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1 Introduction

As computing systems become more widely deployed and more heavily used, there is increasing demand
for performance improvement. Software developers may not know in advance the types of workloads that
their systems will face, or the variety of hardware platforms that they will run on. Instead of attempting to
optimize the software systems for one particular situation, they often expose many tuning parameters which
can be set by the system administrator. The administrator thus has the ability to set these parameters to
optimize the system’s performance in accordance with some high-level goals. These high-level goals are often
application specific and are designed to satisfy various business needs.

Choosing the correct settings for tuning parameters is not a straightforward job. The best settings will
depend on the hardware on which the system is running, the workloads that the system experiences, as well
as what other jobs are running concurrently on the system. Since the workloads and concurrent jobs can
change over time, a dynamic feedback control strategy is desirable.

In order to employ a feedback control strategy, control input(s) and system output(s) must be selected.
The control input can be chosen to be one or more of the tuning parameters discussed above; some effort may
be required to allow the parameter to be dynamically changeable (as opposed to only set when the system
is booted). An output must be chosen that has meaning for the system and can be reasonably measured.
For example, the response time seen by the user may be a desirable output but not one that is readily
measured. First-principles models (such as those based on Newton’s laws) may be difficult to contruct for
most computing systems; a “black-box” approach is typically called for. Finally, if multiple inputs and
multiple outputs are chosen for the model, the appropriate MIMO control strategy must be chosen.

∗This research was supported in part by IBM.
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The application of traditional control strategies to computing systems encounters a number of obstacles.
Control performance must be defined in a meaningful way, a system model must be constructed, a sample
time must be chosen, and the control options must be evaluated. Although many of these steps are well-
understood in traditional electromechanical systems, the appropriate analogs for computing systems are still
being defined. The definition of “good performance” is especially unclear in computing systems. Certainly,
the system should not crash, but there usually does not exist a prespecified trajectory or reference that the
system should follow. In addition, workloads in computing systems are highly stochastic, and even with
well-defined workloads, the systems themselves exhibit significant stochastic behavior.

In this paper, we will outline the above challenges, and show how these obstacles have been overcome
in the case of an Apache web server. The remainder of the paper is organized as follows. Section 2 provides
background on Apache and describes how the system outputs and control inputs were chosen. Section 3
details our approach to modeling. Section 4 presents and evaluates two controller designs: pole placement
and linear quadratic regulator. Our conclusions are contained in Section 5.

2 Selection of System Outputs and Control Inputs

The first step when implementing a feedback control strategy is the selection of control input(s) and system
output(s). As mentioned in the introduction, the tuning parameters available on the system can be viewed
as the control inputs. System outputs, on the other hand, must be chosen to reflect the high-level goal of the
control strategy and thus should be representative of system performance. In Section 2.1, some background
will be given on the structure of Apache so that readers will have some intuition as to how the chosen control
inputs work. In Sections 2.2 and 2.3, the process used to select the system outputs and control inputs used
in this paper is outlined.

2.1 Apache Architecture

Apache v1.3 on Unix [1] is structured as a pool of worker processes monitored by a master process. The
master process manages the creation, health, and destruction of the worker processes. Each worker process
is responsible for handling communication with the web clients and can handle at most one connection at
a time. The worker process can be in three states: “Idle”, “User Think”, and “Busy”. In the “Idle” state,
the worker is waiting for a client connection. Once a connection is accepted, the worker enters the “User
Think” state, where it waits for an HTTP request. Upon receipt of the request, the worker enters the
“Busy” state, where it remains until the reply is sent. The time between sending an HTTP reply and the
receipt of the next client request is known as the user think time. In HTTP 1.1 [2], a new feature known as
persistent connections was added where the TCP connection can be left open. This avoids the connection
setup overhead for each request and thus reduces the response time perceived by end users. With persistent
connections, either side may potentially close the connection.

2.2 Selection of System Outputs

A number of metrics are used to quantify performance of the Apache web server and make ideal candidates for
system outputs. These metrics include: end-user response times, response times on the server, throughput,
utilizations of various resources on the server, etc. Selection of the appropriate performance metrics will not
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only depend on the high-level goal of the control strategy, but also how easily the metrics are measured. The
latter is especially important for a feedback control strategy.

One high-level goal of control may be to ensure some bound on end-user response times. For example,
service level agreements (SLAs) between internet service providers (ISPs) and their customers often involve
an end-user response time specification. However, because this is a client-side metric which incorporates
network delays, it can not be measured by the server. As a result, it cannot be used in a control strategy
that is implemented on the server-side. One way to overcome this problem is to add instrumentation in the
form of probes that supply an approximation of end-user response times. However this approach results in
additional load on the server and is not always accurate. In addition, using client-side metrics introduces
delays since information needs to be transferred between two systems (the client and the server). Because
of these issues, a control strategy that seeks to limit end-user response times is not considered in this paper.
However, it is an area of future work.

Another high-level goal may be to limit the CPU and memory utilizations (hereafter denoted by CPU and
MEM) associated with the Apache application. Several business needs make these limits necessary, including:
(a) providing sufficient capacity to co-located applications (e.g., file server, database server); (b) avoiding
thrashing and failures as a result of overutilization; and (c) ensuring that there is sufficient capacity remaining
to handle workload surges and/or server failures. CPU and MEM are server-side metrics and thus can be easily
measured. For these reasons, CPU and MEM are used as the system outputs for this paper.

2.3 Selection of Control Inputs

There are a number of tuning parameters that are exposed to optimize the performance of the Apache
web server that can be used as control inputs. Some of these tuning parameters include: “MaxClients”,
“KeepAliveTimeout”, “MaxKeepAliveRequests”, “MaxRequestsPerChild”, and “HostNameLookups”. There
are two considerations when selecting the appropriate tuning parameters to use in a feedback control strat-
egy. First, the parameters must be dynamically changeable. That is, in order to change the parameters
the system should not have to be rebooted. In the case of Apache, none of the available tuning parameters
are dynamically changeable. Hence, parameters that require minimal changes to the Apache source code
are desired. Second, the tuning parameters must affect the selected performance metrics in a meaningful
way. The goal is to create a system model that relates how the tuning parameters affect the performance
metrics. If the selected tuning parameters have little impact on the selected performance metrics, then the
task of creating a system model will become quite cumbersome and the efficacy of the control strategy will
be limited.

Two available tuning parameters that significantly affect utilization of the Apache server are “Max-
Clients” and “KeepAliveTimeout”. The “MaxClients” parameter (MaxClients, abbreviated by MC) limits
the size of the worker pool, thereby imposing a limitation on the processing capacity of the server. A
higher MaxClients value allows Apache to process more client requests increasing both CPU and MEM. But if
MaxClients is too large, there are excessive resource utilizations that degrade performance for all clients.

The “KeepAliveTimeout” parameter (KeepAlive, abbreviated by KA) controls the maximum time a
worker can remain in the “User Think” state before its client connection is closed. If KeepAlive is too large,
CPU and MEM are underutilized since clients with requests to process cannot connect to the server. Reducing
KeepAlive means that workers spend less time in the “User Think” state, and more time in the “Busy” state
(if connection overheads are modest compared with the time for processing requests). Hence, CPU increases.
Although KeepAlive indirectly affects memory by allowing more clients to eventually connect to the server,
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increasing KeepAlive does not have a direct effect on MEM like it does on CPU. If KeepAlive is too small, the
TCP connection terminates prematurely and reduces the benefits of having the persistent connections.

As mentioned above, in the default version of Apache, MaxClients and KeepAlive cannot be changed
dynamically. As a result, the Apache source had to be modified to enable real-time control. A detailed
description of these modifications can be found in [3]. For the remainder of the paper, the tuning parameters
KeepAlive and MaxClients are referred to as the control inputs.

3 Modeling Apache

This section describes our “black box” approach to modeling Apache. In mechanical or electrical systems,
modeling is relatively easy because there are physical laws that govern the interaction between control inputs
and system outputs (e.g., Newton’s law). In computing systems, the relationship between control inputs and
system outputs is not as clearly defined. Looking at experimental data from the Apache server, it is clear
that a relationship exists between the control inputs, the tuning parameters KeepAlive and MaxClients,
and the system outputs, the utilization values CPU and MEM. However, it is not clear how to derive a functional
relationship between KeepAlive, MaxClients and CPU, MEM.

One approach is to start from first-principles and create a queueing model of the Apache server. However,
this approach will quickly become very complicated and would require detailed knowledge about the inner
workings of the server. In addition, the first-principles approach does not translate well once the application
changes. So instead of proceeding from first-principles, an empirical approach is used to quantify the rela-
tionship between the control inputs (KeepAlive and MaxClients) and the system outputs (CPU and MEM).
This approach involves four main steps: (1) determining the appropriate experiments to run (i.e., designing
appropriate input signals); (2) collecting the data from the server; (3) using system identification techniques
to construct statistical models from the data; and (4) validating the models.

The following sections focus on the steps listed above. Section 3.1 describes the experimental environment
used to obtain the data from which the models are constructed. Section 3.2 outlines how input signals were
chosen. Section 3.3 details the methodology used to construct the models, and Section 3.4 evaluates these
models.

3.1 Experimental Environment

Our testbed consists of one server running Apache connected through a 100 Mbps LAN to one or more clients
running a synthetic workload generator. All the machines are Intel-based with a Linux operating system. The
server is a Pentium III 800 MHz with 256 MB RAM. Each client machine runs a synthetic workload generator
that simulates the activity of many clients. The workload model used to generate synthetic transactions is
based on the WAGON model of Liu et al. [4] that has been validated in extensive studies of production web
servers. WAGON structures the workload into multiple sessions (which represent a series of user interactions)
during which there are multiple clicks (end-user requests), each of which generates a burst of HTTP requests
(which represents web pages with multiple objects). Table 1 summarizes the parameters used based on the
data reported in [4]. The file access distributions we use are from the Webstone 2.5 reference benchmark [5].

For our experiments, we have increased the default process limit on the server to 1024. For the heavier
workload, the server CPU can be 100% utilized with a few hundred processes. Hence, the control code ensures
that MaxClients is always an integer value in the range [1; 1024]. For KeepAlive, no maximum value is
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Table 1: Workload Parameters

Parameter Name Distribution Parameters
Session Length (# clicks) LogNormal µ = 8, σ = 3
Burst Length (# URLs) Gaussian µ = 5, σ = 3
User Think Time (s) LogNormal µ = 30, σ = 30
Session Inter-arrival time (s) Exponential µ ∈ {0.05(heavy) , 0.5(light) }

enforced, but the timeout values are in integral seconds, with a minimum of 1 second. With the nature of the
workload, KeepAlive values above 50 do not significantly affect server utilizations, and KeepAlive values
larger than 20 have only a small effect (depending on the current value of MaxClients). While it is feasible
to have fractional values for KeepAlive, the default implementation of Apache uses integral values, and we
have not changed this.

3.2 Design of Input Signals

The main task when deciding which experiments to run whose data will be used to construct a model of the
system is designing a sufficiently rich input signal. The control inputs must be varied in a manner so that
two properties are satisfied. First, the input signal should be persistently exciting; it should contain enough
frequency content to excite all of the dynamics of the system [6]. In addition, there should be dense and
uniform coverage of the operating region in which the model will be used. However, care is required to avoid
highly nonlinear regions since a poor model fit will result, although separate models can be constructed for
these regions.

In the case of the Apache server, the operating region is constructed by considering the saturation limits
of the control inputs (KeepAlive and MaxClients). Discrete sine waves are used for both MaxClients

and KeepAlive. This is done so that there are both high frequency components (in the form of the steps)
and low frequency components (the frequency of the sine wave) that are sufficient to identify A and B.
The MaxClients sine wave has a period of 500 seconds, a mean of 600, and an amplitude of 500; values
of MaxClients greater than 1024 are saturated to this value by the control implementation as noted in
Section 3.1. The KeepAlive sine wave has a period of 1200 seconds, a mean of 11, and an amplitude of 10.
The frequencies of the two sine waves were designed to be relatively prime within the length of time of the
server run so that the individual effect of each control input can be properly determined.

Figure 1(a) plots the data from the server run using the discrete sine wave input signals as the control
inputs and the heavy workload as parameterized by Table 1. Figure 1(b) shows the coverage that the two
discrete sine wave signals provide of the operating region when used concurrently.

3.3 System Identification

There are a number of methods available to aid in the construction of a model that captures the relationship
between the control inputs and system outputs. We chose to fit a linear time invariant (ARX) model to the
data. A linear model does not even attempt to capture the stochastic or nonlinear nature of this system.
So why did we choose it? If a linear model adequately captures the relationship between control inputs and
system outputs, then linear control theory can be used to design a relatively simple feedback controller with
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Figure 1: (a) Experimental data with discrete sine wave inputs. (b) Coverage of operating region when
discrete sine waves are used concurrently as in (a).

guaranteed properties within a certain operating region. Even when a full nonlinear model of a system is
available, the first step is often to design a controller based on its linearization. In addition, the model is
used specifically for controller design and hence extremely accurate predictions are not required.

The form of the linear model is shown in Equation (1), with parameters A and B estimated using least
squares regression. Note that this is a MIMO model; A and B are both 2× 2 matrices. A first-order model
was chosen for simplicity and because increasing the order of the model did not significantly increase the
quality of the model (the R2 increased by less than 2%). We use time-averaged values of the system outputs
to reduce measurement overhead and also because the inherent variability of the metrics (CPU in particular)
makes instantaneous control impractical. Hence, yk[uk] in (1) denotes the average value of y[u] over time
interval k.

yk =

[
CPUk

MEMk

]

uk =

[
KAk

MCk

]

yk+1 = A · yk + B · uk (1)

3.3.1 Selection of Sample Time

The choice of averaging interval (sample time) is a key factor that affects the performance of the controller.
However, because the system in question is inherently discrete and stochastic in nature and not a sampled
continuous process, it is not clear what measure should be used to determine how often sampling should
occur. A short sample time enables the controller to react to changes in the system quickly but increases
measurement overhead. A long sample time keeps the controller from overreacting to random fluctuations
by averaging out the stochastics of the metrics, but will also yield a slow response.

In order to negotiate these competing goals, a sample time study is performed. First-order linear models
of the form in (1) were created at many different sample times using the data set plotted in Figure 1. Sample
times were chosen so that they divide the amount of time each step in the discrete sine waves is held for (60
seconds). This prevents an interval from sharing two different values of a control input and hence ensures
that the effect of changing control inputs is clearly captured.
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Figure 2: Models of the form in (1) were identified using seven different sample times (averaging intervals).
At each sample time, the eigenvalues of the A matrix were calculated both for the identified discrete-time
model and its continuous-time equivalent (converted using zero-order hold). The resulting collection of
eigenvalues are plotted verses sample time.

Figure 2(a) and (b) plot the eigenvalues of the A matrix of the identified discrete-time models as well as
their continuous-time equivalents (converted using zero-order hold). It is expected that the eigenvalues of
the discrete-time model will change as sample time changes (z = eT ·s). On the other hand, the eigenvalues
of the continuous-time equivalent should be fairly constant, regardless of sample time, if a continuous-time
model of the system exists. Inspecting Figure 2(b), it is clear that at low sample times different dynamics
are being captured by the model than at high sample times. This is probably because at low sample times,
the variability in the CPU metric is skewing the model parameters. However as sample times increase above
5 seconds, the eigenvalues seem to converge.

Figure 3 plots the frequency response of the identified discrete-time models. Because a full first-order
model was identified (no assumption was made about the form of the A or B matrices), four transfer functions
exist: (1) KA→ CPU, (2) KA→ MEM, (3) MC→ CPU, and (4) MC→ MEM. The number of each transfer function
corresponds to the number of the subplot in Figure 3 in which the frequency response of the transfer function
is plotted. Why is the gain of all these transfer functions so small? The control inputs were chosen because
they impacted the system outputs in a meaningful way. The answer lies in the ranges of the system outputs
and control inputs.

The range of both CPU and MEM is [0,1]. The range of KeepAlive is [1,20] and the range of MaxClients
is [1,1024]. Thus, the transfer functions from KA to CPU and from KA to MEM include a scaling factor on the
order of 10−1. Similarly, the transfer functions from MC to CPU and from MC to MEM include a scaling factor on
the order of 10−3. From this analysis, it is expected that at low frequencies the response in subplots (1) and
(2) should lie around -20 dB (20 · log10(10−1)). Similarly, the response at low frequencies in subplots (3) and
(4) should lie between -60 dB (20 · log10(10−3)). Subplots (1),(3), and (4) confirm this prediction. Subplot
(2) does not; at low frequencies, the response lies around -60 dB. As mentioned in 2.3, KeepAlive does not
directly affect MEM. Hence, the model should identify a zero transfer function from KA to MEM. This explains
why the response in subplot (2) is almost 30 dB lower than the response in subplot (1) at low frequencies.

It is clear that all the models have similar frequency responses over the low frequency range. Thus, even
though the dynamics captured by the model are different at lower sample times, the steady state gain of
the system is the same. At higher frequencies, the response of the identified models starts to diverge as
expected. This is because as sample time decreases, the bandwidth of the system increases.

For the rest of this paper, a sample time of 5 seconds is used. From Figure 2, we know that the identified
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Figure 3: The frequency response of the discrete-time models at various sample times. The four subplots
contain the Bode magnitude plots (in dB) of the four transfer functions contained in our system. In the first
row, CPU is the output; in the second row, MEM is the output. In the first column, KA is the input; in the
second column, MC is the input. In each subplot, the seven lines represent the response of the seven models
(each identified at a separate sample time).
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the predicted value. The line indicates when the actual equals the predicted value, which occurs when the
model is perfect. (c) Results of multi-step prediction. In each plot, the solid line is the experimental data
and the dashed line is the model prediction.

model is similar at sample times larger than 5 seconds. Hence, we chose 5 seconds as the smallest sample
time with this similarity property. A sample time of 5 seconds is large enough to filter out the stochastics
of the metrics while at the same time allowing for a decent speed of response. The parameters of the model
are given in (2).

[
CPUk+1

MEMk+1

]
=

[
0.537 −0.109

−0.0256 0.630

]
·
[

CPUk

MEMk

]
+

[
−84.5 4.39
−2.48 2.81

]
× 10−4 ·

[
KAk

MCk

]
(2)

3.4 Model Evaluation

Two model evaluations are done. The first is one-step prediction in which the value of a metric at time k +1
is predicted based on the measured values at time k. The second is multi-step prediction in which the value
at k + 1 is predicted based on the predictions at time k.

Figure 4(a) and (b) plot the quality of fit for the identified model given in (2) using one-step prediction on
the same data set used to identify the model. For a perfect model, the predicted values equal the measured
values and thus lie on the line of unit slope. The R2 value (a measure of the amount of variability in the
data captured by the model) for CPU is greater than 90%. The R2 value for MEM is greater than 98%.

Figure 4(c) plots the response of both the real system and the multi-step prediction of the model given
in (2) to a series of step changes in KeepAlive and MaxClients. Overall, the model does a good job of
predicting system response (especially for MEM where there is little variability). However, there are regions
in which the accuracy of the model degrades, especially when KA = 6 and MC = 800. This occurs due to
limitations of the linear model. It is most accurate near the center of the operating region (KA = 11 and
MC = 600) and less accurate near the edges or outside of this region.
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4 Controller Design

The block diagram of the closed loop system is shown in Figure 5. The reference is comprised of the desired
utilizations for CPU and MEM, denoted by CPU* and MEM*. The controller acts on the error between the desired
and measured utilizations, denoted by ECPU and EMEM, to determine the next values of the control inputs,
KeepAlive (KA) and MaxClients(MC). In this approach, the job of the administrator is shifted from directly
setting the tuning parameters to supplying the desired utilization values. However, determining feasible
regions for the desired utilizations (i.e. the reference) is not a straightforward process, especially since the
two utilizations are interrelated (they both depend on MaxClients). The model of the system created in
Section 3.3 can be of great assistance in this process. Section 4.1 will explore how the DC gain of this model
can be used to determine feasible regions for the reference.
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Figure 5: Block Diagram of Feedback System for Control of CPU and Memory Utilizations

The goal of the feedback control strategy is to track the desired utilizations, which implies responding
to changes in these values in a reasonable amount of time. However unlike traditional control systems, a
reasonable amount of time may be on the order of minutes. An aggressive controller is not necessary to
realize this type of response.

In fact, in many ways, aggressive controllers are undesirable in computing systems. Aggressive con-
trollers often utilize high gains which cause excessive reactions to stochastics present in computing systems.
Stochastics act like noise in system outputs and cannot be controlled. In addition, aggressive controllers
mandate drastic changes in control inputs, which is also undesirable in computing systems. Often, these
drastic changes will lead to saturation which can cause instability in the form of limit cycles as seen in [7].
For these reasons, our methodology focuses on the design of a low gain controller. Design of this controller
will involve negotiating the trade-offs between speed of response and overreaction to noise in system outputs.

Although it is not necessary that the controller yield “fast” response, it is desired that the controller be
robust. That is, it should able to handle changes in workload. This is necessary because workloads are often
unknown; and even when they are known, they change over time. Because the controller is designed using
a model of the system identified at a specific workload, it is desired that the controller be robust to changes
in that model (at a different workload, different model parameters would be identified).

Because of its robustness and in an attempt to narrow down the space, a proportional integral (PI)
controller is selected. The PI control control law is shown in (3). In this law, uk is the 2 × 1 vector of
control inputs given in (1) and ek = rk − yk is the 2 × 1 vector of errors between the reference values,
rk = [CPU∗k MEM∗k]T , and the system outputs yk as given in (1). Note that this is a MIMO controller; KP

and KI are both 2× 2 matrices

uk = KP · ek + KI ·
k−1∑

j=1

ej , (3)
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Initially, pole-placement was used to determine appropriate values for the matrix gains, KP and KI .
However, the standard algorithm to solve for the gains using the desired closed loop pole locations and the
open loop system model decouples the closed loop system. This implementation results in unnecessarily large
control gains which results in a degradation of control performance. In order to overcome this shortcoming,
LQR was used to design the gains. The LQR approach gives us greater authority to negotiate the trade-off
between speed of response and overreaction to noise in system outputs. Sections 4.2 and 4.3 will go into
greater detail about these two design approaches. Section 4.4 will explore the robustness of our best LQR
controller.

4.1 Feasible Reference Values

A common problem in practice is determining the feasibility of references for interrelated metrics. In the
case of the Apache server, there may exist combinations of CPU and MEM that cannot be achieved, at least
not using the control inputs KeepAlive and MaxClients. Thus, it is desirable for administrators to know
whether or not a reference is feasible using the available controls.

Using (2), we can predict feasible reference values of the system outputs, CPU and MEM based on the
ranges of the control inputs, KeepAlive and MaxClients. This is illustrated in Figure 6. Part (a) displays
the range of KeepAlive and MaxClients used. This range was created using the range of the control inputs
in the data set plotted in Figure 1. In part (b), the bold x’s represent candidate (CPU, MEM) references for
the Apache system. The solid parallelogram is the feasible region predicted by the model in (2). Only two
of the x’s are predicted as being feasible by the model for the inputs in Part (a).

We now explore the unfeasible references (as predicted by the model) in more detail. Inverting the DC
gain of the model, we can determine the inputs needed to realize these reference values. For (CPU= 0.3, MEM=
0.7), we determine that the inputs should be (KA= 30, MC= 800). That is, the model predicts that this point
cannot be achieved within the range of inputs considered in Part (a). Our experimental results confirm this,
although they also show that (CPU= 0.3, MEM= 0.7) can be realized if larger values of KeepAlive are used.
For (CPU= 0.8, MEM= 0.4), the model determines that (KA= -10, MC= 450). This cannot be attained since
KeepAlive cannot be negative. Our experimental results confirm that (CPU= 0.8, MEM= 0.4) is not a feasible
combination of reference values. The three circled x’s are all feasible and are used in Sections 4.2 and 4.3.

4.2 Controller Design using Pole Placement

The starting point when designing a controller via pole placement is usually the desired closed loop pole
locations. These pole locations are typically derived from desired transient specifications such as maximum
overshoot and settling time. As mentioned earlier, precise specifications for the transient response of the
closed loop system do not exist. Instead, a controller with low gain is desired.

In an attempt to design a low gain controller, we specify the transient specifications of our closed loop
system based upon the transient response of our open loop system. By doing this, we hope to use minimal
control effort because the controller is not attempting to move the poles of the open loop system. Our
experimental measurements suggest that the settling time is 60 seconds for CPU and 40 seconds for MEM.
However because we are using a PI control law, two additional poles are introduced by the controller.
The settling time specifications only consider the poles of the open loop system, and hence another set
of specifications is needed in order to fully constrain the four desired closed-loop poles. So the maximum
overshoot is chosen to be 5% for CPU and 0.2% for MEM. Using these transient specifications, the standard
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Figure 7: Performance of the two controllers. The solid lines are experimental data, the dash-dotted lines
show the prediction of the model, and the dashed lines indicate the reference values for CPU and MEM utiliza-
tions.

algorithm as implemented in MATLAB was used to calculate a set of gains that would yield the desired
closed loop response. These gains are shown in Table 2 and result in a decoupled closed loop system.

The control performance is shown in Figure 7(a). The large control gains result in excessive control reac-
tion to the stochastics of the system and thus large changes in the control inputs KeepAlive and MaxClients.
Moreover, since the closed loop poles have imaginary parts, the closed loop response is oscillatory.

4.3 Controller Design using LQR

Because the transient response of the closed loop system is not the key design consideration, the pole-
placement approach is not really the best method to use for this system. As mentioned before, LQR allows
us to negotiate the trade-offs between speed of response and overreaction to noise in system outputs. LQR
finds gains that minimize the quadratic cost function shown in (4), where ek is defined as in (3) and vk is
the state added by the integrator. By selecting appropriate weighting for Q and R, we can ensure that the
control inputs (tuning parameters) do not get too large, and thus, in effect, design a low gain controller.
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Table 2: Control Gains and Resulting Closed Loop Poles

Controller KP KI Closed Loop Pole Locations Settling Time (s)

Pole Placement

"
−31 114

−106 2121

# "
−22 44

−14 921

#
0.66 ± 0.25 i, 0.51± 0.16 i 57

LQR

"
−32 31

193 890

# "
−12 9

75 335

#
0.81, 0.72, 0.68, 0.36 91

J =
∞∑

k=1

[ek vk]T ·Q ·
[

ek

vk

]
+ uk

T ·R · uk (4)

The control design problem has now shifted from determining the desired closed-loop poles to choosing the
weighting matrices Q and R. Since CPU and MEM are in the range from 0 to 1, the valid region for KeepAlive
is from 1 to 50, and MaxClients can vary from 1 to 1024, we choose R = diag(1/502, 1/10002) to scale the
inputs to be on the same order of magnitude as the control errors. Then, we choose Q = diag(1, 1, 0.1, 0.2)
to weight the control errors more heavily than the accumulated control errors.

Using this method, we have designed a less aggressive controller with smaller gains; KP and KI are given
in Table 2. The transient performance of the closed loop system can be inferred from the closed loop pole
locations [8]. The dominant closed loop pole is located at 0.81, which predicts a settling time of 91 seconds.
Moreover, since this closed loop pole has no imaginary part, the closed loop system should be less oscillatory.
The control performance is shown in Figure 7(b). It is clear that both control inputs have been reduced, and
CPU and MEM are less oscillatory than before. At the same time, the controller is still fast enough to track
the desired utilizations.

4.4 Controller Robustness to Changes in Workload

The experimental results presented thus far used only a single workload – the heavy workload described in
Section 3.1. In practice, however, the workload is unknown a priori and changes over time. To determine
how well our feedback control design performs in the presence of these unknowns, we ran an experiment
with a different workload. In the heavy workload, the session arrival rate was 0.05; we change this to 0.5.
We did not rebuild the system model or redesign the controller; the LQR controller of Section 4.3 is used.
The experimental results, shown in Figure 7(c), indicate that even though the model prediction is not very
accurate, the controller still performs well.

5 Conclusions

The wide-spread use of information technology has motivated the need for performance management of
computing systems. Frequently, software developers expose a number of tuning parameters to aid in the
optimization of system performance. The challenge then becomes to devise a method for translating the
desired performance into appropriate settings of the available tuning parameters. The best settings will
depend on the hardware on which the system is running, the workloads that the system experiences, as well
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as what other jobs are running concurrently on the system. Since the workloads and concurrent jobs can
change over time, a dynamic feedback control strategy is desirable.

The application of traditional control strategies to computing systems encounters a number of obstacles.
Control inputs and system outputs must be selected, a system model must be constructed, a sample time must
be chosen, and the control options must be evaluated. Although many of these steps are well-understood in
traditional electromechanical systems, the appropriate analogs for computing systems are still being defined.
In addition, workloads in computing systems are highly stochastic, and even with well-defined workloads,
the systems themselves exhibit significant stochastic behavior.

This paper describes the use of MIMO techniques to track desired CPU and memory utilizations of an
Apache web server. The issues mentioned above are addressed in the context of this application in the hopes
of providing a general framework for the control of computing systems. Creation of a MIMO model captures
the interactions between CPU and MEM and thereby provides an accurate model of the real system. Having this
model is of particular benefit in determining feasible reference values. It is shown that controllers designed
using the model work well when designed properly and are robust to changes in workload.

Most computing systems have many tuning parameters (dozens or more) that all interact to affect
the metrics of the system. This work is the first step towards showing how MIMO techniques can be used.
Future work will involve applying the same approach to more general examples with more tuning parameters
and metrics. It would be particularly interesting to see how well MIMO techniques work on systems that
have more tuning parameters than metrics, which is typical in computing systems. In addition, we would
like to understand the limits of the models we employ when dealing with notoriously non-linear metrics
such as response times. We believe that linear models will be effective if the models are applied within
appropriate operating regions (e.g., workloads), and the models are adapted appropriately as the operating
region changes. Finally, the selection of sample time remains an ongoing research issue.
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