
RC22224 (W0110-088) October 31, 2001
Computer Science

IBM Research Report

Access Rights Analysis for Java

Larry Koved, Aaron Kershenbaum, Marco Pistoia
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Access Rights Analysis for Java
Larry Koved

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, New York 10598

koved@us.ibm.com

Marco Pistoia
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, New York 10598

pistoia@us.ibm.com

Aaron Kershenbaum
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, New York 10598

aaronk@us.ibm.com

ABSTRACT
Java™ 2 has a security architecture that protects systems from
unauthorized access by mobile or statically configured code.
The problem is in manually determining the set of security access
rights required to execute a library or application. The
commonly used strategy is to execute the code, note authorization
failures, allocate additional access rights, and test again. This
process iterates until the code successfully runs for the test cases
in hand. Test cases usually do not cover all paths through the
code, so failures can occur in deployed systems. Conversely, a
broad set of access rights is allocated to the code to prevent
authorization failures from occurring. However, this often leads
to a violation of the “principle of least privilege.”

This paper presents a technique for computing the access rights
requirements by using a context sensitive, flow sensitive,
interprocedural data flow analysis. By using this analysis, we
compute at each program point the set of access rights required
by the code. We model features such as multi-threading,
implicitly defined security policies, the semantics of the
Permission.implies method and generation of a security policy
description. We implemented the algorithms and present the
results of our analysis on a set of programs. While the analysis
techniques described in this paper are in the context of Java
code, the basic techniques are applicable to access rights analysis
issues in non-Java-based systems.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Computer–aided
software engineering (CASE).

D.2.4 [Software/Program Verification]: Format methods,
Validation.

D.2.5 [Testing and Debugging]: Code inspections and walk-
throughs, Diagnostics, Testing tools (e.g., data generators,
coverage testing), Tracing.

General Terms
Security, Languages.

Keywords
Security, call graph, invocation graph, data flow analysis,

Java security, access rights.

1. INTRODUCTION

Java™ 2 has a security architecture intended to protect client and
server systems from dynamically installed (e.g., mobile code) or
statically configured malicious code [13] [14] [15] [23]. Applet
code is downloadable from the Internet into a Web browser [23]
[19], and uploadable via RMI [22] into a server application. The
Java 2 security system contains an authentication subsystem and
an authorization subsystem. This paper focuses on the
authorization subsystem, automating the determination of access
rights needed to execute the code.

Prior to deploying application or library code in Java, a critical
question arises: “What Java access rights are required to allow
the code to execute?” In practice this problem is solved
empirically. The developer reads documentation for libraries
used (including the Java run-time libraries) and deduces the
required access rights. Unfortunately, this documentation is
often missing, misleading, or out of date. In the absence of
reliable documentation, the developer executes the new code and
observes authorization failures. The developer then grants
additional access rights and retests. The developer repeats this
process, possibly many times, until there are no authorization
failures. However, required access rights requirements can
remain undiscovered due to an insufficient number of test cases,
rendering the code unstable.

An analogous situation arises in systems where mobile code is
dynamically installed and the system administrator (e.g., the
Web browser user) must determine the set of access rights to
provide. The system administrator usually relies on the code
developers’/distributors’ recommendations, with the risk that too
many access rights are granted and security holes are created.
Alternatively, the system administrator runs the code with a
smaller set of access rights, examines failures, and incrementally
adds access rights as is necessary. This process is tedious and
error-prone. As before, insufficient testing results in improper
authorizations, creating security exposures or application
instability.

1

This paper describes a technique based on context sensitive data
and control flow analyses to automatically determine access
rights required by Java programs or libraries. We use a modified
interprocedural invocation graph, called an access rights
invocation graph (ARIG), to compute the access rights.

In Java, access rights are modeled using the Permission class
hierarchy. The root of the class hierarchy is the abstract class
java.security.Permission. By default, all Permissions are
“approval” of access rather than “denial.” A Permission object is
an instance of a subclass of java.security.Permission. For
instance,

perm = new FilePermission(“/tmp/abc”, “read”);

creates a Permission object to read the file “/tmp/abc”. In our
analysis, we compute the set of Permission objects to associate
with each program point by constructing an ARIG to propagate
the access rights. An ARIG consists of nodes corresponding to
AccessController’s checkPermission and doPrivileged methods,
which are the boundary nodes, as well as all nodes in the
invocation graph in all paths between the boundary nodes and
from the boundary nodes to the root nodes.

To summarize, the main contributions of this paper are:

• We present a context sensitive, flow sensitive analysis for
computing the access rights requirements of a program.

• We model features such as multithreading, implicitly
defined security policies, semantics of the
Permission.implies method, and the generation of a security
policy description.

• We use a modified invocation graph, an ARIG, to propagate
access rights.

• We implemented the algorithms and present test results
from the use of our tool.

·Our analysis technique is scalable enough to produce usable
results on problems with an analysis scope of over 20,000
classes.

2. Prior Work
Both static and dynamic analysis techniques are employed in
modeling security and authorization. Much of this work has been
applied to eliminate or minimize redundant authorization tests or
define alternatives to the current approach to defining
authorization points within code.

Pottier, Skalka and Smith [25] extend and formalize Wallach’s
security passing style [31] via type theory using a λ-calculus,
called λsec. Pottier, et al, were unable to model all of Java’s
authorization characteristics, including multithreaded code and
“open world” analysis. Nor does it consider computing the
authorization object, which often includes identifying the String
parameters to the Permission objects’ constructor. All of these
strongly affect the completeness of an authorization analysis.

Jensen, Métayer and Thorn [17] focus on proving that code is
secure with respect to a global security policy. Their model uses
operational semantics to prove the properties, using a two-level

temporal logic, and shows how to detect redundant authorization
tests. They assume all of the code is available for analysis, and
that a call graph can be constructed for the code, though they do
not do so themselves. The results are also limited by an
assumption that security properties can be expressed solely in
terms of the control flow and call graph of the program. For
Java, essential authorization information is based on values
(usually string constants) propagated to authorization tests.

Bartoletti, Degano and Ferrari [5] are interested in optimizing
performance of run-time authorization testing, by eliminating
redundant tests and relocating others as is needed. The reported
results apply operational semantics to model the run-time stack.
Similarly, Banerjee and Naumann [4] apply denotational
semantics to show the equivalence of “eager” and “lazy”
semantics for stack inspection, provide a static analysis of safety
(the absence of security errors), and identify transformations that
can remove unnecessary authorization tests. Significant
limitations to this approach are that the analyses are limited to a
single thread, and require whole program analysis. Also, the
Permission.implies and Permissions.implies methods, including
AllPermission, are not modeled. Modeling these classes and
methods are important when simplifying the access rights policy
descriptions so that the results are usable.

In the aforementioned works, assumptions are made that (1) call
graph algorithms are available to translate the theoretical
approach into a practical implementation, and (2) there is an
authorization object, p, and a single authorization point, the
checkPermission method. For Java 2 this is not correct. Almost
all of the code in the Java runtime calls one of the
SecurityManager authorization methods, though many of these
methods subsequently call AccessController.checkPermission.
Many of the well-known call graph and data flow algorithms [16]
are too conservative to correctly identify authorization
requirements. In this paper we describe an invocation graph and
data flow analysis that minimizes the conservativeness to get
more accurate authorization information.

Felten, Wallach, Dean and Balfanz have studied a number of
security problems related to mobile code [32] [11] [31] [9] [30]
[10] [8]. In particular, they present a formalization of stack
introspection, which examines authorization based on the
principals (signers and/or origin of the code) currently active in a
Thread stack at run-time, as is found in Java. In particular, an
authorization optimization technique, called security passing
style, encodes the security state of an application while the
application is executing [31]. Each method is modified so that it
passes a security token as part of each method invocation. The
token represents an encoding of the active principals (security
state) at each stack frame, as well as the result of any
authorization test encountered. By running the application and
encoding the security state, security passing style explores
subgraphs of the comparable invocation graph, and discovers the
security states and authorizations associated with those states.
Wallach assumes that all authorization tests are temporally
invariant, so that once an authorization test succeeds or fails in a
particular security state, it will always succeed or fail in that
state. In Java 2 this invariance does not exist. A

2

Permission.implies invocation can revoke a class’ access rights,
or may use state unrelated to the runtime stack when determining
the result of the test. In practice, especially in web server
environments, access rights are revoked while the JVM is
running. Our approach is not to optimize the authorization
performance, but to discover authorization requirements by
analyzing all possible paths through the program, even those that
may not be discovered by a limited number of test cases.

Rather than analyzing security policies as embodied by existing
code, Erlingsson and Schneider [12] describe a system that
inlines reference monitors into the code to enforce specific
security policies. The objective is to define a security policy and
then inject authorization points into the code. This approach can
reduce or eliminate redundant authorization tests. We examine
the authorization issue from the perspective of examining an
existing system containing authorization test points. Through
static analysis, we discover how the security policy needs to be
modified / updated to enable the code to execute.

3. Authorization Model – Access Rights
Invocation Graph (ARIG)

Each Java application class is loaded into the Java Virtual
Machine and is associated with a set of rights, or privileges,
granted to the code. Statically determining this set of rights is
nontrivial because it involves identifying, as accurately as
possible, the precise set of methods callable from any point in a
program execution. If any method is omitted, the analysis is
incomplete. Conversely, when the analysis is overly conservative,
the large number of false positives violates the principle of least
privilege [26], rendering the analysis ineffective for practical use.

We model the Java 2 authorization algorithm using a graph and
set theoretic approach as follows. Let ()ENG ,= be the

invocation graph representing a program P. The nodes are
described by (){ |,, PRMn=N M is the target method, with

receiver R and k parameters
kiiP
,,1K==P , where parameter i

can have possible types Pi}. Each node represents the
intraprocedural analysis of a method, including the virtual call
sites within the method, and subsumes the control flow graph for
that method. The edges are described by

() ()(){ |,,,,, sssspppp RMnRMne PP=E Ms is invoked within

Mp}.

Given a node N∈n , we define () (){ }E∈′∃′=Γ+ nnenn ,|: and

() (){ }E∈′∃′=Γ− nnenn ,|: , known as the outward and inward

adjacencies of n, respectively.

We can extend these definitions to sets of nodes. Thus, given

N⊆N , we define () ()U
Nn

nN

∈

++ Γ=Γ : and () ()U
Nn

nN

∈

−− Γ=Γ : .

We also define:

(){ }φ=Γ∈= − nnN |:root N , the set of root nodes for the

invocation graph

(){ MRMnN |,,:dp P= is AccessController.doPriviledged}

(){ MRMnN |,,:cp P= is AccessController.checkPermission}

We define ()dprootstart : NNN −Γ= U and cpstop : NN = .

For any node n, we define ()nRP to be the set of required

Permissions for n. Similarly, given a set of nodes N⊆N , we

define ()NRP to be the required Permissions for the nodes in N.

This implies that () ()U
Nn

nN

∈

= RPRP .

For each node N∈n , the algorithm determines ()nRP by

starting from ()stopNRP , and tracing paths back from nodes in

Nstop to nodes in Nstart. For each node n in Nstop, ()nRP is

defined to be the set containing the single element p, where p is
the Permission being checked at n.

Thus, if we define ()nCP to be the Permission checked at n

itself, we have ()
{ }

∉∀

∈∀
=

cp

cp

,

,

NnΦ

Nnp
nCP

For any node N∈n , if there is a path ()sn,π from n to another

node s, n requires all the Permissions that s does. Therefore, it
must be () ()sn RPRP ⊇ . We thus compute ()nRP recursively

from () () ()
()
UU

sns

snn

,| π∃∈

=
N

RPCPRP .

Since, in general, G contains cycles, the algorithm is a fixed-
point computation, starting with estimates for ()sRP for every s

in Nstop and working backwards, using the −Γ function, along
paths towards nodes in Nstart. This process associates a set of
required Permissions ()nRP with each node n in Nstart. More

precisely, it computes ()nRP for all N∈n .

Finally, ()CRP , the set of Permissions required for a class C,

can then be computed as () ()
()
U

CNn

nC

∈

= RPRP , where ()CN is

the sets of nodes n whose methods are declared in class C.
Indeed, in this manner, we can compute ()NRP for any set of

nodes N⊆N .

Note that Permissions propagated upwards via a doPriviledged
node do not propagate beyond the predecessor of the
doPrivileged node. Thus, the above definition (or the algorithm

3

based on it) must be refined to replace ()n−Γ by ()pn,−Γ ,

where ()
()

Γ

=Γ−

otherwise,

nodeeddoPrivilegavia

toupwardspropagatedwaswhen,

,
- n

np

pn

φ

Lastly, many security authorization tests in Java 2 are made
through calls to methods in the SecurityManager class. In the
reference implementation of this class, most of the
SecurityManager authorization tests are performed by calling
AccessController.checkPermission with an appropriate
Permission object.
Details about the classes, objects and algorithms employed by
Java 2 authorization are treated in-depth in Gong’s and Pistoia’s
Java 2 security books [15] [23].

It can be seen that the data flow analysis described above does
indeed converge to a fixed point by observing that the transfer
function relating the value of RP(n) at the output of any
invocation graph node, n, to its value at the input to that node is
in fact the identity function and the value of RP(n) at the input to
a node n is formed from the values at the outputs of nodes in

()n−Γ by means of a set union operation. Thus, RP(n) is
monotone, specifically it is a non-decreasing function as our
computation proceeds. The values of the RP(n) at each
invocation site form a lattice [18] and, since the set of types
within our analysis scope is finite, we are guaranteed that the
computation converges to a unique fixed point in finite time,
regardless of the order in which we visit the nodes in the
invocation graph.

4. Invocation Graph Characteristics

We use a path-insensitive, flow-sensitive, context-sensitive
invocation graph. A path-insensitive invocation graph analyzes
all paths through all basic blocks in each method. Because Java
2 authorization is based on associating rights with classes, a
path-insensitive invocation graph construction algorithm is
sufficient. The invocation graph is flow-sensitive for
intraprocedural analysis because it considers the order of
execution of the instructions within each basic block, accounting
for local variable kills and casting of object references. The
invocation graph (interprocedural analysis) is context-sensitive
because it uniquely distinguishes each node by its calling
context: the target method, receiver and parameters values.

For the purposes of describing the Permission culling algorithm,
the invocation graph has the following characteristics:

• Each node in the graph represents a context sensitive
method invocation.

• Each node in the graph is uniquely identified by its calling
context, so no two nodes in the graph have the same calling
context.

• Each node in the graph contains the following state:
o The target method.
o For instance methods, an allocation site (or type) for

the method’s receiver.

o All parameters to the method, represented as a vector
of sets of possible allocation sites (or possible types).

o A set of possible return value allocation sites (or types)
from this method.

• The edges in the graph are directed, where each edge points
from a call site to a target method.

• The graph is rooted and may be cyclic.
• Our representation of the graph allows bi-directional

traversal, even though the edges in the graph are
unidirectional. Therefore, from any node within the graph,
we can find all of its predecessor nodes.

In addition to the invocation graph construction, we use a data
flow analysis with a precision to the level of allocation sites
(CFA(1) [27]) and include the propagation of string constants. In
a limited number of cases, data flow on Permission objects is
computed using a CFA(2)-like algorithm to reduce the
conservativeness of the analysis. We are particularly interested
in the string constants since they are used as parameters to
Permission object constructors. The string constant values
passed to the constructor fully qualify the access rights
requirement.

5. The Permission Culling Algorithm

We describe an algorithm to statically identify the set of rights
required by each analyzed class. The algorithm identifies paths
in an invocation graph [2] [3] [6] [7] [28] [29] leading to
AccessController.checkPermission nodes. By using a data flow
analysis [21] the algorithm determines the set of possible
Permission objects that could be passed as the argument to this
method.

5.1 The Basic Permission Culling Algorithm

The basic algorithm uses the ARIG previously described. The
data flow identifies the set of Permissions representing the
access rights required for each analyzed call site and then
aggregates these Permissions by the calling methods and their
declaring classes. The algorithm identifies all nodes in each path
bounded by any Nstart node and an Nstop node and associates a set
of Permissions with each of the nodes in the path. In a running
system, each checkPermission method call has a single
Permission object passed as an argument. In our analysis, which
is path insensitive, this argument is a set of possible Permissions.

Each method in the path, and the method’s declaring class, is
marked as requiring the set of Permissions. In addition, the
String parameters from Permission constructors are obtained
through the data flow analysis. The parameter values provide
necessary qualification of the authorization requirement. A
typical authorization is described by constructor call
FilePermission("/tmp/file1","write"). Pseudo code for this
algorithm is in Appendix 1. The following figure graphically
represents the Basic Permission Culling algorithm:

4

AccessController.
doPrivileged()

PrivExcAction.run()

SecurityManager.
checkPermission(p)

pp

pp

pp

pp

pp

pp

qq

qq

qq

qq

qq

AccessController.
checkPermission(p)

SecurityManager.
checkPermission(q)

AccessController.
checkPermission(q)

xx = Permission x is required

= No permission is required

qq

5.2 Reducing the Conservativeness of the
Access Rights Analysis

The basic algorithm as described leads to an overly conservative
result as is shown in the following figure. The subgraph
represents part of the standard Java 2 SecurityManager control
and data flow:

{p,q}{p,q}
SecurityManager.
checkPermission({p,q})

{p,q}{p,q}
AccessController.
checkPermission({p,q})

SecurityManager.
checkRead({“file2”})

SecurityManager.
checkRead({“file1”})

FilePermission.
<init>
(“file1”, “read”)

FilePermission.
<init>
(“file2”, “write”)

{p,q}{p,q} {p,q}{p,q}

Both Permissions p and q
are propagated

= Permission x is computed

= No permission is required

xx

{p,q}{p,q} {p,q}{p,q}

The problem is that the FilePermission allocation site
corresponds to two different FilePermission constructor calls as a
result of the two different paths leading to the checkRead
method. The Basic Permission Culling Algorithm propagates the
Permission set {p,q} even when only p or q, but not both, is
required. This violates the principle of least privilege. We
selectively reduce the conservativeness by using the node of the
Permission’s allocation site (a CFA(2)-like approach [27]) to
differentiate the Permission allocations in the SecurityManager.
In practice, this approach appears to be sufficient. The following
figure shows the result:

pp

SecurityManager.
checkPermission
({p})

pp

SecurityManager.
checkRead
({“file2”})

SecurityManager.
checkRead
({“file1”})

FilePermission.
<init>
(“file1”, “read”)

pp qq

= Permission x is computed = No permission is requiredxx

pp qq

FilePermission.
<init>
(“file2”, “write”)

qq

qq
AccessController.
checkPermission
({q})

SecurityManager.
checkPermission
({q})

AccessController.
checkPermission
({p})

We define ()Pn,−Γ , the inward adjacency of a node n with

respect to a set P of Permissions, as the set of predecessor nodes
of n with respect to the allocation sites of the Permissions in P.

The algorithm proceeds as before, with ()Pn,−Γ in place of

()n−Γ . In practice, this refinement is sufficient for those
Permissions allocated in one of the SecurityManager check
methods that exhibit the behavior similar to the checkRead
method described above.

5.3 Threads

The construction of a new Thread object does not cause it to start
execution. Nominally, a call to the Thread.start method results
in the new Thread beginning execution at the Thread.run
method. The new Thread can be started by a different Thread
other than that which created it, or by a method in a class other
than that which created the Thread. The run method becomes
the root (starting) method for the Thread.

According to the Java 2 authorization model, a new Thread
requires that all predecessor nodes of the newly created Thread’s

constructor node also require Permission set P. Also, ()n−Γ ,

where n is a Thread.run node, does not require P. We extend the
−Γ function as follows:

()
()

Γ
=Γ −

−

otherwise,,

nodeThread.runaisif,
,

~ Th

Pn

nn
Pn

where Thn is the Thread constructor node for n’s receiver.

The pseudo code is in Appendix 2. Graphically, we are rewriting
the invocation graph to contain a predecessor edge from a
Thread.run call site to the Thread constructor as is shown in the
following figure:

5

Thread.start()

Thread.run()

Thread.
<init>()

AccessController.
checkPermission(p)

= Permission p is required

= Permission p is not required

new
predecessor edge

5.4 DoPrivileged with an
AccessControlContext

In addition to the AccessController.doPrivileged method
described above, another form of the doPrivileged method takes
an AccessControlContext instance as an argument. In addition to
the previously described behavior, authorization tests include all
of the predecessor nodes of the node where the
AccessControlContext object was allocated. This is modeled

similarly to how we model new Threads, by augmenting −Γ~ to
include an edge from the doPrivileged node to the node where
the AccessControlContext was allocated. Specifically, we extend

−Γ~ as follows:

()
()

()

Γ

=Γ
−

−

otherwise,,
~

rolContextAccessCont

anwithnodeeddoPrivilegaisif,

,ˆ
ACC

Pn

nnN

Pn

where ()nN ACC is the set of nodes where

AccessControlContext.<init> is invoked to create any of n’s
AccessControlContext parameters.

6. Computational Experience

Previous work using static analysis for Java authorization
analysis has not discussed the implications of conservativeness of
invocation graph and data flow analysis techniques. The
conservativeness of the invocation graph and data flow analysis
greatly affects the Permission Culling Algorithm results. An
overly conservative control and data flow analysis is likely to
determine access rights requirements for classes that do not need
them, thus violating the principle of least privilege. CHA-style
graph construction algorithms [7] result in
java.security.Permission and all of its subclasses being required
for all classes needing authorization. A similar result holds for
RTA-style algorithms [2], except that the access rights
requirements for any class needing any Permission will include

all of those Permissions that have allocation sites within the call
graph.

Experience has shown that context-sensitive invocation graphs
yield less conservative results. Propagation-based call graph
construction algorithms have been studied extensively, and differ
primarily in the number of sets used to approximate run-time
values of expressions [16]. The Cartesian Product Algorithm
(CPA) [1] uses an approach based on parametric polymorphism.
Given a method invocation to analyze, CPA computes the
Cartesian product of the types of the actual arguments to the
method. The invocation graph we use is similar to Agesen’s,
except we use what he refers to as megamorphic sets to represent
parameters. Also, we consider data polymorphism, while Agesen
does not. The algorithm we use is similar the one described by
Plevyak and Chien [24].

To minimize conservativeness, we use a graph construction
algorithm that is context sensitive, flow sensitive, and path
insensitive. By flow sensitive we mean that the analysis
considers the order of execution of instructions both intra- and
inter procedurally thus improving the accuracy of the resulting
graph. Part of our graph construction is flow sensitive for local
variables, including support for local field kills – local fields that
are overridden by subsequent assignments to the same field –
and type casting. However, our handling of instance and class
(static) fields is flow-insensitive because we use the weak
assumption that all instance and class fields are subject to
modification at any time due to multi-threading. To compensate
for class and instance field flow-insensitivity, the data flow
analysis tracks field values by allocation site. The practical
problem that arises is that an allocation site does not directly
map to a node in the invocation graph, thus making the analysis
somewhat more conservative than we would otherwise like.
Specifically, there is a one-to-many mapping of allocation sites to
nodes in the graph. However, we have observed, by closely
examining output from our tool and corresponding source code,
that using allocation sites is sufficient to compensate for
imprecision resulting from being interprocedurally flow
insensitive.

Path insensitive intraprocedural analysis considers all paths
through a method. This is conservative because input values or
the values of constants defined within the program are not
considered. For example, in the statement:

if (false) exp1 else exp2

both exp1 and exp2 are evaluated even though, in practice, exp1
never gets executed. While conservatively correct, this may
result in additional graph nodes being generated for paths not
occurring in practice. The net effect is that all required
Permissions are included, though some additional Permissions
may be included that are not strictly necessary in all executions
of a program. A future version of the tool could consider adding
a level of path sensitivity to minimize this conservative
characteristic.

As a practical matter, parameters to Permission constructors are
string constants. In some cases, the parameter value may be

6

available only at run-time. For example, it may be required that
the name of a file to be opened be specified as input. To
improve the analysis, it is possible to provide some metadata to
reflect the run-time values. In other cases, the parameter value
could be the result of a computation (e.g., string concatenations).
A slightly more sophisticated data flow analysis is required in
such circumstances.

Context and flow sensitive static analysis has a reputation for
requiring significant processing power and memory. We have
performed authorization analysis on a number of small sample
programs (see Appendix 3), parts of rt.jar, selected middleware
and the Java compiler (javac). The results reported in Table 1
are from running our analysis on a system with an AMD Athalon
933 MHz processor, Windows 2000 SP2 with 768 MB RAM and
using JDK 1.3. JDK 1.3 functionality was included in the
analysis scope by including the JDK 1.3 rt.jar.

Table 1: Comparison of analyses. Only the classes and methods in the invocation graph were counted.

Performance is improved by ignoring methods that do not lead to
calls to AccessController.checkPermission, but whose data flow
analysis requires a substantial amount of time. By forcing the
underlying invocation graph to ignore the class constructor for
sun.io.CharacterEncoding as well as all methods in classes
Object, String, StringBuffer, and NullPointerException in
package java.lang, and classes TimeZoneData and
SimpleTimeZone in package java.util., we improved execution
time significantly without affecting the resulting Permission sets
identified.

The simplest example that we analyzed is an application called
GetProperty, whose main method was the only root method and
contained the following two lines of code:

System.setSecurityManager(new SecurityManager());
System.out.println(System.getProperty("user.home"));

The authorization requirements produced were precisely those
that we expected based on examination of the source code:

java.lang.RuntimePermission “createSecurityManager”
java.lang.RuntimePermission “setSecurityManager”
java.util.PropertyPermission “user.home”, “read”

The next example, CountMain, is more interesting because it
makes use of privileged code. The method main was the only
root method. The analysis computed access rights requirements
that exactly reflected the presence of privileged code in the
application. The source code for CountMain, as well as the
computed access rights requirements, is reported in Appendix 3.

We also ran an analysis on the packages java.lang, java.lang.ref,
and java.lang.reflect in rt.jar (part of the run-time classes for
Java); all the public and protected methods of classes in these
packages were considered as root nodes, because they represent
all the possible entry points that a program running on top of a
library could invoke. The entire rt.jar v1.3 was included in the
analysis scope. Non-abstract methods in abstract classes were
included. 2,811 root nodes were generated from 1,018 root
methods, of which 336 were static methods, and the remaining
682 were instance methods. The number 2,811 comes from the
fact that each static method gets counted once, because it has no
receiver, and each instance method is weighted by the number of
receivers. This results in an average of 3.629 receivers per root
instance method.

The tool has also been run on large products, the largest of which
contains over 20,000 classes, based on the original Java security
model. The goal has been to identify the access rights
requirements for the product to enable it to run using the Java 2
security model.

7. Generation of a Security Policy Description

In Java 2, every concrete Permission class is required to
implement the implies method. Given two Permission objects, p
and q, when p.implies(q) returns true it means that any
code that is granted p is also automatically granted q. Since we
identify the String parameters to the Permission objects’
constructors, we instantiate the Permission objects during the
analysis, and use their implies methods to filter out those
Permissions that are already implied by other Permissions. This

Classes Methods Instruction bytes Analysis time (sec.) Nodes Edges Heap size (MB)

javac 380 1,617 107,790 41 9,818 16,193 64

GetProperty 389 1,651 109,600 42 11,023 18,858 64

CountMain 394 1,658 109,934 43 11,036 18,878 64

java.lang.* 474 2,434 140,513 74 16,578 28,427 85

7

minimizes the list of required access rights. When the
parameters to a Permission constructor are not determinable, we
impose that the resulting Permission cannot imply any other
Permissions, even though stronger Permissions, such as
java.security.AllPermission, still imply it. This also allows us to
generate a security policy file containing the access right
requirements needed at run-time.

The access rights requirements are minimal modulo the
conservativeness of the analysis and the possible inability to
determine some string constants. The resulting policy file is
useful for defining new security policy, update an existing policy,
or validate whether a path through the program will result in an
authorization failure.

8. Conclusions

For a given application or classes in a library, we are able to
conservatively identify the set of Java 2 Permissions required for
each class in the analysis scope. By using a context-sensitive
invocation graph, we are able to accurately identify the classes in
each path that contains a call to the Java 2 security authorization
subsystem. Our level of precision is far greater than that
required for Java 2 security because we are able to identify
access rights requirements to the level of methods and call sites,
rather then the coarser granularity of classes or libraries. A
refinement of the Java 2 authorization algorithm could result in
the minimization of authorization, bringing us closer to the
application of the principle of least privilege.

By using the analysis technique described in this paper, we can
determine the access rights requirements of mobile code, such as
applets, servlets, and code that exploits mobile code features of
RMI. Prior to loading the mobile code, it is possible to prompt
the administrator or end-user to authorize or deny the code access
rights for restricted resources protected by the Java 2
authorization subsystem.

Automating the process of determining required access rights
changes the relationship between the developer of the code and
the administrator / end-user. Instead of relying solely on
recommendations from the developer, or resorting to trial-and-
error testing of the code to determine required access rights, our
tool can analyze the code and make its own recommendations
and/or validate recommendations made by the developer. This
shifts the relationship from one that requires that the developer
be trusted, to something that can be verified.

While the analysis described here is specific to Java, the basic
techniques can be applied to resource access rights determination
in other type safe languages. With stronger analysis techniques,
it may even be possible to apply the same approach to languages
that lack type explicit safety but could rely on other mechanisms
such as typed assembly language [20].

9. References

[1] O. Agesen. The Cartesian Product Algorithm: Simple and
precise type inference of parametric polymorphism. In
Proceedings of ECOOP ’95, Aarhus, Denmark, August
1995. Springer-Verlag, 1995.

[2] D.F. Bacon and P.F. Sweeney. Fast static analysis of C++
virtual function calls. In Proceedings of the Eleventh
Annual Conference on Object-Oriented Programming
Systems, Languages, Systems and Applications
(OOPSLA’96), San Jose, CA. 1996, 324-341, ACM Press,
New York. Also in ACM SIGPLAN Notices 31(10).

[3] D.F. Bacon. Fast and Effective Optimization of Statically
Typed Object-Oriented Languages. PhD thesis, Computer
Science Division, University of California, Berkeley, Dec.
1997. Report No. UCB/CSD-98-1017.

[4] A. Banerjee and D. A. Naumann. A Simple Semantics and
Static Analysis for Java Security. Stevens Institute of
Technology, CS Report 2001-1, July 2001.

[5] M. Bartoletti, P. Degano, and G. Ferrari. Static Analysis for
Stack Inspection. Proceedings of ConCoord, Lipari, Italy, 6-
8 July 2001, ENTCS 54, Elsevier Science B. V., 2001.

[6] C. Chambers, D. Grove, G. DeFouw and J. Dean. Call
graph construction in object-oriented languages. In
Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and
Applications (OOPSLA’97), 108-124, Oct. 5-9, 1997, ACM
Press, New York. Also in ACM SIGPLAN Notices 32(10).

[7] J. Dean, D. Grove and C. Chambers. Optimization of
object-oriented programs using static class hierarchy
analysis. In Proceedings of the Ninth European Conference
on Object-Oriented Programming (ECOOP’95). Aarhus,
Denmark, Aug. 1995. W. Olthoff, Ed., Springer-Verlag, 77-
101.

[8] D. Dean, E.W. Felten, and D.S. Wallach. Proceedings of the
1996 IEEE Syposium on Security and Privacy (Oakland,
California), IEEE, May 1996.

[9] D. Dean. The Security of Static Typing with Dynamic
Linking. Proceedings of the Fourth ACM Conference on
Computer and Communications Security. (Zürich,
Switzerland), April 1997.

[10] D. Dean, E. W. Felten, D.S. Wallach, and D. Balfanz. Java
Security: Web Browsers and Beyond. Internet Beseiged:
Counter Cyberspace Scofflaws, D.E. Denning and P.J.
Denning, eds. ACM Press (NY, NY), October 1997.

[11] R.D. Dean. Formal Aspects of Mobile Code Security. PhD
thesis, Princeton University, Princeton, New Jersey, January
1999.

[12] Ú. Erlingsson and F.B. Schneider. IRM Enforcement of
Java Stack Inspection. Proceedings IEEE Symposium on
Security and Privacy, pp. 246-255, Oakland, California,
May 2000.

8

[13] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers.
Going Beyond the Sandbox: An Overview of the New
Security Architecture in the Java Development Kit 1.2.
Proceedings of the USENIX Symposium on Internet
Technologies and Systems, 103-112, Monterey, CA.,
December 1997.

[14] L. Gong and R. Schemers. Implementing Protection
Domains in the Java Development Kit 1.2. Proceedings of
the Internet Society Symposium on Network and Distributed
System Security, 125-134, San Diego, CA., March 1998.

[15] L. Gong. Inside Java™ 2 Platform Security: Architecture,
API Design, and implementation. Addison-Wesley,
Reading, MA. 1999.

[16] D. Grove and C. Chambers. A Framework for Call Graph
Construction Algorithms. ACM TOPLAS, Vol. 23, No. 6,
November 2001.

[17] T. Jensen D. Le Métayer and T. Thorn. Verification of
control flow based security properties. IRISA, Publication
interne n˚ 1210, October 1998.

[18] G. A. Kildall. A Unified Approach to Global Program
Optimization. Proceedings of Principles of Programming
Languages, pp. 194-206, 1973.

[19] G. McGraw and E.W. Felten. Securing Java™. John Wiley
& Sons, Inc., New York. 1999.

[20] G. Morrisett, D. Walker, K. Crary, and N. Glew. From
system F to Typed Assembly Language. In ACM
Transactions on Programming Languages and Systems,
21(3):528-569, May 1999.

[21] S.S. Muchnick. Advanced Compiler Design And
Implementation. Morgan Kaufmann Publishers, San Diego,
CA, 1997.

[22] R. Oberg. Mastering RMI: Developing Enterprise
Applications in Java and EJB. John Wiley & Sons, Inc.,
New York. 2001.

[23] M. Pistoia., D.F. Reller, D. Gupta., M. Nagnur., A.K.
Ramani. Java™ 2 Network Security, second edition.
Prentice Hall PTR, New Jersey, 1999.

[24] J. Plevyak and A.A. Chien. Precise Concrete Type
Inference for Object-Oriented Languages. ACM
OOPSLA’94, Object-Oriented Programming Systems,
Languages and Applications, pp. 324-340, Portland, Oregon,
October 1994.

[25] F. Pottier, C. Skalka and S. Smith. “A Systematic Approach
to Static Access Control.” D. Sands (Ed.): ESOP 2001,
LNCS 2028, pp.30-45, 2001. Springer-Verlag, Berlin
Heidelberg 2001.

[26] Saltzer J.H.and M.D.Schroeder. The Protection of
Information in Computer Systems. Proceedings of the IEEE
63 9 (Sept.1975), 1278-1308.

[27] O. Shivers. Control-flow analysis in Scheme. ACM
SIGPLAN Notices, 23(7):164-174, July 1988. Proceedings
of the ACM SIGPLAN 1988 Conference on Programming
Languages Design and Implementation.

[28] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallee-
Rai, P. Lam, E. Gagnon and C. Godin. Practical Virtual
Method Call Resolution for Java. In Proceedings of the
ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA 2000), 264-280, Oct. 15-19, 2000, ACM Press,
New York. Also in ACM SIGPLAN Notices 35(10).

[29] F. Tip and J. Palsberg. Scalable Propagation-Based Call
Graph Construction Algorithms. In Proceedings of the
ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA’97), 264-280, Oct. 15-19, 2000, ACM Press,
New York. Also in ACM SIGPLAN Notices 35(10).

[30] D.S. Wallach, D. Balfanz, D. Dean, E.W. Felten. Extensible
Security Architectures for Java. 16th Symposium on
Operating Systems Principles (Saint-Malo, France), October
1997.

[31] D.S. Wallach and E.W. Felten. Understanding Java Stack
Inspection. Proceedings of the 1998 IEEE Symposium on
Security and Privacy (Oakland, California), May 1998.

[32] D.S. Wallach. A New Approach to Mobile Code Security.
PhD thesis, Princeton University, Princeton, New Jersey,
January 1999.

9

Appendix 1

The following pseudo-code embodies the Basic Permission Culling Algorithm.

// Identify all start and stop nodes in the graph.
// The start set includes all nodes in the call graph root set.
Set startSet = new Set(rootNodes);
Set stopSet = new Set();// Initially, the stop set is empty.
// Identify additional start nodes and the stop nodes
// by iterating over all nodes in the call graph.
Iterator nodesIter = graphNodes.iterator();
while (nodesIter.hasNext())

Node node = nodesIter.next();
if (isDoPrivileged(node)

startSet.add(node);
doPrivSet.add(node);

elseif (isCheckPermission(node))
stopSet.add(node);

// Find all nodes between stop to start nodes and get the required Permission.
// For each node, get its method and associated class.
// Associate the Permission with each class identified.

// For each checkPermission(perm), identify Permission
// perm and the classes needing perm.
Iterator stopIter = stopSet.iterator();
while (stopIter.hasNext())

Node stopNode = stopIter.next();
// Get the Permission from the checkPermission() node
RequiredPermission perm = getPermission(stopNode);

// Using a work list algorithm, find all nodes in all paths that
// are bounded by the nodes in the start set and the stop node.
// Note: The graph may be cyclic.
Set pathNodes = getPathsNodes(stopNode, start);
// For each such node, get the node’s method and the class that
// declared that method. Add the Permission as being required for the

class.
Iterator nodesIter = pathNodes.iterator();
while (nodesIter.hasNext())

Node node = nodesIter.next();
nodePerm.add(node, perm);
Method method = node.getMethod();
Class declaringClass = method.getDeclaringClass();
// Remember that this class needs this Permission
requiredPerms.add(declaringClass, perm);

// Propagate the Permissions at the doPrivileged node to all of
// its predecessors as is required by Java 2
Iterator doPrivIter = doPrivSet.iterator();
while (doPrivIter.hasNext))

Node node = doPrivIter.next();
Set reqPerms = nodePerm.get(node);
PropagatePermsToPredecessorNodesClass(node, reqPerms);

At the end of this algorithm, each class in the requiredPerms map is mapped to the set of the Permission objects that
it requires. From the allocation sites, we identify the string constants used in the Permission constructors. These
string constants are used to report the required access rights for each class.

10

Appendix 2

We build a lookup table that maps Thread allocation sites to the graph nodes where the respective inherited
AccessControlContext constructor is called. This mapping allows us create the replacement predecessor edge for the
Thread.run method.

The following pseudo-code embodies the basic algorithm.

// For all Thread allocation sites, build a table that maps the
// Thread to its constructor.
Map threadConstructorMap = new Map();

// Iterate over all of the object allocations, selecting Thread allocations.
Iterator allocIter = allocationSites.iterator();
while (allocIter.hasNext())

AllocSite allocSite = allocIter.next();
if (allocSite.getClass() instanceof java.lang.Thread)

threadConstructorMap.add(allocSite, node);

Now, when we reach a Thread.run node in the invocation graph, we can find its new predecessors by looking up the
Thread allocation site and use it as the replacement predecessor edge. From the algorithm above, the getNodes
method is suitably modified to use allocCallSites to find replacement predecessor nodes when searching the
call graph.

Appendix 3

To illustrate computational experience with Permission analysis, we have made use of an application called
CountMain. It is an interesting test case because it contains privileged code. From its main method, CountMain
creates and sets a new SecurityManager, and then instantiates a CountFileCaller1 object and a CountFileCaller2
object, as shown in the following code:

import java.io.FilePermission;

public class CountMain {
public static void main(String[] args) {

System.setSecurityManager(new SecurityManager());
CountFileCaller1.main(args);
CountFileCaller2.main(args);

}
}

The purpose of both CountFileCaller1 and CountFileCaller2 is to read the file C:\AUTOEXEC.BAT from the local
file system. The code for CountFileCaller1 is shown next:

public class CountFileCaller1 {
public static void main(String[] args) {

try {
System.out.println("Instantiating CountFile1...");
CountFile1 cf = new CountFile1();

}
catch(Exception e) {

System.out.println("" + e.toString());
e.printStackTrace();

}
}

}

The following is the code for CountFileCaller2:

public class CountFileCaller2 {
public static void main(String[] args) {

try {
System.out.println("Instantiating CountFile2...");
CountFile2 cf = new CountFile2();
cf.countChars();

11

}
catch(Exception e) {

System.out.println("" + e.toString());
e.printStackTrace();

}
}

}

To perform the file read operation, CountFileCaller1 uses a supporting class called CountFile1, whereas
CountFileCaller2 makes use of CountFile2. The difference between these two supporting classes is that CountFile1
wraps the code that performs the file read operation into a privileged block, whereas CountFile2 does not. This is
evident by looking at the source code for CountFile1:

import java.io.*;
import java.security.*;

class PrivExcAction implements PrivilegedExceptionAction {
public Object run() throws FileNotFoundException {

FileInputStream fis = new FileInputStream("C:\\AUTOEXEC.BAT");
try {

int count = 0;
while (fis.read() != -1)

count++;
System.out.println("Hi! We counted " + count + " chars.");

}
catch (Exception e) {

System.out.println("Exception " + e);
}
return null;

}
}

public class CountFile1 {
public CountFile1() throws FileNotFoundException {

try {
AccessController.doPrivileged(

new PrivExcAction());
}
catch (PrivilegedActionException e) {

throw (FileNotFoundException) e.getException();
}

}
}

CountFile2 attempts to gain file read access without using Privileged code, as shown next:

import java.io.*;

public class CountFile2 {
int count=0;
public void countChars() throws Exception {

FileInputStream fis =
new FileInputStream("C:\\AUTOEXEC.BAT");

try {
while (fis.read() != -1)

count++;
System.out.println("We counted " + count + " chars.");

}
catch (Exception e) {

System.out.println("No characters counted");
System.out.println("Exception caught" + e.toString());

}
}

}

The following figure shows a graphical representation of the CountMain program structure:

12

C:\AUTOEXEC.BAT

CountFileCaller1

CountFileCaller2

CountFile1

CountFile2

CountMain

The CountMain program will run as long as CountFileCaller2, CountFile1, CountFile2, and CountMain itself are all
granted the Permission to read the file C:\AUTOEXEC.BAT. This requirement is waived for CountFileCaller1,
which is temporarily given the Permission because CountFile1 invokes doPrivileged. In addition to that Permission,
CountMain also needs the Permissions to create and set a new SecurityManager. The analysis reflected these
Permission requirements exactly, as shown in the following table:

Classes Permissions Determined by the Permission Culling Algorithm
CountMain java.io.FilePermission "C:\AUTOEXEC.BAT", "read"

java.lang.RuntimePermission "createSecurityManager"
java.lang.RuntimePermission "setSecurityManager"

CountFileCaller1
CountFile1
PrivExcAction
CountFileCaller2
CountFile2

java.io.FilePermission "C:\AUTOEXEC.BAT", "read"

13

