and the trace σq
1 . . . σ

q
L constructed. The

corresponding apex ordering S∗
σ is then retrieved and its first k elements are returned. Thus,

a query involves computing L (O(d log2 d)) inner products in d dimensions, performing L
binary searches on n items, a lookup in a large table, and reading the first k entries of a list;
thus, the query time is O((d log d2)(d + log n)). The query processing is deterministic. The
index construction, however is based on the selection of L random vectors. One can show
that, with probability that can be made arbitrarily small, the set of vectors can lead to an
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erroneous index. If the set of vectors is correct, all the resulting retrievals will be exact.

Kleinberg [100] proposes a probabilistic method to find (1 + ε) nearest-neighbors using
random projections.

Kleinberg [100] also proposes a randomized algorithm that removes the exponential de-
pendence of the preprocessing in the number of dimensions, and that relies a randomization
step in the query processing. The method is however less efficient while processing a query.

Indyk and Motwani [92] introduce the Ring-Cover Trees. Nearest-neighbor queries are
reduced to point location in equal balls: given a database X = {x1, . . . ,xn}, fix a radius r,
consider the balls Bx1(r), . . . ,Bxn(r), and construct a data structure that returns xi, if a query
point q belongs to any Bxi

(r), and returns a FAILURE otherwise. The ε−approximation
of the problem consists of returning x

′
i rather than xi if q ∈ Bxi

(r), where x
′
i is such that

q ∈ Bx
′
i
(r + ε). To describe the Ring-Cover Tree, the following definitions are needed. A

ring R(x, r1, r2) where r1 < r2 is the difference Bx(r2) − Bx(r1). A ring R(x, r1, r2) is
(α1, α2, β)−ring separator for the database X if |X ⋂Bx(r1)| ≥ α1 |X |, and |X \ Bx(r2)| ≥
α2 |X |. A set S ⊂ X is a (γ, δ)−cluster if for each x ∈ S,

∣∣X ⋂Bγρ(S)(x)
∣∣ ≤ δ |X |, where

ρ(S) is the maximum distance between the farthest points in S. A sequence S1, . . . , Sl of
subsets of X is a (b,c,d)-cover for S ⊂ X of there exists r > d ·ρ (

⋃
i Si), such that S ⊂ ⋃

i Si

and
∣∣X ⋂ (⋃

x∈Si
Br(x)

)∣∣ ≤ b · |Si| and |Si| ≤ c · |X |. The Ring Cover tree is constructed
by recursively decomposing the database X (which corresponds to the root) into smaller
sets S1, . . . , Sl, which become nodes of the tree. There are two cases: either a non-leaf
node has an (α, α, β)− ring separator, in which case the node is a ring node and is split
into its intersection and its difference with the outer ball of the ring; or the node has a
(b, α, d)−cover, in which case it is called a cover node and is split into l + 1 nodes, the first
l of which correspond to its intersections with

⋃
x∈Si

Br(x),(1, . . . , l,) and the last contains
all the remaining items (residual node). Ring nodes and cover nodes also contain different
information on how their descendants are obtained. Searching a ring node corresponds to
checking whether the query is inside the outer sphere of the separator, and searching the
appropriate child. Searching a cover node is performed by identifying the set Si to which the
query belongs (i.e., the query is within a sphere of appropriate radius centered at one of the
elements of Si). If such set is identified, then the corresponding subtree is searched. If no
such Si exists, but the query is close to Sj , then both Sj and the residual set are searched,
and the closest of the two results is returned. Otherwise, the residual set is searched. Two
algorithms are proposed to index cover nodes; the first is based on bucketing, and is similar
to the Elias algorithm described in [163]; the second is based on locality-sensitive hashing.
The search algorithm for the Ring Cover tree is polynomial in log(n) and in d.

Miscellaneous Partitioning Methods In this section, we describe three recent partitioning
methods that attempt to reduce the curse-of-dimensionality in different ways: CSVD, the
Onion index and the pyramid of Berchtold, Böhm, and Kriegel. All these methods are
specifically designed to support a particular class of queries.
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A Clustering with Singular Value Decomposition: CSVD

Most dimensionality reduction approaches are either computationally intensive (multidimen-
sional scaling), or rely on the properties of the entire database (SVD followed by variable-
subset selection). To efficiently capture the local structure of a database without incurring
the high costs of multidimensional scaling, CSVD [157, 156] first partitions the data into
homogeneous groups, or clusters, and then separately reduces the dimensionality of each
group. Clustering is accomplished either with optimal methods, such as LBG [109], or with
faster suboptimal schemes, such as tree-structured vector quantizers [140]. Dimensionality
reduction of each individual cluster is performed using SVD followed by variable-subset se-
lection. Data points are then represented by their projection on the subspace associated
with the cluster they belong to. The scheme can be recursively applied.

The index is represented as a tree. Each node contains the centroid of the cluster, its
radius (defined as the distance between the centroid and the farthest point of the cluster),
and the dimensionality reduction information, namely, the projection matrix and the number
of retained dimensions. Non-leaf nodes contain the partitioning information, used to assign
a query vector to its corresponding cluster, and pointers to the children, each of which
represents a separate cluster. Terminal nodes contain an indexing scheme supporting nearest-
neighbor queries, such as the ordered partition [99].

Nearest-neighbor queries are executed by descending the tree and identifying the terminal
cluster to which the query point belongs, called the primary cluster. The query point is
projected onto the subspace of the primary cluster, the within-cluster index is searched,
and an initial set of results retrieved. The Pythagorean theorem is used to account for the
distance between the query point and the subspace of the primary cluster. Then, a branch-
and-bound algorithm is applied to identify other candidate nodes. The radiuses are used to
discard clusters that cannot contain any of the k−nearest-neighbors, and the other clusters
are visited in order of the distance between centroids and query point.

The method yields exact point queries and approximate k−nearest-neighbor queries.
The number of cluster is selected empirically. Different algorithms guide the dimensionality
reduction. The user can either specify the desired average number of dimensions to retain,
a desired normalized mean squared error of the approximation, or a desired precision/recall
target.

Experiments on a database containing 160, 000, 60-dimensional texture feature vectors
show that, when performing 20−nearest-neighbor queries, CSVD using 32 clusters is 100
times faster than sequential scan if the desired recall is .985, and 140 times faster if the
desired recall is .97.
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Figure 9: Two-dimensional space indexing using the onion data structure. Database vectors are
denoted by diamonds. The dataset is identical to that of Figure 3.

B The Onions Index

While most queries belong to the three main categories described in Section 2.2, sometimes
the user wants to retrieve, from the databases, records that maximize a particular scoring
function.

The Onion technique [45] retrieves from a database the points maximizing a linear or
convex scoring function. The main property on which the method relies is that points
maximizing a convex function belong to the convex hull of the database. The index is then
constructed by iteratively computing the convex hull of the dataset, and removing all its
points. The database is therefore “peeled” in layers like an onion, hence the name. Points
belonging to each layer are stored in a separate list. Figure 9 contains an example.

A query is specified by providing a scoring function and the number of desired results.
If the function is linear, only the coefficients associated with each dimension are required.
The search starts by sequentially searching the outermost layer, and proceeds towards the
center, while maintaining a list of current results. The search terminates when the list of
current results is not modified while searching a layer. Index maintenance algorithms exist,
but the index usually must be recomputed after a large number of insertions or deletions.
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C The Pyramid Technique

All the described recursive decomposition methods are affected by the curse of dimensionality.
Berchtold, Böhm, and Kriegel [18] propose a method, the pyramid technique, which partitions
the space into a number of regions that grows linearly in the number of dimensions. The
d-dimensional search space is partitioned into 2d pyramids having vertices at the origin and
height aligned with one of the coordinate axis. Each pyramid is then cut into slices parallel
to the base, which correspond to a page in the index. The slices of each pyramid can then
be indexed using a B+-tree.

Insertions are very simple, and so are point queries, performed by identifying the ap-
propriate pyramid, using the B+-tree to find the right slice, and exhaustively searching the
corresponding page. Range queries, however, are computationally complex, since they entail
identifying which pyramids intersect the query rectangle.

Experimental results, carried out on 1 million uniformly distributed synthetic data in up
to 100 dimensions, compare the pyramid technique to the X-tree. For cubic query regions,
the pyramid is about 2500 times faster than the X-tree in 100 dimensions, (where the X-tree
is probably significantly slower than linear scan.) When the query box is a hyperrectangle
restricted in n

′
dimensions, and fully extended in d − n

′
dimensions, the pyramid is still

faster than linear scan. For example, for d = 100 and n
′
= 13, the pyramid is about 10 times

faster than sequential scan.

Metric Space Methods This section describes metric space indexes, the 2nd main class
of indexing methods. The defining characteristics is that the space itself is indexed, rather
than the individual database elements.

A The Cell Method

Berchtold, Erlt, Keim, Kriegel and Seidl [19] precalculate an index for the 1-nearest-neighbor
search space rather than for the points in the space. Given a database X , solving the nearest-
neighbor problem is equivalent to computing a tessellation of the search space into Voronoi
regions [10], and identifying the region to which a query vector belongs. In general, Voronoi
regions are complex polyhedra, which are difficult to represent in a compact form and to
store in a database. The solution proposed in [19] consists of approximating the Voronoi
regions by their minimum bounding hyperrectangle (MBH) and storing the MBHs in a X-
tree. Since the computation of the exact MBH can be quite time consuming, a slightly
suboptimal linear programming method is suggested: to construct the Voronoi region of a
particular point, the method use only those database elements that lie within a prespecified
distance, those whose MBHs intersect, and the nearest neighbors in each of the coordinate
directions.

Since MBHs of neighboring points overlap, a decomposition technique is proposed that
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yields a better approximation of the actual Voronoi regions, thus reducing the overlap. Each
MBH is successively “carved out” in a different dimension.

Experimental results on 10000 4- to 16-dimensional synthetically generated uniform data
points show that this technique is between 1.01 and 3.5 times faster than the R∗-tree and up
to 2 times faster than X-tree. On 8-dimensional real data, the method is four times faster
than the X-tree alone.

B Vantage Point Methods

Vantage point methods are a relatively recent class of approaches, though their origins could
be found as early as in [34]. Yianilos introduced the Vantage Point Tree or vp-tree in 1986-87,
apparently as a development of the work in [169]. An analogous data structure was developed
by Uhlmann and called Metric Tree [161, 160]. A vp-tree [170] relies on pseudometrics.
First, the distance function is remapped to the range [0, 1], by either scaling (if the distance
is bounded) or through the well known formula D(x,y) = D(x,y)/ [1 + D(x,y)]. Then a
point v (vantage point) is selected. To construct the index, the database points are then
sorted according to their scaled distance from v (i.e., in ascending order of D(·,v)), the
median scaled distance is computed, and the points having scaled distance smaller than the
median are assigned to the left subspace of v, while the remaining ones are assigned to the
right subspace. The procedure is recursively applied to the left and right subspace. Different
selection and termination criteria define different versions of the indexing structures. The
simplest vp-tree relies on simple operations to select the appropriate vantage point among a
random subset of the points associated with each node of the tree. Enhanced versions use a
pseudometric, defined as Dv(x,y) =

∣∣D(x,v) −D(y,v)
∣∣, the key property of which is that

Dv(x,y) ≤ D(x,y), to map the original space into a lower-dimensional Euclidean space,
each coordinate of which corresponds to a different node in the path between the root and
a leaf.

The algorithm returns fixed-radius nearest-neighbors, where the radius ρ is determined
at query time. The search is performed using a branch-and-bound method, which discards
subtrees whose distance to the query point is larger than that of the current result or than the
radius. Theoretical arguments suggest that search is possible in O(d logn) time. Experiments
show that on synthetic data with limited structure, vp-trees have very similar performances
to k-d-trees in up to 15 dimension. When the space has a structure, and in particular when
the intrinsic dimensionality is much smaller than the actual dimensionality, the vp-trees are
1 to 2 orders of magniture faster than the k-d-trees for d > 10, and the gap appear to increase
with the dimensionality. When applied to image snippet retrieval, on a database of about 1
million images of size 32× 32, the vp-tree appears to visit on average only 5% of the nodes.
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C M(S,Q) and D(S)

Clarkson [52] considers the following problem: given a set X (the universe), an appropriate
distance function on pairs of elements of X , and a database S ⊂ X , build a data structure
on S that returns efficiently the closest element of S to any query point q ∈ X .

M(S,Q) is a fast, approximate data structure, which supports probabilistic queries.
M(S,Q) is constructed using a set Q of representative query points, which can be pro-
vided a-priori, or constructed at query time using the user input. For each point (or site) pj

in S, M(S,Q) maintains a list of other points Dj. Dj is built as follows: consider a subset
R of the database, construct a random ordering of its points, and let Ri be the collection
of the first i points according to this ordering. Consider a sequence Qi of randomly selected
subsets of Q, having size (K · i). If pk is the nearest element of Ri−1 to q ∈ Qi, and pj is
a (1 + ε)- neighbor of q, then pj is added to Di. Searching M(S,Q) consists of starting at
point p1, walking D1 until a site closer to the query than p1 is found, repeating recursively
the same operation on the list of the newly found point, until a list D∗ is found which does
not contain closer elements to the query than its corresponding point p∗. By fine tuning the
parameters of the algorithm, and selecting ε appropriately, one can show that probability of
failure to return the nearest neighbor of the query point is O(logn2/K).

A different structure, called D(S) is also proposed. The index construction is recursive,
and proceeds as follows. Select a random subset R of S. Associate with each element y of R
an initially empty list, Ly, and two initially empty sets, S1

y and S3
y . The list Ly contains the

other elements of R sorted in non-decreasing distance from y. For each elements x of S \R
(i.e., belonging to S but not to R), find its nearest neighbor in R, say y, and add x to the
set S1

y . For each element x of S1
y compute its 3-nearest neighbors among the points of R.

Add x to the sets S3
y belonging to its three nearest neighbors. Recursively construct D(R)

and D(S3
y) for each y. Recursion terminates either when a predefined depth is reached or

when the number of elements is below a threshold. Leaves consists of a list of sites.

To find the nearest neighbor of a query point q, recursively search D(R) to find its
nearest neighbor x within R. Walk the list Lx and retrieve the three closest points to q in R.
Recursively search the structures D(S3

y) of the found neighbors, and return the nearest point
to the query among the sites found by each search. When a leaf node is reached, perform
sequential scan of the list. If Υ(S) is the ratio of the largest distance between distinct points
of S to the smallest distance between distinct points of S, then the preprocessing time is
O

(
n(logn)O(log log Υ(S))

)
and the query time is (log n)O(log log Υ(S)).

D The M-tree

α−cut queries can also be executed in metric spaces, and can be supported by indexing
structures, of which the M-tree [49, 48, 172, 47] is an example. Internal nodes of an M-tree
contain a collection of routing objects, while the database objects are stored in groups at the
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leaves. The description of a routing object consists of the object itself, of its covering radius,
defined as the maximum distance between the routing object and the objects stored at the
leaves of its subtree (covering tree), the distance between the covering object and the covering
object of its parent node, and a pointer to the root. The description of a database object
stored within a leaf consists of the object itself, an identifier and the distance between the
object and the covering object of its parent. The tree is constructed sequentially, by adding
new items to the most suitable leaf, which is either the unique leaf covering the object or,
in case of overlap, the leaf whose parent covering object is closest to the item. When leaves
(or internal nodes) are full, they are split, the original covering object is discarded, and a
new covering object is created for each of the new leaves. The basic algorithm consists of
selecting new covering objects so that the corresponding regions have minimum overlap and
minimum covering volume. Numerous routing object selection policies are proposed by the
authors, including random selection, which incidentally is not significantly worse than other
policies.

An α−cut query that returns all the database entries at distance less than r from the
query q starts at the root node, and recursively traverses the tree. At each node, the covering
objects whose covering tree might intersect the search region, are identified and recursively
searched, while the remaining covering objects are pruned. When a leaf is reached, it is
scanned sequentially. The pruning algorithm uses D(q, Rp), the distance between the query
and the routing node of the parent, D(Rn, Rp), the distance between the routing node being
analyzed and the routing node of its parent, r, and rn, the covering radius of the current
node. A subtree is selected is selected if |D(q, Rp) −D(Rn, Rp)| ≤ r + rn.

The average number of distance computations and of I/O operations during a search
appears to grow linearly in the dimensionality of the search space.

Compared to a R∗-tree in terms of I/O cost for building the index and for performing
square range queries covering 1% of the indexed space, the M-tree yields gains that increase
approximately linearly with the number of dimensions. In terms of distance selectivity, the
M-tree appears to be better than the R∗-tree by a constant factor, in databases with up to
50 dimensions.

The M-Tree can also be used for k-nearest-neighbor queries, where it also outperforms
the R∗-tree.
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