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Figure 1: Application to smoothing without tangential drift. (A) Noisy mesh with irregular edge length distribution. (B) After
4 steps of unit-length isotropic Laplacian smoothing of face normals with � = 0:5, constrained boundary faces (blue), and
fix vertices. (C) After 10 subsequent steps of face normal integrating anisotropic Laplacian smoothing on vertex positions with
� = 0:5, constrained boundary vertices (red), and fix face normals. Flat-shading used to enhance the faceting effect. Connectivity
is kept constant.

Abstract

No algorithm for unconstrained polygon mesh denoising can
beat Laplacian smoothing in simplicity and ease of imple-
mentation. In this paper we introduce a new algorithm for
polygon meshes smoothing with vertex position and face
normal interpolatory constraints composed of two phases.
First the face normals are filtered independently of vertex po-
sitions. Then the vertex positions are filtered integrating the
face normals in the least squares sense. Laplacian smoothing
is used to smooth both the face normal field and the vertex
positions, with a properly defined Laplacian operator in each
case. We define isotropic, anisotropic, linear, and non-linear
Laplacian operators for signals defined in Euclidean space,
and on the unit sphere. In addition to the obvious applica-
tions to shape design, our algorithm constitutes a new fast
and linear solution to the tangential drift problem, observed
in meshes with irregular edge length and angle distribution.
We show how classical linear filter design techniques can be
applied in both cases, and conclude the paper determining
integrability conditions for face normal fields.

CR Categories and Subject Descriptors:
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modelling - surface, solid, and object representations.

General Terms: Mesh Signal Processing, Smoothing, Denois-
ing, Anisotropic Diffusion, Algorithms, Graphics.
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1 Introduction

The problem of smoothing or denoising large irregular poly-
gon meshes of arbitrary topology, such as those extracted
from volumetric medical data by iso-surface construction al-
gorithms, or constructed by integration of multiple range im-
ages, has motivated most of the recent work in geometric sig-
nal processing [19].

1.1 Previous Work

Because of the size of the typical data sets, only linear time
and space algorithms can be considered, particularly for ap-
plications such as surface design and mesh editing, where
interactive rates are a primary concern. The simplest smooth-
ing algorithm that satisfies the linear complexity requirement
is Laplacian smoothing, a well established iterative algorithm
introduced in the mesh generation literature to improve the
quality of meshes used for finite element computations [5, 8].
In this context boundary vertices of the mesh are constrained
not to move, but internal vertices are simultaneously moved
in the direction of the barycenter of their neighboring ver-
tices. And then the process is iterated a number of times.

Laplacian smoothing is not problem-free, though. When
Laplacian smoothing is applied to a noisy 3D polygon mesh
without constraints, noise is removed, but significant shape
distortion may be introduced. This problem is called shrink-
age. When a large number of Laplacian smoothing steps are
iteratively performed, the shape undergoes significant defor-
mations, eventually converging to the centroid of the origi-
nal data. The �j� algorithm introduced by Taubin [18] solves
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Figure 2: Laplacian vs. Taubin smoothing. FIR Filters based
on the linear isotropic Laplacian operator. (A) Noisy mesh.
(B) Result of Laplacian smoothing (10 steps with � = 0:6307).
(C) Result of Taubin Smoothing (10 steps with �1 = 0:6307
and �2 = �0:6732).

the shrinkage problem with a simple alternating sign modifi-
cation that converts the Laplacian smoothing algorithm into
a low-pass filter. Figure 2 shows the result of smoothing a
noisy mesh with Laplacian and Taubin smoothing. In both
cases the algorithms perform exactly the same number of op-
erations. In the same paper, Taubin introduced Fourier Anal-
ysis on mesh signals as a tool to understand and predict the
behavior of these linear smoothing processes [18]. This work
was followed by a number of extensions, improvements, ap-
plications, and closely related algorithms, which addressed
the following existing and/or open problems with mesh fil-
ters to some extent: enhancement and prevention of tangen-
tial drift, boundary and crease curve detection and enhance-
ment, and introduction and intuitive control of position and
normal constraints.

Taubin et.al. [21] introduced efficient and robust algo-
rithms to evaluate any finite impulse response (FIR) linear
filter on mesh signals. Zorin et.al. [24] showed an applica-
tion to multiresolution interactive shape design. Kuriyama
and Tachibana [13] used an anisotropic diffusion mechanism
to generate smooth interpolatory subdivision surfaces with
vertex position and normal constraints, and tension control.
Hausler and Karbacher [9, 10] describe a non-linear method
for smoothing polygon meshes based on circular arc approx-
imations. Kobbelt et.al. [11, 12] introduced a multiresolu-
tion approach to denoising and shape design based on lin-
ear filters and constrained minimization. Desbrun et. al. [4]
addressed the tangential drift problem observed in meshes
with irregular edge length and angle distribution with a non-
linear Laplacian operator and an infinite impulse response
(IIR) filter with rational transfer function. And more recently,
several authors [3, 14, 2, 15] have proposed closely related
non-linear algorithms that extend to meshes the anisotropic
diffusion approach to image segmentation introduced by
Perona and Malik [16].

The ability to impose constraints to the smoothing pro-
cess, such as specifying the positions of some vertices, or
normal vectors, specifying ridge curves, or the behavior of
the smoothing process along the boundaries of the mesh, is
needed in the context of free-form interactive shape design.
Taubin [18] shows that by modifying the neighborhood struc-
ture certain kind of constraints can be imposed without any
modification of the algorithm, while other constraints that re-
quire minor modifications and the solution of small linear
systems. Bierman et.al. [1] show how to construct subdi-
vision surfaces with vertex normal constraints. Kobbelt et.
al. [11, 12] formulate the problem as an energy minimiza-
tion problem, and solve it efficiently with a multi-resolution
approach on levels of detail hierarchies generated by decima-

tion. Kuriyama [13] and Yamada et. al. [23] introduced soft
vertex normal constraints trough a spring-based approach,
but report slow convergence.

1.2 Contributions

In this paper we present a simpler and unified solution to
some of the problems listed above based on new modifica-
tions of the Laplacian smoothing algorithm and the closely
related FIR linear filters. As a first contribution we intro-
duce an anisotropic Laplacian operator in which the weighting
of displacements to neighboring vertices is given by matri-
ces. These matrices defined on the vertices of the mesh can
be regarded as a discrete tensor field. In the classical isotropic
Laplacian operator the weights are scalars. To prevent tan-
gential drift we compute the weights as functions of a field
of face normals, in such a way that the resulting Laplacian
smoothing algorithm integrates the face normals in the least
squares sense. Other anisotropic Laplacian operators can be
constructed to produce different effects, but we will not study
them here.

If the field of face normals is smooth, a linear low-pass
filter based on this anisotropic Laplacian operator removes
noise while preventing tangential drift. Since computing face
normals from noisy data produces much noisier face normal
fields, we need to smooth the field of face normals before us-
ing it to generate the anisotropic weights for the vertex po-
sition smoothing process. As a second contribution we in-
troduce an algorithm to evaluate FIR linear filters on signals
defined on graphs and with values in the unit sphere. We
then apply this algorithm to a field of face normals defined
on the dual graph of a mesh. Again, our algorithm is Lapla-
cian smoothing with a properly defined Laplacian operator
for unit-length vector signals.

In our algorithm for denoising without tangential drift the
face normals are first filtered independently of the vertex po-
sitions. Then the matrix weights of the linear anisotropic
Laplacian operator are computed, and finally the vertex po-
sitions are filtered using the resulting linear anisotropic fil-
ter with constant weights. This algorithm is related to the
non-linear anisotropic diffusion crease-enhancing algorithm in-
troduced by Ohtake et.al. [14, 15], where a non-linear cou-
pled diffusion process is introduced to simultaneously pro-
cess face normals and vertex positions. But here the two
processes are decoupled. We filter the face normals inde-
pendently of the vertex positions, and then, as in the linear
isotropic case, we compute the weights once and keep them
fixed during the vertex position filtering process.

In the now classical Laplacian smoothing algorithm and
its derivatives, imposing interpolatory vertex position con-
straints is easy, but imposing interpolatory normal con-
straints is not. In our new algorithm both kinds of interpola-
tory constraints are easy to apply. Interpolatory face normal
constraints are imposed as in the classical case by not moving
the constrained face normals in the direction determined by
the Laplacian operator. Similarly, the constrained vertices are
not moved in the second phase of the algorithm.

1.3 Paper Organization

The paper is organized as follows. In section 2 we basic mesh
signal processing concepts and establish some notation. In
section 3 we define the different types of Laplacian operators:
linear, non-linear, isotropic, and anisotropic. In section 4 we
extend the Fourier Analysis of mesh signals [18] to the linear
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anisotropic case, and in section 5 we review the design of lin-
ear filters. In section 6 we describe a solution of the boundary
shrinkage problem of classical Laplacian smoothing as a mo-
tivation for the algorithm introduced in this paper. In section
7 we describe the existing non-linear isotropic solutions to the
tangential drift problem, and our new linear anisotropic so-
lution. In section 8 we define an isotropic Laplacian operator
for signals with values on the unit sphere, which allows us to
extend the Laplacian smoothing algorithm to these signals.
In section 9 we review the formulation of Rodrigues formula
required in the previous section. In section 10 we determine
integrability conditions for vector fields defined on the faces
of a mesh, we formulate an orthogonal decomposition theo-
rem, and show that our algorithm integrates the field of face
normals in the least squares sense. In section 11 we show
some experimental results, and we discuss applications and
extensions of our algorithm, other than denoising. Finally, in
section 12 we present our conclusions.

2 Mesh Signals

A graphG, composed of a set of vertices V , and a set of edges
E can be directed or undirected. In addition to vertices and
edges, a polygon mesh M includes a set of faces F . For sim-
plicity, we only consider faces defined as cycles of vertices.
The undirected graph of a mesh M is composed of the set of
mesh vertices and the set of mesh edges as unordered pairs.
In the directed case, where the edges ofG are ordered pairs of
vertices, every edge of M corresponds to two oriented edges
of G. We use the symbols V , E, and F not only to denote
the sets of vertices, edges, and faces, but also for the number
of vertices, edges, and faces. The correct meaning can always
be deduced from the context.

In this paper we look at the vertices ofM in two ways. One
way is as a three-dimensional graph signal x = (x1; : : : ; xV )

t

defined on G. In general, a D-dimensional graph signal on
a graph G is a D � V matrix x = (x1; : : : ; xV )

t, where each
row of x is regarded as the signal value at the i-th. vertex of
the graph. We are mainly interested in the cases D = 1 and
D = 3. The other way we look at a D-dimensional graph
signal on a graph G is as a DV column vector x constructed
concatenating the V vectors x1; : : : ; xV of dimension D on
top of each other.

In this paper we will also look at the face normals of M as
a graph signal on the dual graph of M and with values in the
unit sphere, and more generally on vector fields of arbitrary
dimensionality defined on the faces of the mesh.

The edges ofM are classified as boundary, regular, or singu-
lar depending on the number of incident faces. A boundary
edge has one incident face, a regular edge has two incident
faces, and a singular edge has three or more incident faces.
The dual graph of M has the faces of M as vertices, and the
regular edges of M as edges. The boundary faces of M are
those incident to one or more boundary edges.

A neighborhood or star of a vertex index i in the graph G is
the set i? of vertex indices j connected to i by an edge (i; j).

i
?
= fj : (i; j) 2 Eg :

If the index j belongs to the neighborhood i?, we say that j is
a neighbor of i. The neighborhood structure of an undirected
graph, such as the graph of a mesh defined above, are sym-
metric. That is, a vertex j is a neighbor of a vertex i, if and
only if i is a neighbor of j.

LaplacianOperator (G;W;x)
if (non-linear)
W = ComputeWeights (x)

new�x = 0
for (e = (i; j) 2 E)

�xi = �xi +wij(xj � xi)
end

return�x

Figure 3: Algorithm to evaluate the Laplacian operator. G =
(V;E) directed graph, W matrix of weights defined on the
edges of G, x input signal on G, �x output signal. The
isotropic scalar weightwij is replaced by a matrix weightWij

in the anisotropic case.

3 Anisotropic Laplacian Operator

The Laplacian operator can be isotropic or anisotropic, and in-
dependently linear or non-linear. The four combinations are
possible. As Weickert points out [22], sometimes in the im-
age processing literature a filter that we would call non-linear
isotropic, is called anisotropic. This is also the case in some of
the recent work on anisotropic mesh processing [4, 2, 14, 15]

In this paper the isotropic Laplacian operator is defined on a
graph signal x with values in Euclidean space by weighted
averages over the neighborhoods

�xi =
X
j2i?

wij (xj � xi) ; (1)

where the edge weights wij are non-negative scalars that add
up to one for each vertex star

X
j2i?

wij = 1 : (2)

One way to impose these constraints is to define the weights
as normalized edge costs wij = cij=ci, where cij � 0 is an
edge cost, and ci =

P
j2i? cij > 0 is a vertex cost equal to the

total cost of edges incident to the i-th. vertex. The simplest
choice here is to make all the edge costs equal to one cij = 1,
i.e., to make the weight wij equal to the inverse of the num-
ber of neighbors 1=ji?j of the i-th. vertex. Other non-linear
choices of isotropic weights are discussed in section 7.

We define the anisotropic Laplacian operator on a 3D graph
signal x also by weighted averages over the neighborhoods

�xi =
X
j2i?

Wij (xj � xi) ; (3)

but here the edge weights Wij are symmetric and non-
negative definite 3�3 matrices such that their sum

P
j2i? Wij

has eigenvalues in the interval [0; 1]. One way to construct
these weight matrices is as functions of edge and vertex costs,
as in the isotropic case. Here the edge costs Cij , and the ver-
tex cost Ci, are 3 � 3 symmetric and non-negative definite
matrices such that Ci �

P
j2i? Cij as quadratic forms (i.e.,

such that 8x 2 IR3 : xtCix � P
j2i? x

tCijx). For example,
if ci is an upper bound for the eigenvalues of

P
j2i? Cij , we

can take Ci = ciI , which is what we have used in our im-
plementation (see section 7). To simplify the formulation, we
will also assume that Ci is non-singular, which is true in the
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previous example, and set Wij = L�1i CijL
�t
i , where Li is

the Cholesky decomposition [7] of Ci, i.e. the unique lower
triangular matrix such that LiLti = Ci.

Both in the isotropic and anisotropic cases we call the
Laplacian operator linear when the weights are constants,
and non-linear when the weights are computed as an addi-
tional function of the signal values. Figure 3 describes the
algorithm to evaluate the different Laplacian operators de-
fined in this section on a signal x defined on a directed graph
G, with given weight matrix W . The isotropic weights dis-
cussed in section 7 are all non-linear.

4 Fourier Analysis on Meshes

Fourier analysis can be used to understand and predict the
behavior of linear operators [18, 21]. Since the isotropic
Laplacian operator x 7! �x is linear on the space of graph
signals defined on G, and operates independently on each
of the coordinates of x, it is sufficient to analyze the case
of one-dimensional graph signals. If we define the matrix
K = I �W , with I the identity matrix, the isotropic Lapla-
cian operator applied to a graph signal x can be written in
matrix form as follows

�x = �K x : (4)

For undirected graphs and weights defined by symmetric
costs (cij = cji), the matrix K has real eigenvalues 0 � k1 �
k2 � � � � � kV � 2 with corresponding linearly independent
real unit length right eigenvectors e1; : : : ; eV . In matrix form

KE = ED ; (5)

with E = (e1; : : : ; eV ), k = (k1; : : : ; kV )
t, and D the diagonal

matrix with ki in its i-th. diagonal position. Seen as one-
dimensional graph signals, these eigenvectors can be consid-
ered as the natural vibration modes of the graph, and the corre-
sponding eigenvalues as the associated natural frequencies.

Since e1; : : : ; eV form a basis of V -dimensional space, ev-
ery graph signal x can be written as a linear combination

x =

VX
j=1

x̂j e
j
= E x̂ : (6)

The vector of coefficients x̂ is the Discrete Fourier Transform
(DFT) of x, and E is the Fourier Matrix.

The analysis for the anisotropic Laplacian operator is sim-
ilar, but requires the treatment of the 3 coordinates of the
graph signal at once. In this case we look at the signal x not
as a matrix but as a 3V -dimensional vector; the matrix K is a
V � V block matrix, with each block a 3� 3 matrix:

Kij =

�
I �Wii if i = j
�Wij if i 6= j

The rest of the analysis is exactly the same as for the isotropic
case, except that here K has 3V eigenvalues and eigenvec-
tors, and each eigenvector simultaneously defines the 3 coor-
dinates of all the vertices of the mesh.

5 Mesh Filters

A Linear Filter is defined by a univariate function f(k) that
can be evaluated on the square matrix K to produce another

LaplacianSmoothing(G;W;N; �; x)
new�x
for (h = 0 : : : N � 1)

�x =LaplacianOperator (G;W;x)
for (i = 0 : : : V � 1)
xi = xi + ��xi

end
end

return

Figure 4: The Laplacian Smoothing Algorithm. G graph, W
matrix of weights defined on the edges of G, N number of
iterations, � scaling factor, x signal onG to be smoothed. The
algorithm is the same, whether the Laplacian operator is lin-
ear or non-linear cases, and isotropic or anisotropic.

matrix f(K) of the same size. Although many functions of
one variable can be evaluated in matrices [7], in this paper
we only consider polynomials [21]. The function f(k) is the
transfer function of the filter.

It is well known that for any of these functions, the ma-
trix f(K) has the eigenvectors e1; e2; : : : of the matrix K as
eigenvectors, and the result f(k1); f(k2); : : : of evaluating the
function on the eigenvalues of K as eigenvalues.

Since for any polynomial transfer function

x0 = f(K)x =
X
i

f(ki) x̂i e
i ;

because Kei = kie
i, to define a low-pass filter we need to

find a polynomial such that f(ki) � 1 for low frequencies,
and f(ki) � 0 for high frequencies in the region of interest
k 2 [0; 2].

Figure 4 describes the Laplacian smoothing algorithm,
with a scaling factor 0 < � < 1 which is used to control the
speed of the diffusion process. With this parameter, one step
of the linear isotropic Laplacian smoothing algorithm can be
described in matrix form as follows

x
1
= x+ ��x = (I � �K) x = f(K)x ; (7)

where f(K) is a matrix obtained by evaluating the univari-
ate polynomial f(k) = 1 � �k in the matrix K. If the pro-
cess is iterated N times, the output can still be expressed as
xN = f(K) x, but with a different univariate polynomial
f(k) = (1 � �k)N . When 0 < � < 1, we see that for ev-
ery k 2 (0; 2], we have (1 � �k)N ! 0 when N ! 1
because j1 � �kj < 1. This means that all the frequency
components, other than the zero frequency component (the
barycenter of all the vertices), are attenuated for largeN . On
the other hand, the neighborhood normalization constraint
of equation 2 implies that the matrix K always has 0 as its
first eigenvalue with associated eigenvector (1; : : : ; 1)t, and
the zero frequency component is preserved without changes
because f(0) = 1 independently of the values of � and N . A
similar analysis applies to the linear anisotropic case.

Taubin [18] proposed the following second degree transfer
function to solve the problem of shrinkage

f(k) = (1� �0k)(1� �1k) ; (8)

which can be implemented as two consecutive steps of Lapla-
cian smoothing with different scaling factors; the first one
with �0 > 0, and the second one with �1 < ��0 < 0.

4
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MeshFilter(G;W;N; �; x)
new�x
for (h = 0 : : : N � 1)

�x =LaplacianOperator (G;W;x)
for (i = 0 : : : V � 1)
xi = xi + �i�xi

end
end

return

Figure 5: A mesh filter more general than Laplacian smooth-
ing can be implemented by making the scaling factor � func-
tion of the iteration number. Compare to the algorithm in fig-
ure 4. Again, the same algorithm applies to the linear or non-
linear Laplacian operator, and to the isotropic or anisotropic
cases.

To implement a more general linear filter, and by doing
so being able to solve the shrinkage problem, we make the
scaling factor � dependent on the iteration number i. That is,
the scaling factor is now a vector � = (�0; : : : ; �N�1)

t, and
the transfer function is

f(k) =

N�1Y
i=0

(1� �i k) : (9)

A different way to implement FIR linear filters based on
classical digital filter design techniques and Chebyshev poly-
nomials was introduced by Taubin et.al. [21].

Ignoring numerical errors, in the linear case, the N Lapla-
cian smoothing steps of equation 9 can be performed in any
order, without affecting the result. Since the weights of the
non-linear Laplacian operator are computed as a function of
the signal values, in the non-linear case we have to be more
precise. The same equation 9 can be used, but the non-linear
Laplacian smoothing steps have to be performed in the spec-
ified order, as shown in the algorithm of figure 5.

6 Preventing Boundary Shrinkage

Although the normal vector to a polygon mesh is not defined
at a vertex, it is customary to define it by averaging some
local information for shading purposes. When the signal x
in equation (1) corresponds to the 3-dimensional mesh ver-
tex positions, the Laplacian operator can be used to define a
normal vector

ni =

�
�xi
k�xik

if �xi 6= 0

0 if �xi = 0
(10)

When the length of edges incident to vertex i and the angles
formed by these edges are all similar, the mesh is a discretiza-
tion of a smooth surface, and the vertex is not on the bound-
ary of the surface, this vector average approximates the cur-
vature normal, modulo a scale factor function of the average
edge length (sampling wavelength). In fact, the following ex-
pression can be used as the definition of the mean curvature �i
[17] of the graph signal x at the vertex i

1

2
�i ni e

2
i =

X
j2i?

wij (xj � xi) ; (11)

Figure 6: The boundary shrinkage problem. Laplacian opera-
tor defines vertex displacements that approximate curvature
normal at non-boundary vertices. The displacements have
strong tangential components at boundary vertices. The neg-
ative of the Laplacian operator displacements��xi are plot-
ted because they easier to visualize.

independently of the subjacent smooth surface, where e2i is
the average square length from vertex i to its neighbors

e
2
i =

X
j2i?

wij kxj � xi k2 :

When the vertex i is on the boundary of the mesh, the vec-
tor �xi has a very strong tangential component, and the vec-
tor of equation 10 cannot be considered a good approxima-
tion of the surface normal. This problem is illustrated in fig-
ure 6. As a result, when an isotropic filter is applied to a mesh
with boundary, while non-boundary vertices tend to move
along the normal direction, boundary vertices tend to move
in a tangential direction, producing shrinkage, even when the
filter is a low-pass filter such as the �j� algorithm.

The hierarchical smoothing approach described by Taubin
[18], where the boundary vertices are filtered as a curve in-
dependently of the rest of the mesh, is one way to prevent
boundary shrinkage. But because the boundary and mesh
smoothing processes proceed at different speeds, the bound-
ary curves may be over-smoothed, and there is no control on
the surface normals along the boundary.

The following alternative solution to the boundary shrink-
age problem produces better results, and is a good motiva-
tion to the definition of the anisotropic Laplacian operator
given above. In this case we need an additional vertex nor-
mal vector ni for each boundary vertex i, and we redefine the
Laplacian operator for the boundary vertex i as the projection
of the old Laplacian operator onto line defined by the normal
vector ni

�xi = ni n
t
i

X
j2i?

wij (xj � xi) :

The boundary vertex normal vectors can either be explicitly
provided as constraints, or computed by averaging face nor-
mal vectors to incident faces.

5
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Equivalently, we can define the following anisotropic
weights

Wij =

�
wij ni n

t
i if i is a boundary vertex

wij I if i is not a boundary vertex

where wij is the old isotropic weight. The resulting lin-
ear anisotropic diffusion algorithm removes noise but the
boundaries do not shrink.

7 Preventing Tangential Drift

The boundary shrinkage problem mentioned above is a
particular case of the tangential drift problem. With unit
edge costs, very satisfactory results are obtained with lin-
ear isotropic FIR filters [21] on meshes with no boundaries
displaying very small variation in edge length and face an-
gles across the whole mesh. When these assumptions are
not met, local distortions are introduced, mainly because the
Laplacian operator defines vertex displacement vectors with
strong tangential components. The edge weights can be used
to compensate for the irregularities of the tessellation, and
produce results which are function of the local geometry of
the signal, rather than the local parameterization. For ex-
ample, shorter edges have to be given larger weights. The
following non-linear strategies to compute weights have been
proposed.

Fujiwara weights [6] try to compensate for irregular edge
lengths by determining the edge costs as a function of the
edge length cij = �(kvj � vik). For example, Fujiwara pro-
posed the inverse of the edge length �(t) = 1=t as the func-
tion, which makes the Laplacian operator independent of the
edge lengths, and only dependent on the directions of the
vectors pointing to the neighboring vertices. This weight-
ing scheme does not solve the problems arising from unequal
face angles.

Desbrun weights [4] compensate not only for unequal edge
lengths, but also for unequal face angles. Laplacian smooth-
ing with equal edge costs tends to equalize the lengths of the
edges, and so, tends to make the triangular faces equilateral.
The vertex displacements produced by the Laplacian opera-
tor can be decomposed into a normal and a tangential compo-
nent. In some cases the edge equalization is the desired effect,
such as when mesh smoothing is used to improve the qual-
ity of finite-elements mesh. But in other cases, such as when
a texture is mapped onto the mesh, having a non-zero tan-
gential component is undesirable. Based on a better approxi-
mation to the curvature normal, Desbrun et.al. proposed the
following choice of edge costs

cij = cot�ij + cot �ij ; (12)

where �ij and �ij are the two angles opposite to the edge
e = (i; j) in the two triangles having e in common. This
choice of weights produces no tangential drift when all the
faces incident to the vertex are coplanar.

The weighting schemes described above can be applied to
a FIR filter, but both Fujiwara weights and Desbrun weights
must be recomputed after each iteration, or at least after a
small number of iterations. This makes the whole smoothing
process a nonlinear operation, and computationally more ex-
pensive. The alternative solution that we propose in this pa-
per is based on using a linear anisotropic Laplacian operator
where the edge costs are computed as a function of the face
normals, in such a way that tangential displacements are pe-
nalized. For example, if vertex j is a neighbor of vertex i, we

LaplacianOperatorNormals (G;W;n)
new � = 0
for (e = (i; j) 2 E)

�i = �i + wijnj
end
for (i = 0 : : : N � 1)

�i = ni ��i

end
return �

MeshFilterNormals (G;W;N; �; n)
new �
for (h = 0 : : : N � 1)

� =LaplacianOperatorNormals (G;W; n)
for (i = 0 : : : V � 1)
ni = R(�h�i)ni

end
end

return

Figure 7: Algorithms to evaluate the Laplacian operator, and
a general linear filter on a graph signal with values the unit
sphere. Laplacian smoothing corresponds to the case of con-
stant �h.

can define
Cij =

X
f2Fij

cfij nfn
t
f ; (13)

where Fij is the set of faces incident to the edge joining ver-
tices i and j, nf is the unit length normal vector to face
f , and cfij � 0 is a non-negative cost. In this paper we
use cfij = 1 independently of f , i, or j, Ci = ciI , and
ci =

P
j2i?

P
f2Fij

cfij , which produces excellent results.
Note that for manifold meshes the set Fij is composed of only
one or two elements. Another possible choice is to make cfij
equal to the area of face f , but this would make the cost a
non-linear function of the vertex coordinates, which we have
been trying to avoid in this paper.

8 Laplacian Smoothing on the Sphere

In order for this linear anisotropic filter to produce the de-
sired results, we need a smooth face normal field. Since the
field of face normals of a noisy mesh is even noisier, we now
have to solve the problem of smoothing a field of unit-length
face normal vectors. We regard such vector field as a signal
defined on the dual graph of the mesh, and with values in
the unit sphere. We solve this problem again with Laplacian
smoothing, or a more general FIR filter, based on a redefined
Laplacian operator for signals with values in the unit sphere,
and then use the algorithms described in figure 7.

The Laplacian operator can be applied to unit length vec-
tors, but the result of one Laplacian smoothing step

n
0

i = ni + �
X
j2i?

wij (nj � ni)

is no longer a unit length vector. This can be fixed by nor-
malizing the length of the resulting vector, but the results
are poor, particularly when the angles between neighboring
normals are large. A better solution is to look at the expres-
sion �wij (nj � ni) as a displacement along a geodesic on the

6
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sphere, i.e., along a great circle, and at the scaled Laplacian
vector ��ni as the average of these displacements in a well-
defined local chart.

The resulting displacement ��ni is represented by a ro-
tation Ri(�), where the function Ri(�) is a continuous func-
tion of � such that when � = 0 the rotation is the identity
Ri(�) = I . For each neighbor j of i such that ni and nj are
linearly independent, there are two rotations that keep the
plane defined by the vectors ni and nj invariant . Of these
two let Rij be the rotation of minimum angle. If ni = nj we
define Rij = I , and we will assume that the case ni = �nj
never happens. In section 9 we show that the rotationRij can
be computed using Rodrigues’ formula as

Rij = R(ni � nj) ;

where R(!) is the Rodrigues function that maps vectors of
length not larger than one onto rotation matrices

R : f! : j!j � 1g ! SO(3) (14)

Now we can define the Laplacian operator for signals with
values in the unit sphere as follows

Ri(�) = R

 
�ni �

X
j2i?

wij nj

!
(15)

for � � 1. We do all the scaling and averaging in the do-
main of R(!) which is a convex subset of Euclidean space
that contains the origin, and so close under scaling (j�j � 1)
and convex averaging (

P
j wij = 1).

Finally, we define a Laplacian smoothing step as follows

n
0

i = Ri(�)ni (16)

Now we can implement any FIR filter using the polynomial
factorization of equation 9. For example, one step of Taubin
smoothing becomes

n
00

i = Ri(�1)Ri(�0)ni

9 Rodrigues Formula

A 3D rotation can be represented as a 3� 3 matrix

R =

 
Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

!

orthogonal RRt = I and with unit determinant jRj = 1. In
particular, the inverse rotation is represented by the trans-
posed matrix R�1 = Rt. The result of applying the rotation
represented by the matrix R to a vector v is computed by
multiplying the matrix by the vector Rv. The group of 3D
rotation matrices, also called special orthogonal group of dimen-
sion 3, is usually denoted SO(3).

A more intuitive way of representing a 3D rotation is by
specifying an axis of rotation with a unit length vector r, and
an angle of rotation � in radians. Usually, these two values are
jointly specified as a single vector ! = �r. The angle of rota-
tion is the length of !, and the axis of rotation is determined
by normalization r = !=j!j. In the case j!j = 0, which corre-
sponds to the identity matrix, the unit vector is not uniquely
determined.

Since this representation produces multiple representa-
tives for each rotation, and the conversion to matrix form

requires computation of trigonometric functions, it is better
to represent the rotation as a vector with length equal to the
positive sine of the angle of rotation. The conversion from
vector to matrix representation is given by Rodrigues formula

R(!) = c I + (1� c) rr
t
+ s r

�
; (17)

where s = (k!k2)1=2 = sin(�), c = (1 � k!k2)1=2 = cos(�),
sr = !, and

r
�
=

 
0 �rz ry
rz 0 �rx

�ry rx 0

!
:

This last matrix is skew-symmetric (r�)t = �r�, and repre-
sents the vector product: when we multiply the matrix r� by a
vector v we obtain the vector product r � v

r� v = r � v =

 
ry vz � rz vy
rz vx � rx vz
rx vy � ry vx

!
:

Rodrigues’ formula defines the function R : f! : j!j � 1g !
SO(3) which is clearly 1� 1 and continuous for ! 6= 0, but it
is not difficult to show that it is well defined and continuous
at ! = 0 as well.

To convert from matrix to vector representation we first
note that, since c I + (1� c) rrt is symmetric, and s r� skew-
symmetric, the transpose of the matrix R in equation 17 is

R
t
= c I + (1 � c) rr

t � s r
�
;

and so, the skew-symmetric part of R is

(R�R
t
)=2 = s r

�
= (s r)

�
: (18)

The value of s is obtained as the length of the vector ! = s r.
The value of c is obtained by computing a square root c =p
1� s2. With c and s we can determine �, if needed. And

the unit length vector r is obtained by normalization, except
when R�Rt = 0, which corresponds to the identity rotation
R = I . This case has multiple solutions. So, the inverse of
Rodrigues’ formula of equation 18 defines the inverse func-
tion

! =

 
!x
!y
!z

!
=

1

2

 
Rzx �Rxz

Rxz �Rzx

Ryx �Rxy

!
:

If ni and nj are two unit length vectors such that ni+nj 6=
0, it is not difficult to show that

R(ni � nj)ni = nj :

10 Integration of Face Normal Fields

In this section we first study the existence and uniqueness of
solution to the problem of reconstructing the mesh vertex po-
sitions from a given field of face normals. Then we formulate
an orthogonal decomposition theorem that explains the least
squares solution of the previous problem in the case where
an exact solution does not exists. Finally, we discuss how our
algorithm relates to the solution of these problems. Our ap-
proach is totally self-contained and based on basic concepts
from linear algebra.

7
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Figure 8: Java implementation of the algorithms introduced
in this paper.

10.1 Integrability

We restrict our analysis here to the case of triangle meshes,
where the notation is simpler. The results can be extend to
general polygon meshes, but we leave the details of the ex-
tension to the reader, or a subsequent paper.

The problem is this: given a non-zero vector uf for each
face f = (i; j; k) of a triangular mesh M , we want to describe
the set S of vertex positions (x1; : : : ; xn) so that, for each tri-
angular face f , the vector uf is orthogonal to the plane de-
fined by the points fxi; xj ; xkg, and in what sense our algo-
rithm helps find the elements of S. In principle, the set S
may be empty (i.e., the field is not integrable), may be com-
posed of a single element (i.e., the problem has a unique so-
lution), may be composed of a finite number of element (i.e.,
the problem has a multiple solutions), or may be composed
of an infinite number of elements (i.e., the problem has free
degrees of freedom).

Unconstrained case We first consider the case where no
further constraints are imposed on the vertex positions. The
face orthogonality conditions described above are equivalent
to the following family of simultaneous linear equations

8 f = (i; j; k) :

8<
:
utf (xj � xi) = 0

utf (xk � xj) = 0

utf (xi � xk) = 0

(19)

Note that for each face f , the corresponding three equations
are linearly dependent because their sum is equal to zero.
As a result, we can discard one of the three equations, and
obtain an homogeneous system of 2F equations in 3V vari-

ables, which we rewrite in matrix form as follows

0
BBBBBBBBBBBB@

...
...

� � � �uf uf � � �
...

...
� � � uf 0 � � �

...
...

� � � 0 �uf � � �
...

...

1
CCCCCCCCCCCCA

t0
BBBBBBBBBBBB@

...
xi
...
xj
...
xk
...

1
CCCCCCCCCCCCA

= 0 : (20)

If U denotes the 3V � 2F left matrix, and X the 3V -
dimensional right vector, we have U tX = 0. Since the equa-
tions are linear an homogeneous, the space of solutions is a
subspace in IR3V . Note that the dimension of this subspace is
at least 3, because the constant vector xi = x for i = 1; : : : ; V
is a solution of our problem for any point x 2 IR3. Since the
problem is invariant with respect to translations, we can re-
duce its dimensionality by imposing the constraint xV�1 = 0.
A solution of the original system can be decomposed as a so-
lution of the reduced system plus a 3D translation. Let ~U be
the (3V � 3) � 2F matrix obtained from U by deleting the
last row, and let ~X be the (3V � 3)-dimensional right vector
obtained fromX by deleting the last three coordinates corre-
sponding to xV�1. Now, our original problem has a solution
if and only if the system ~U t ~X = 0 has a non-trivial solution,
and the solution is unique if and only if the dimension of the
subspace of solutions is 1. Equivalently, if 0 � �1 � �2 � � � �
are the singular values of ~U , the problem has a solution if
�1 = 0 as well, and the solution is unique if �2 > 0. If
�1 = � � � = �h = 0 and �h+1 > 0, the problem has multi-
ple solutions, and the subspace of solutions has dimension h.
That is, the problem has h degrees of freedom in addition to
the 3 degrees of freedom corresponding to the invariance to
translation. A unique solution can be obtained by imposing
further independent linear constraints. Also note that since
the problem is homogeneous, the solutions can only be ob-
tained modulo scale.

In the overconstrained case 3V �3 � 2F , the problem may
have no solution, a unique solution (modulo scale), or mul-
tiple degrees of freedom. In the last case, the general solu-
tion can be represented as a linear combination of the singu-
lar vectors corresponding to the zero singular values. In the
underconstrained case 3V � 3 > 2F , when we have fewer
equations than unknowns, the dimension of the subspace of
solutions is at least 3V �3�2F > 0, and the problem always
has at least one solution.

If the triangular mesh is manifold without boundary, the
numbers of vertices V , edgesE, and faces F satisfy the Euler
formula V �E + F = 2(1�G) where G � 0 is the genus of
the mesh. For example, a sphere has genus 0 and a torus has
genus 1. Since each triangular face of a manifold mesh with-
out boundary corresponds to three half-edges, or 3F = 2E,
we obtain a necessary and sufficient condition for the prob-
lem to be overconstrained

V � 3 � 2F , 2 � 4G � F :

For example, for a mesh with sphere topology we get F �
2, which is always satisfied because the tetrahedron is the
smallest in this class with F = 4. For higher genus, the left
term is negative, and the condition is always satisfied. If the
triangular mesh is manifold with boundary, a similar nec-
essary and sufficient condition can be derived involving in

8



October 2001 (under review)

A B C

D E F

Figure 9: Hierarchical smoothing can be used to introduce crease lines and to control their shape. (A) Mesh with tagged boundary
and crease edges. (B) The result of applying 10 steps of Taubin smoothing without constraints. Observe the shrinkage of the
boundary and the over-smoothing of the crease lines. (C) The result of applying 10 steps of Taubin smoothing with hierarchical
constraints, but ignoring the crease lines. The boundary curve is smoothed independently of the interior vertices. (D) Same as
(C) but taking the crease edges into account. (E) The result of applying 10 steps of Taubin smoothing with fixed vertices on the
tagged edges. Noise present on the boundary vertices remains. (F) The result of applying the new algorithm introduced in this
paper with fixed face normals and vertices incident to tagged and boundary edges.

addition the number of boundary loops L and the number
of boundary edges B, but it is a lot easier just to check the
original inequality. In this case the system can be undercon-
strained. For example, look at the extreme case of F discon-
nected triangles with V = 3F vertices.

Constrained case In the case of triangular meshes with
boundary, where a large number of boundary edges may re-
sult in an underconstrained system of equations, further con-
straints can be imposed by specifying, for example, the posi-
tions of some or all of the boundary vertices. In general, we
will consider the case when C of the vertices are constrained
to be in specified locations. Since the ordering of the ver-
tices is irrelevant, we will assume without loss of generality
that the vertices x1; : : : ; xC are constrained, and the vertices
xC+1; : : : ; xV are free. Since the invariance to translation no
longer applies here, we need to look at the original system of
equations U tX = 0. We partition the matrix U into two ma-
trices U1 and U2. The first one composed of the first 3C rows
of V , and the second one composed of the remaining rows.
We also partition the vector X into X1 and X2 in a similar
manner. The system to be solved can be written as follows

U
t
1X1 + U

t
2X2 = 0 ;

where U1, U2, and X1 are given. For the system not to be un-
derconstrained, we need to have at least as many equations
as variables, i.e., 3(V �C) � 2F . In this case the problem has
a unique solution if and only if the rank of the matrix U2 is
equal to 3(V � C), and the solution is

X̂2 = �U ty
2 V

t
1X1

with Uty
2 = (U2U

t
2)
�1U2 the pseudo-inverse of U t

2 . If the rank
of the matrixU2 is less than 3(V �C) the problem still has free
degrees of freedom, and if the rank is larger than 3(V � C)
the problem has no solution. In this case the least squares
solution is also described by the previous equation.

10.2 Orthogonal Decomposition

Helmholtz decomposition theorem, used extensively in elec-
tromagnetism, states that every smooth vector field in IR3

can be decomposed as the sum of two components: a
rotation-free vector field (gradient of a scalar potential) and a
divergence-free vector field (curl of a potential vector field)

F = r�+r�B :

For vector fields defined on surfaces, Hodge decomposition
theorem states that every vector field on a surface can be de-
composed into three components: a rotation-free vector field,
a divergence-free vector field, and a harmonic vector field
(with zero Laplacian). We seek a similar decomposition of
vector fields defined on the faces of a mesh, where the con-
cept of integrable face vector field on a mesh correspond to
rotation-free smooth vector field on a surface.

In general, in the unconstrained case, given an arbitrary
non-zero vector uf for each face f = (i; j; k) of the triangular
mesh M , the system of equations 19 will have no solution.
Equivalently, the first singular value �1 of the matrix ~U is
positive.

If vertex positions (x1; : : : ; xn) are given and no triangular
face is degenerate (zero surface area), the face vector field uf
can be decomposed as the sum of a normal face field and a

9
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A B

C D

Figure 10: Pre-smoothing of boundary curves. (A) Noisy
mesh with noisy boundary curve. (B) The result of apply-
ing the algorithm introduced in this paper with fixed bound-
ary vertices and faces. (C) Same as (B) but with 2 steps of
Laplacian smoothing along the boundary as a pre-processing
phase. (D) (C) Same as (B) but with 2 steps of Taubin smooth-
ing along the boundary as a pre-processing phase.

tangent vector field. In general, even if some faces defined
by the vertex positions are degenerate, we can define the fol-
lowing face vector field

nf =

(
(xj�xi)�(xk�xj)

k(xj�xi)�(xk�xj)k
if (xj � xi)� (xk � xj) 6= 0

0 if (xj � xi)� (xk � xj) = 0

(21)
For a non-degenerate face nf is a unit length normal vector
to face f defined by the points fxi; xj ; xkg. Otherwise it is
the zero vector. Now we can define the normal component
of uf as uNf = nfn

t
fuf and the tangential component by

uTf = (I � nfntf )uf . If UN and UF are the 3V � 2F matrices
constructed as U in equation 20 from the face vector fields
uNf and uTf , we have U = UN + UT and U t

NUT = 0. In
addition, by construction U t

NX = 0 and the first singular
value of ~UN is zero �N1 = 0 corresponding to the singular
vector ~X . The problem we are facing here is to find vertex
positions X minimizing the tangential error kU t

TXk2=kXk2
defined by the decomposition described above.

Note that, since by construction Ut
NX = 0 and U t

NUT = 0,
we have kUtXk2 = kU t

TXk2, and the solution to this prob-
lem is given by the least squares solution to the original
problem. Solving the system of equations 19 in the least
squares sense is equivalent to the minimization of the follow-
ing quadratic function

 u(x) = kU t
Xk2 =

X
f

X
(i;j)2@f

(u
t
f (xi � xj))

2
: (22)

Since the equations are homogeneous, the first non-trivial so-
lution corresponds to the singular vector associated with the

A B

C D

Figure 11: Application to mesh design in conjunction with
recursive connectivity subdivision operators. (A) Coarse tri-
angular mesh. (B) After two steps of linear triangle quadri-
section with vertices inserted at the midpoints of edges. (C)
After applying the algorithm introduced in this paper with
10 steps of Taubin smoothing on the face normal field, fol-
lowed by 10 steps of linear anisotropic Laplacian smoothing
on the vertex positions. (D) Same as (C) but using 10 steps
of isotropic Laplacian smoothing to smooth the field of face
normals.

first singular value �1 of ~U (�4 of U ). Equivalently,

min
X

kU tXk2
kXk2 = �

2
1 :

Note that in general, the solution to this problem obtained
in this way may define a mesh with degenerate triangular
faces. We leave the problem of determining conditions for
non-degenerate solutions for future study.

A similar line of reasoning can be followed in the con-
strained case, which includes additional linear constraints
(fixed boundary vertex positions).

10.3 Integration Algorithms

The linear anisotropic Laplacian smoothing algorithm intro-
duced in this paper to integrate a field of face normals is a de-
scent algorithm for the quadratic function 22. The anisotropic
Laplacian operator introduced in previous sections is the
negative of the gradient of  u(X), scaled to make it converge
in a stable fashion. Since the function being minimized is
convex, our algorithm converges to the global minimum.

11 Implementation and Applications

The intended application of these algorithms is as tools
in an interactive shape design system. Figure 8 shows a
screen dump of our prototype implementation written in

10
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Java, which integrates a number of related mesh processing
algorithms. All the illustrations presented in this paper have
been generated with this tool.

Overall, in the applications to noise removal a small num-
ber of iterations produce satisfactory results, even for very
large meshes such as the one shown in figure 1. We envision
applications to shape design, where the user interactively
modify the face normal field, and then linear anisotropic
Laplacian smoothing is used to integrate the field of face nor-
mals. In this case the initial position of the vertices may be
very far away from their intended destination, and a large
number of iterations may be needed to produce satisfactory
results. This is so because the length of the displacement vec-
tor defined by the Laplacian operators at a vertex is never
longer than the average length of edges incident to that ver-
tex. In this case a multi-resolution approach is advisable
[11, 12].

11.1 Extensions

We describe in this section a number of potential extensions
and applications. Some are implemented and some are not.
Those implemented are in different states of maturity.

Hierarchical smoothing The hierarchical smoothing ap-
proach described by Taubin [18] can be applied in conjunc-
tion with the algorithm introduced in this paper to achieve
more precise control along boundaries and tagged disconti-
nuity edges, and non-manifold meshes. In addition to the
faces incident to the boundary edges, faces incident to other
tagged edges can be constrained during the face normals
smoothing process to produce interesting effects such as in-
troduction and shape control of creases. Figure 9 shows an
example of this application, comparing different variations
of older algorithms and constraints with the new algorithm
introduced in this paper.

Boundary smoothing If we constrain boundary vertices
and faces not to move at all during the smoothing process,
we may obtain undesirable results along noisy boundaries.
Figure 10 shows additional ways to smooth boundary curves
as a pre-processing step to produce more pleasing shapes.

Vertex normal fields Sometimes mesh normals are speci-
fied at the vertices, rather than the faces of the mesh. If the
mesh is manifold, we can apply the algorithm introduced in
this paper to reconstruct the position of the vertices of the
dual mesh, and then reconstruct the positions of the primal
vertices by dual mesh resampling [20], which is yet another
variation of Laplacian smoothing.

Subdivision meshes The algorithm introduced in this pa-
per can be used to design piecewise smooth meshes as a se-
quence of connectivity refinement and smoothing steps per-
formed within and interactive modelling system [18]. Figure
11 shows some examples of this use in connection with trian-
gle quadrisection as the connectivity refinement operator.

12 Conclusions

In this paper we introduced a new algorithm for polygon
meshes smoothing with vertex position and face normal in-
terpolatory constraints. The algorithm, composed of two
phases where the face normals are first filtered, and the

resulting smooth face normals are integrated, is based on
simple extensions of Laplacian smoothing. In addition, we
demonstrated explicit control of a variety of constraints for
mesh design applications. In our view, the main advantage of
this algorithm is its simplicity and its relation with the Lapla-
cian smoothing family of algorithms that allows a clean, sim-
ple, efficient and elegant implementation.
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