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Abstract

We present a brief review of some of the most promising ideas in power-aware design at
the (micro)architecture level. Thisreview is based primarily on the most recently published work
in relevant architecture and design conferences or workshops. We also refer to prior fundamental
work on analytical models of pipelined and parallel machine performance and recast the results
to fit the modern framework of joint power-performance metrics. The second part of the paper is
an attempt at comparing the power-performance scalability of selected microarchitecture
paradigms of interest: e.g. wide-issue out-of-order super scalar, multi-cluster superscalars, SMT
and CMP. In conclusion, we touch on future areas of research on the topic of power-aware
architectures.



1. Introduction:

Power dissipation limits have emerged as a key constraint in the design of
microprocessors, even for those targeted for the high end server product space. At the low end of
the performance spectrum, power has always dominated over performance as the primary design
constraint. However, while battery life expectancies have shown modest increases, the larger
demand for increased functionality and speed has increased the severity of the power constraint
in the world of handheld and mobile systems. At the high end, where performance was always
the primary driver, we are witnessing a trend where increasingly, energy and power limits are
dictating the high-level processing paradigms, as well as the lower level issues related to
clocking and circuit design.

Figure 1 shows the expected maximum chip power (for high performance processors)
through the year 2014, The data plotted is based on the updated 2000 projections made by the
International Technology Roadmap for Semiconductors [http://public.itrs.net]. The projection
indicates that beyond the linear growth period (through year 2005), there will be a saturation in
the maximum chip power. This is ostensibly due to thermal/packaging and die size limits that are
expected to kick in during that time frame. Beyond a certain power regime, air cooling is not
sufficient to dissipate the heat generated; and, use of liquid cooling and refrigeration causes a
sharp increase of the cost-performance ratio. Thus, power-aware design techniques,
methodologies and tools are of the essence at all levels of design.

In this paper, we first present a survey of some of the most promising ideas in
power-aware design at the (micro)architecture level. We base this review on the currently
available literature, with special emphasis on relevant work presented at recent architecture
conferences and workshops. Where useful, we also refer to prior papers that deal with
fundamental issues related to the performance, cost and scalability of concurrent machine
architectures. We show how the fundamentals of machine performance relate to the modemn
problem of architecting processors in a way that allows them to scale well (over time) in terms of
joint power-performance metrics. In this context, we comment on and compare the viability and
future promise of several microarchitectural paradigms that seem to be catching on in industry:
e.g. clustered super scalars, various flavors of multithreading (e.g. SMT)} and chip
multiprocessors (CMP).

In section 2, we review the fundamentals of pipelined and vector/parallel computation as
they relate to performance and energy characteristics. We also dwell briefly on the topic of
defining a suitable set of metrics to measure power-performance efficiency at the
microarchitecture level. In section 3, we provide a survey of the most promising ideas and
approaches in power-aware design at the microarchitecture level, with references to circuit
design and clocking issues that are relevant in that discussion. This review is presented in the
context of workloads and benchmarks that represent different markets. In section 4, we compare
the power-performance outlook of three emerging microarchitectural paradigms in the general
purpose processor space: multicluster superscalars, multithreaded processors and chip
multiprocessors. We conclude, in section 5, by summarizing the main issues addressed in this
survey paper. We also point to a list of future research items that the architecture community
needs to pursue in collaboration with the circuit design community in order to achieve the targets
dictated by future cost and performance pressures. In passing, we refer briefly to LPX: a research



processor prototype being designed at IBM Watson, to validate some key ideas in power-aware
design.

2. Fundamentals of Performance and Power: an Architect's View
Performance Fundamentals |1-2]

The most straightforward metric for measuring performance is the execution time of a
given program mix on the target processor. The execution time can be written as:

T=PL*CPI*CT =PL*CPIL *(1/) cceooriiiirciiricernncceiiiinnin (2.1)

where PL is the dynamic path length of the program mix, measured as the number of machine
instructions executed; CPI is the average processor cycles per instruction incurred in executing
the program mix; and CT is the processor cycle time (measured in seconds per cycle) whose
inverse determines the clock {requency f. Since performance increases with decreasing T, one
may formulate performance, Perf as:

Perfchip ~= Kopf . f~= K{,V c Vs (22)

where, the K's are constants for a given microarchitecture-compiler implementation and for a
specific workload mix. (This is often referred to as IPC, the inverse of CPI). The Py value stands
for the average number of machine instructions that are executed per cycle on the machine being
measured. Performance, Perf.yp, in this case is measured in units like (millions of) instructions
per second, or mips.

Selecting a suite of publicly available benchmark programs that everybody accepts as
being "representative” of real-world workloads is difficult to begin with. Adopting a
non-controversial weighted mix is also not easy. For the commonly used SPEC benchmark suite
(see http://www.specbench.org) the SPECmarks rating (for each class: e.g. integer or floating
point) is derived as a geometric mean of execution time ratios for the programs within that class.
Each ratio is calculated as the speedup with respect to execution time on a specified reference
machine. This method has the advantage that different machines can be ranked unambiguously
from a performance viewpoint, if one believes in the particular benchmark suite. That is, the
ranking can be shown to be independent of the reference machine used in such a formulation.

Let us now discuss the basics of power dissipation in a processor chip.
Power Fundamentals [2-5]:

At the elementary transistor gate (e.g. an inverter) level, total power dissipation can be
formulated as the sum of three major components: switching loss, leakage and short-circuit loss.

POWCI"dEViCB = (IIZ)C.Vdd.szi.,g.a.f + Ileakage. Vdd + Isc. Vdd ............. (23)



where, C is the output capacitance, Vyq is the supply voltage, f is the chip clock frequency and a
is the activity factor (0 < a < 1) which determines the device switching frequency; Vi is the
maximum voltage swing across the output capacitor, which in general is less than Vag; Teakage 1S
the leakage current and I is the short-circuit current. In the literature, Vg is often
approximated to be equal to V4 (or simply V for short) making the switching loss ~ (1/2)C. V™.
a.f. Also, as discussed in [3], for today’s range of Vg (say 1 V to 3 V) switching loss: (1/2)CV?af
remains the dominant component. So, as a first-order approximation, for the whole chip, we may
formulate the power dissipation to be:

Powerg, = (1/2)[2 Ci. Vit a . fi] i (2.4)

1

where, C;, V;, a; and f; are unit- or block-specific average values in the most general case; the
summation is taken over all blocks or units i, at the microarchitecture level (e.g. icache, dcache,
integer unit, floating point unit, load-store unit, register files and buses [if not inciuded in
individual units], etc). Also, for the voltage range considered, the operating frequency is roughly
proportional to the supply voltage; and the capacitance C remains roughly the same if we keep
the same design but scale the voltage. If a single voltage and clock frequency are used for the
whole chip, the above reduces to:

Powermp= V. (ZK".a) =f3.(ZKf. a) ... 2.5)
i i

If we consider the worst-case activity factor for each unit i, i.e. if a, = 1 for all i, then,
Powermp =Kv . VI=Kp. £ e (2.6)

where Kv and Ky are design-specific constants.

The last equation, 2.6 is what leads to the so-called "cube-root” rule [3], where
redesigning a chip to operate at ¥z the voltage (and frequency), results in the power dissipation
being lowered to (1/2)° or 1/8 of the original. This implies the single-most efficient method for
reducing power dissipation for a processor that has already been designed to operate at high
frequency: namely, reduce the voltage (and hence the frequency). It is believed that this is the
primary mechanism of power control in the Transmeta chip (see http://www.transmeta.com).
There is a limit, however, of how low Vg, can be reduced (for a given technology), which has to
do with manufacturability and circuit reliability issues. Thus, a combination of microarchitecture
and circuit techniques to reduce power consumption, without necessarily employing multiple or
variable supply voltages is of special relevance in the design of robust systems.

Power-Performance Efficiency Metrics:

The most common (and perhaps obvious) metric to characterize the power-performance
efficiency of a microprocessor is a simple ratio, like mips/watt. This attempts to quantify the
efficiency by projecting the performance achieved or gained (measured in millions of instructions
per second) for every watt of power consumed. Clearly, the higher the number, the "better” the



machine is. While this seems a reasonable choice for some purposes, there are strong arguments
against it in many cases, especially when it comes to characterizing higher end processors.
Performance has typically been the key driver of such server-class designs and cost or efficiency
issues have been of secondary importance. Specifically, a design team may well choose a higher
frequency design point (which meets maximum power budget constraints) even if it operates at a
much lower mips/watt efficiency compared to one that operates at better efficiency but at a lower
performance level. As such, (mips)*/watt or even (mips)*/watt may be the metric of choice at the
high end. On the other hand, at the lowest end, where battery-life (or energy consumption) is the
primary driver, one may want to put an even greater weight on the power aspect than the simplest
mips/watt metric; i.€. one may just be interested in minimizing the watts for a given workload
run, irrespective of the execution time performance, provided the latter does not exceed some
specified upper limit.

The "mips" metric for performance and the "watts" value for power may refer to average
or peak values, derived from the chip specifications. For example, for a 1 gigahertz (= 10°
cycles/sec) processor which can complete up to 4 instructions per cycle, the theoretical peak
performance is 4000 mips). If the average completion rate for a given workload mix is p
instructions per cycle, then the average mips would equal 1000 times p. However, when it comes
to workload-driven evaluation and characterization of processors, metrics are often controversial.
Apart from the problem of deciding on a "representative” set of benchmark applications, there
are fundamental questions which persist about how to boil down "performance” into a single
("average") rating that is meaningful in comparing a set of machines. Since power consumption
varies, depending on the program being executed, the issue of benchmarking is also relevant in
assigning an average power rating. In measuring power and performance together for a given
program execution, one may use a fused metric like power-delay product (PDP) or energy-delay
product (EDP) [5,6]. In general, the PDP-based formulations are more appropriate for
low-power, portable systems, where battery-life is the primary index of energy efficiency. The
mips/watt metric is an inverse PDP formulation, where delay refers to average execution time per
instruction. The power-delay product, being dimensionally equal to energy, is the natural metric
for such systems. For higher end systems (e.g. workstations) the EDP-based formulations are
deemed to be more appropriate, since the extra delay factor ensures a greater emphasis on
performance. The (mips)*/watt metric is an inverse EDP formulation. For the highest
performance, server-class machines, it may be appropriate to weight the "delay" part even more.
This would point to the use of (mips)*/watt, which is an inverse ED?P formulation. Alternatively,
one may use (cpi)’.watt as a direct ED’P metric, applicable on a "per instruction” basis (see [2]).

The energy*(delay)® metric, or perf*/power formula is analogous to the cube-root rule [3]
which follows from constant voltage scaling arguments (see previous discussion, equation 2.6),
Clearly, to formulate a voltage-invariant power-performance characterization metric, we need to
think in terms of perf*/(power). When we are dealing with the SPEC benchmarks, one may
therefore evaluate efficiency as (SPECrating)*/watt, or (SPEC)*/watt for short; where the
exponent value x (= 1, 2, or 3) may depend on the class of processors being compared.

Figure 1 shows the power-performance efficiency data [sources used are:
http://fwww.bwrc.eecs.berkeley.edu/CIC/, htip://www.specbench.org, Microprocessor Report,




August 2000 and individual vendor web sites] for a range of commercial processors of
approximately the same generation. In each chart, the latest available processor is plotted on the
left and the oldest one on the right. We have used SPEC/watt, SPEC*watt and SPECY/waltt as the
alternative metrics, where SPEC stands for the processor's SPEC95 rating (see definition
principles, earlier in this section or in [1]). For each category, like SPEC?*/watt, the best
performer is normalized to 1, and the other processor values are plotted as relative fractions of
the normalized maximum. The data validates our assertion that depending on the metric of
choice, and the target market (determined by workload class and/or the power/cost) the
conclusion drawn about efficiency can be quite different. For performance-optimized, high-end
processors, the SPEC?/watt metric secems to be fairest, with the very latest Intel Pentium-I1I and
AMD Athlon offerings (at 1 GHz) at the top for integer workloads; and, the older HP-PA 8600
(552 MHz) and IBM Power3 (450 Mhz) still dominating in the floating point class. For
"power-first" processors targeted towards integer workloads (like Intel's mobile Celeron-333)
spec/watt seems to be the fairest.

Table 1 and 2 below show the explicit ranking of the processors considered in Figure 1,
from a power-performance efficiency viewpoint based on specint and specfp benchmarks. The
only intent here is to illustrate the point that we tried to make earlier: that depending on the
intended market (e.g. general purpose: server-class, workstation or low-power mobile, etc.} and
application class (e.g. integer-intensive or floating point intensive) different efficiency metrics
may be suitable. Note that we have relied on published performance and "max power" numbers;
and, because of differences in the methodologies used in quoting the maximum power ratings,
the derived rankings may not be completely accurate or fair. As an example, the 33 W maximum
power rating for the Intel PIII-1000 processor that we computed from the maximum current and
nominal voltage ratings specified for this part in the vendor's web page
[http://www intel.com/design/pentiumiii/datashts/245264.htm], is higher than that reported in the
Microprocessor Report source cited before. Actually, this points to the need of standardization
of methods used in reporting maximum and average power ratings for future processors. It
should be possible, in future for customers to compare power-performance efficiencies across
competing products in a given market segment, i.e. for a given benchmark suite.

3. A Review of Key Ideas in Power-Aware Microarchitectures

In this paper, we limit our attention to dynamic ("switching") power governed by the
CV?af formula. Recall that C refers to the switching capacitance, V is the supply voltage, a is the
activity factor (0 <a < 1) and f is the operating clock frequency. Power reduction ideas must
therefore focus on one or more of these basic parameters. In this section, we examine the key
ideas that have been proposed in terms of (micro)architectural support for power-efficiency.

The effective (average) value of C can be reduced by using: (a) area-efficient designs for
various macros; (b} adaptive structures, that change in effective size, latency or communication
bandwidth depending on the needs of the input workload, (c) selectively "powering off” unused
or idle units, based on special "nap/doze" and "sleep" instructions generated by the compiler or
detected via hardware mechanisms; (d) reducing or eliminating "speculative waste" resulting
from executing instructions in mis-speculated branch paths or prefetching useless instructions
and data into caches, based on wrong guesses.



The average value of V can be reduced via dynamic voltage scaling, i.e. by reducing the
voltage as and when required or possible (e.g. see the description of the Transmeta chip:
http://www.transmeta.com). Microarchitectural support, in this case, is not required, unless the
mechanisms to detect "idle” periods or temperature overruns are detected using counter-based
"proxies”, specially architected for this purpose. Hence, in this paper, we do not dwell on
dynamic voltage scaling methods. (Note again, however, that since reducing V also results in
reduction of the operating frequency, f, net power reduction has a cubic effect; thus, dynamic
voltage scaling, though not a microarchitectural technique per se, is the most effective way of
power reducticon).

The average value of the activity factor, a, can be reduced by: (a) the use of clock-gating,
where the normally free-running, synchronous clock is disabled in selected units or sub-units
within the system based on information or predictions about current or future activity in those
regions; (b) the use of data representations and instruction schedules that result in reduced
switching. Microarchitectural support is provided in the form of added mechanisms to: (a) detect,
predict and control the generation of the applied gating signals or (b) aid in power-efficient data
and instruction encodings. Compiler support for generating power-efficient instruction
scheduling and data partitioning or special instructions for "nap/doze/sleep" control, if
applicable, must also be considered under this category.

Lastly, the average value of the frequency, f, can be controlled or reduced by using: (a)
variable, multiple or locally asynchronous (self-timed) clocks; (b} reduced pipeline depths.

We consider power-aware microarchitectural constructs that use C, a or f as the primary
power-reduction lever. In any such proposed processor architecture, the efficacy of the particular
power reduction method that is used must be assessed by understanding the net performance
impact. Here, depending on the application domain (or market), a PDP, EDP or ED’P metric for
evaluating and comparing power-performance efficiciencies must be used. (See earlier discussion
in Section 2).

Optimal Pipeline Depth

A fundamental question that is asked has to do with pipeline depth. Is a deeply pipelined,
high frequency ("speed demon") design better than an IPC-centric fower frequency (“braniac”)
design? In the context of this paper, "better” must be judged in terms of power-performance
efficiency.

Let us consider, first, a simple, hazard-free, linear pipeline flow process, with k stages.
Let the time for the total logic (without latches) to compute one answer be T. Assuming that the
k stages into which the logic is partitioned are of equal delay, the time per stage and thus the time
per computation becomes (see [7], Chapter 2):

where D is the delay added due to the staging latch, The inverse of t determines the clocking rate
or frequency of operation. Similarly, if the energy spent (per cycle, per second or over the
duration of the program run) in the logic is W and the corresponding energy spent per level of
staging latches is L, then the total energy equation for the k-stage pipelined version is roughly,



The energy equation assumes that the clock is free-running, i.e., on every cycle, each level of
staging latches is clocked to enable the advancement of operations along the pipeline. (Later, we
shall consider the effect of clock-gating). Equations (3.1) and (3.2), when plotted as a function of
k, are depicted in Figures 2(a) and 2(b) respectively.

As the number of stages increases, the energy or power consumed increases linearly; while, the
performance also increases, but not as fast. In order to consider the PDP-based
power-performance efficiency, we compute the ratio:

--------------- = (Lk+W)(T/hk+D) =LT+W.D+(LDkK* +W.T)k ..... (3.3)
Performance

Figure 3 shows the general shape of this curve as a function of k. Differentiating the right hand
side expression in (3.3) and setting it to zero, one can solve for the optimum value of k for which
the power-performance efficiency is maximized; i.e., the minimum of the curve in Figure 2(b)
can be shown to occur when

k (opt) = JWIDILD) e (3.4)

Larson [8] first published the above analysis, albeit from a cost/performance perspective. This
analysis shows that, at least for the simplest, hazard-free pipeline flow, the highest frequency
operating point achievable in a given technology may not be the most energy-efficient! Rather,
the optimal number of stages (and hence operating frequency) is expected to be at a point which
increases for greater W or T and decreases for greater L or D.

For real super scalar machines, the number of latches in a design tends to go up much
more sharply with k than the linear assumption in the above model. This tends to make k (opt)
even smaller. Also, in real pipeline flow with hazards, e.g., in the presence of branch-related
stalls and disruptions, performance actually peaks at a certain value of k before decreasing [3, 9]
(instead of the asymptotically increasing behavior shown in Figure 2(b)). This effect would also
lead to decreasing the effective value of k (opt). (However, k(opt) increases if we use EDP or
ED?’P metrics instead of the PDP metric used.)

Vector/SIMD Processing Support

Vector/SIMD modes of parallelism present in current architectures afford a
power-efficient method of extending performance for vectorizable codes. Fundamentally, this is
because: for doing the work of fetching and processing a single (vector) instruction, a large
amount of data is processed in a parallel or pipelined manner. If we consider a SIMD machine,
with p k-stage functional pipelines (see Figure 4) then looking at the pipelines alone, one sees a
p-fold increase of performance, with a p-fold increase in power, assuming full utilization and
hazard-free flow, as before. Thus, a SIMD pipeline unit offers the potential of scalable growth in
performance, with commensurate growth in power; i.e. at constant power-performance
efficiency. If, however, one includes the instruction cache and fetch/dispatch unit that are shared
across the p SIMD pipelines, then power-performance efficiency can actually grow with p. This
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is because, the energy behavior of the instruction cache (memory) and the fetch/decode path
remains essentially invariant with p, while net performance grows linearly with p.

In a super scalar machine with a vector/SIMD extension, the overall power-efficiency
increase is limited by the fraction of code that runs in SIMD-mode (Amdahl's Law).

Clock-Gating: Power Reduction Potential and Microarchitectural Support

Clock-gating refers to circuit-level control (e.g. see [10, 17]) for disabling the clock to a
given set of latches, a macro, a bus or an entire unit, on a particular machine cycle.
Microarchitecture-level analysis points to opportunities of power savings in a processor, since
idle periods of a particular resource can be identified and quantified. Figure 5 depicts the
execution pipe utilization of the various functional units {(e.g. fixed point or integer unit, floating
point unit, load-store unit, branch unit, condition register unit) within a current generation, out of
order superscalar processor. This data is based on simulation-based data of a hypothetical
processor, similar in complexity to that of current generation designs like the Powerd™ [11].
We show the results for selected SPEC95 benchmarks and a large sample from a commercial
TPC-C trace.The data shows that the pipe utilization attains a maximum of slightly over 50 %
only for the FXU; in many cases, the utilization is quite low, often 10 % or less.

Figures 6(a) and 6(b) show the opportunities available within several units (and in
particular, the instruction fetch unit, IFU) of the same example processor in the context of the
TPC-C trace segment referred to above. Figure 6(a) depicts the instruction frequency mix of the
trace segment used. This shows that the floating point unit (FPU) operations are a very tiny
fraction of the total number of instructions in the trace. Therefore, with proper detection and
control mechanisms architected in hardware, the FPU unit could essentially be "gated off” in
terms of the clock delivery for the most part of such an execution. Figure 6(b) shows the fraction
of total cycles spent in various modes within the instruction fetch unit (IFU). I-fetch was on hold
for about 48 % of the cycles; and the fraction of useful fetch cycles was only 28 %. Again, this
points to great opportunities: either in terms of clock-gating or dynamic ifetch throttling (see
Dynamic Throttling of Communication Bandwidths below).

(Micro)architectural support for clock-gating can be provided in at least three ways: (a)
dynamic detection of idle modes in various clocked units or regions within a processor or system;
(b) static or dynamic prediction of such idle modes; (c) using "data valid” bits within a pipeline
flow path to selectively enable/disable the clock applied to the pipeline stage latches. If static
prediction is used, the compiler inserts special "nap/doze/sleep/wake" type instructions where
appropriate, to aid the hardware in generating the necessary gating signals. Methods (a) and (b)
result in coarse-grain clock-gating, where entire units, macros or regions can be gated off to save
power; while, method (c) results in fine-grain clock-gating, where unutilized pipe segments can
be gated off during normal execution within a particular unit, like the FPU. The detailed
circuit-level implementation of gated-clocks, the potential performance degradation, inductive
noise problems, etc. are not discussed in this paper. However, these are very important issues that
must be dealt with adequately in an actual design.

Referring back to Figures 2 and 3, note that since (fine-grain) clock-gating effectively
causes a fraction of the latches to be "gated off", we may model this by assuming that the
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effective value of L decreases when such clock-gating is applied. This has the effect of
increasing k (opt.); i.e., the operating frequency for the most power-efficient pipeline operation
can be increased in the presence of clock-gating. This is an added benefit.

Variable Bit-Width Operands

One of the techniques proposed for reducing dynamic power consists of exploiting the
behavior of data in programs, which is characterized by the frequent presence of small values.
Such values can be represented as and operated upon as short bit-vectors. Thus, by using only a
small part of the processing datapath, power can be reduced without loss of performance. Brooks
and Martonosi [12] analyzed the potential of this approach in the context of 64-bit processor
implementations (e.g. the Compag Alpha™ architecture). Their results show that roughly 50 % of
the instructions executed had both operands whose length was less than or equal to 16 bits.
Brooks and Martonosi proposed an implementation that exploits this by dynamically detecting
the presence of narrow-width operands on a cycle-by-cycle basis. (Subsequent work by Jude
Rivers et al. at IBM has documented an approach to exploit this in PowerPC architectures, using
a different implementation. This work is still not available for external publication).

Adaptive Microarchitectures

Another method of reducing power is to adjust the size of various storage resources
within a processor or system, with changing needs of the workload. Albonesi [13] proposed a
dynamically reconfigurable caching mechanism, that reduces the cache size (and hence power)
when the workload is in a phase that exhibits reduced cache footprint. Such downsizing also
results in improved latency, which can be exploited (from a performance viewpoint) by
increasing the cache cycling frequency on a local clocking or self-timed basis. Maro et al. [14]
have suggested the use of adapting the functional unit configuration within a processor in tune
with changing workload requirements. Reconfiguration is limited to “shutting down” certain
functional pipes or clusters, based on utilization history or IPC performance. In that sense, the
work by Maro et al. is not too different from coarse-grain clock-gating support, as discussed
earlier. In recent work done at IBM Watson, Buyuktosunoglu et al. [15] designed an adaptive
issue queue that can result in (up to) 75 % power reduction when the queue is sized down to its
minimum size. This is achieved with a very small IPC performance hit. Another example is the
idea of adaptive register files (e.g., see [16]) where the size and configuration of the active size
of the storage is changed via a banked design, or through hierarchical partitioning techniques.

Dynamic Thermal Management

Most clock-gating techniques are geared towards the goal of reducing average chip
power. As such, these methods do not guarantee that the worst-case (maximum) power
consumption will not exceed safe limits. The processor’s maximum power consumption dictates
the choice of its packaging and cooling solution. In fact, as discussed in [17], the net cooling
solution cost increases in a piecewise linear manner with respect to the maximum power; and the
cost gradient increases rather sharply in the higher power regimes. This necessitates the use of
mechanisms to limit the maximum power to a controllable ceiling, one defined by the cost profile
of the market for which the processor is targeted. Most recently, in the high performance world,
Intel’s Pentium 4 processor is reported to use an elaborate on-chip thermal management system
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to ensure reliable operation [17]. At the lower end, the G3 and G4 PowerPC microprocessors
[18, 19] include a Thermal Assist Unit (TAU) to provide dynamic thermal management. In
recently reported academic work, Brooks and Martonosi [20] discuss and analyze the potential
reduction in “maximum power” ratings without significant loss of performance, by the use of
specific dynamic thermal management (DTM) schemes. The use of DTM requires the inclusion
of on-chip sensors to monitor actual temperature; or proxies of temperature [20] estimated from
on-chip counters of various events and rates.

Dynamic Throttling of Communication Bandwidths

This idea has to do with reducing the width of a communication bus dynamically, in
response to reduced needs or in response to temperature overruns. Examples of on-chip buses
that can be throttled are: instruction fetch bandwidth, instruction dispatch/issue bandwidths,
register renaming bandwidth, instruction completion bandwidths, memory address bandwidth,
etc. In the G3 and G4 PowerPC microprocessors [18, 19], the TAU invokes a form of instruction
cache throttling as a means to lower the temperature when a thermal emergency is encountered.

Speculation Control

In current generation, high performance microprocessors, branch mispredictions and
mis-speculative prefetches end up wasting a lots of power. Manne et al. [21, 22] have described
means of detecting or anticipating an impending mispredict and using that information to prevent
mis-speculated instructions from entering the pipeline. These methods have been shown to
reduce power by up to 38 % with less than a 1 % performance loss.

4. Power-Efficient Microarchitecture Paradigms

Now that we have examined specific microarchitectural constructs that aid
power-efficient design, let us examine the inherent power-performance scalability and efficiency
of selected paradigms that are currently emerging in the high-end processor roadmap. In
particular, we consider: (a} wide-issue, speculative super scalar processors; (b) multi-cluster
superscalars; (c) chip multiprocessors (CMP) - especially those that use single program
speculative multithreading (e.g. multiscalar); (d) simultaneously multithreaded (SMT)
ProOCessors.

In illustrating the efficiency advantages or deficiencies, we use the following running
example. It shows one iteration of a loop trace that we consider in simulating the performance
and power characteristics across the above computing platforms.

Let us consider the following floating-point loop kernel, shown below (coded using the
PowerPC™ instruction set architecture):

Example Loop Test Case

[P1[A] fadd fp3, fpl, fp0
[Q1[B] Ifdu fps, 8(rl)
[R] [C] lfdu fp4, 8(13)
[S][D] fadd fp4, fp5, fp4
[T] [E] fadd fpl, fp4, fp3
[UT [F] stfdu fpl, 8(r2)

[V] [G] bc loop_top
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The loop body consists of 7 instructions, the final one being a conditional branch that causes
control to loop back to the top of the loop body. The instructions are labeled A through G. (The
labels P through V are used to tag the corresponding instructions for a parallel thread - when we
consider SMT and CMP). The Ifdu/stfdu instructions are load/store instructions with update,
where the base address register (e.g. ri, 12 or r3) is updated after execution by holding the newly
computed address.

Single-core superscalar processor paradigm

One school of thought anticipates a continued progression along the path of wider,
aggressively superscalar paradigms. Researchers continue to innovate in an attemnpt to extract the
last “ounce” of IPC-level performance from a single-thread instruction-level parallelism (ILP)
model. Value prediction advances (pioneered by Lipasti et al. [23]) promise to break the limits
imposed by true data dependencies. Trace caches (Smith et al. [23]) ease the fetch bandwidth
bottleneck, which can otherwise impede scalability. However, increasing the superscalar width
beyond a certain limit tends to yield diminishing gains in net performance (i.e. the inverse of CPI
* CT; see equation 2.1). At the same time, the power-performance efficiency metric (e.g.
performance per watt or (performance)’/watt, etc) tends to degrade beyond a certain complexity
point in the single-core superscalar design paradigm. This is illustrated below in the context of
our example loop test case.

Let us consider a base machine that is a 4-wide superscalar, with two load-store units
supporting two floating point pipes (see Figure 7). The data cache has two load ports and a
separate store port. Two load-store store unit pipes (L.SUO and LSU1) are fed by a single issue
queue, LSQ; similarly, the two floating point unit pipes (FPUCQ and FPU1) are fed by a single
issue queue, FPQ. In the context of the loop above, we essentially focus on the LSU-FPU
sub-engine of the whole processor.

Let us assume the following high-level parameters (latency and bandwidth) characterizing the

base super scalar machine model of width W = 4.

* Instruction fetch bandwidth, fetch_bw = 2*W = 8 instructions/cycle.

* Dispatch/decode/rename bandwidth, disp_bw = W = 4 instructions/cycle; dispatch is assumed

to stall beyond the first branch scanned in the instruction fetch buffer.

* Issue_bandwidth from LSQ (reservation station), Isu_bw = W/2 = 2 instructions/cycle

* Issue_bandwidth from FPQ, fpu_bw = W/2 = 2 instructions/cycle.

* Completion bandwidth, compl_bw = W = 4 instructions/cycle

* Back-to-back dependent floating point operation issue delay, fp_delay = 1 cycle.

* The best-case load latency, from fetch to writeback is: 5 cycles

* The best-case store latency, from fetch to writing in the pending store queue is: 4 cycles; (a
store is eligible to complete the cycle after the address-data pair is valid in the store queue).

* The best-case floating point operation latency, from fetch to writeback is: 7 cycles (when the
issue queue, FPQ is bypassed, because it is empty).

Loads and floating point operations are eligible for completion (retirement) the cycle after
writeback into rename buffers. For simplicity of analysis let us assume that the processor uses
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in-order issue from the issue queues (LSQ and FPQ). In our simulation model, the superscalar
width W is a ganged parameter, defined as follows:

W = (fetch_bw/2) = disp_bw = compl_bw.

The number of LSU units, Is_units, FPU units, fp_units, data cache load ports, 1_ports and data
cache store ports are varied as follows as W is changed:

Is_units = fp_units = 1_ports = max [floor(W/2), 1].

s_ports = max [floor(l_ports/2), 1].

For illustrative purposes, a simple (and decidedly naive) analytical energy model is
assumed, where the power consumed is a function of the following parameters: W, ls_units,
fp_units, 1_ports and s_ports. In particular, the power, PW, in watts is computed as: PW =K *
[(W)* + Is_units + fp_units + _ports + s_ports], where y (0 <y < 1) is an exponent that may be
varied to see the effect on power-performance efficiency; K is a constant. Figure 8 shows the
performance and performance/power ratio variation with superscalar width, W; for this graph, y
has been set to 0.5 and the scaling constant K is 2. The BIPS (billions of instructions per second)
values are computed from the IPC (instruction per cycle) values, assuming a clock frequency of 1
GHz.

The graph in Figure 8(a) shows that a maximum issue width of W =4 could be used to
achieve the best (idealized) BIPS performance. This idealized plot is obtained using a tool called
cliot [24]. This is a parameterized, PowerPC super scalar model, that can operate either in
cycle-by-cycle simulation mode, or, it can generate idealized bounds, based on static analysis of a
loop code segment. The eliot model has now been updated to include parameterized, analytical
energy models for each unit or storage resource within the processor. This new tool, called elpaso
can be used to generate power-performance efficiency data for loop test cases. As shown in
Figure 8 (b), from a power-performance efficiency viewpoint (measured as a performance over
power ratio), the best-case design is achieved for W < 4. Depending on the sophistication and
accuracy of the energy model (i.e. how power varies with microarchitectural complexity), and the
exact choice of the power-performance efficiency metric, the inflexion point in the curve in
Figure 8(b) changes; however, it should be obvious that beyond a certain superscalar width, the
power-performance efficiency diminishes continuously. Fundamentally, this is due to the
single-thread ILP limit of the loop trace being considered (as apparent from Figure 8 (a) ).

Note, by the way that the resource sizes are assumed to be large enough, so that they are
effectively infinite for the purposes of our running example above. Some of the actual sizes
assumed for the base case (W=4) are:

Completion (reorder) buffer size, cbuf_size = 32; load-store queue size, 1sq_size = 6; floating
point queue size, fpq_size = 8; pending store queue size, psq_size = 16;

The microarchitectural trends beyond the current superscalar regime, are effectively
targeted towards the goal of extending the power-performance efficiency factors. That is, the
complexity growth must ideally scale at a slower rate than the growth in performance. Power
consumption is one index of complexity; it also determines packaging and cooling costs.
(Verification cost and effort is another important index). In that sense, a microarchitecture
paradigm that ensures that the power-performance efficiency measure of choice is a
non-decreasing function of time: is the ideal, complexity-effective design paradigm for the
future. Of course, it is hard to keep scaling a given paradigm beyond a few processor generations.
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Whenever we reach a maximum in the power-performance efficiency curve, it is time to invoke
the next paradigm shift.

Next, we examine some of the promising new trends in microarchitecture that can serve
as the next platform for designing power-performance scalable machines.

Multicluster superscalar processors

As described in our earlier article [2], Zyuban et al. [25, 26] studied the class of
multicluster superscalar processors as a means of extending the power-efficient growth of the
basic super scalar paradigm. One way to address the energy growth problem at the
microarchitectural level is to replace a classical superscalar CPU with a set of clusters, so that all
key energy consumers are split among clusters. Then, instead of accessing centralized structures
in the traditional superscalar design, instructions scheduled to an individual cluster would access
local structures most of the time. The main advantage of accessing a collection of local structures
instead of a centralized one is that the number of ports and entries in each local structure is much
smaller. This reduces the latency and energy per access. If the non-accessed sub-structures of a
resource can be “gated off” (e.g. in terms of the clock), then, the net energy savings can be
substantial.

According to the results obtained in Zyuban’s work, the energy dissipated per cycle in
every unit or sub-unit within a superscalar processor can be modeled to vary (approximately) as
IPC.i * (IW)%, where IW is the issue width, IPC,,; is the average IPC performance at the level of
the unit or structure under consideration; and, g is the energy growth parameter for that unit.
Then, the energy-delay product (EDP) for the particular unit would vary as:

IPC, * (TW)E
EDPunit T T i etieerreaitetesseattrar st rsea st (41)
IPCoverall

Zyuban shows that for real machines, where the overall IPC always increases with issue width in
a sub-linear manner, the overall EDP of the processor can be bounded as:

(IPC)®! < EDP < (IPO)® et e (4.2)

where g is the energy-growth factor of a given unit and IPC refers to the overall IPC of the
processor; and, IPC is assumed to vary as (IW)". Thus, according to this formulation,
superscalar implementations that minimize g for each unit or structure will result in
energy-efficient designs. The eliot/elpaso tool does not model the effects of multi-clustering in
detail yet; however, from Zyuban’s work, we can infer that a carefully designed multicluster
architecture has the potential of extending the power-performance efficiency scaling beyond what
is possible using the classical superscalar paradigm. Of course, such extended scalability is
achieved at the expense of reduced IPC performance for a given superscalar machine width. This
IPC degradation is caused by the added inter-cluster communication delays and other power
management overhead in a real design. Some of the IPC loss (if not all) can be offset by a clock

frequency boost which may be possible in such a design, due to the reduced resource latencies
and bandwidths.
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Current high-performance processors (for example, the Compaq Alpha 21264 and the
IBM Power4) certainly have elements of multi-clustering, especially in terms of duplicated
register files and distributed issue queues. Zyuban proposed and modeled a specific multicluster
organization in his work. This simulation-based study determined the optimal number of clusters
and their configurations, for the EDP metric.

Simultaneous Multithreading (SMT):

Let us examine the SMT paradigm [27] to understand how this may affect our notion of
power-performance efficiency. The data in Table 3 shows the steady-state utilization of some of
the resources in our base super scalar machine in response to the input loop test case discussed
earlier. Since, due to fundamental ILP limits, the [PC will not increase beyond W=4, it is clear
why power-performance efficiency will be on a downward trend beyond a certain width of the
machine. (Of course, here we assume maximum processor power numbers, without any clock
gating or dynamic adaptation to bring down power).

With SMT, assume that we can fetch from two threads (simultaneously, if the icache 1s
dual-ported, or in alternate cycles if the icache remains single-ported). Suppose two copies of the
same loop program (see example at the beginning of this section, i.e. Section 4) are executing as
two different threads. So, thread-1 instructions A-B-C-D-E-F-G and thread-2 instructions
P-Q-R-S-T-U-V are simultanecusly available for dispatch and subsequent execution on the
machine. This facility allows the utilization factors, and the net throunghput performance to go up,
without a significant increase in the maximum clocked power. This is because, the issue width W
is not increased, but the execution and resource stages or slots can be filled up simultaneously
from both threads. The added complexity in the front-end, of maintaining two program counters
(fetch streams) and the global register space increase alluded to before adds to the power a bit,
On the other hand, the core execution complexity can be relaxed a bit without a performance hit.
For example, the fp_delay parameter can be increased, to reduce core complexity, without any
performance degradation. Figure 9 shows the expected performance and power-performance
variation with W for the 2-thread SMT processor. The power model assumed for the SMT
machine is the same as that of the underlying superscalar, except that a fixed fraction of the net
power is added to account for the SMT overhead. (The fraction added is assumed to be linear in
the number of threads, in an n-thread SMT). Figure 9 shows that under the assumed model, the
performance-power efficiency scales better with W, compared with the base superscalar (Figure
8).

Seng and Tullsen [28] presented analysis to show that using a suitably architected SMT
processor, the per-thread speculative waste can be reduced, while increasing the utilization of the
machine resources by executing simultaneously from multiple threads. This was shown to reduce
the average energy per instruction by 22 %.

Chip Multiprocessing

In a multiscalar-like chip-multiprocessor (CMP) machine [29] , different iterations of a
single loop program could be initiated as separate tasks or threads on different core processors on
the same chip. Thus, the threads A-B-C-D-E-F-G and P-Q-R-S-T-U-V, derived from the same
user program would be issued in sequence by a global task sequencer to two cores, in a 2-way
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multiscalar CMP. Register values set in one task are forwarded in sequence to dependent
instructions in subsequent tasks. For example, the register value in fpl set by instruction E in task
1 must be communicated to instruction T in task 2; so instruction T must stall in the second
processor until the value communication has occurred from task 1. Execution on each processor
proceeds speculatively, assuming the absence of load-store address conflicts between tasks;
dynamic memory address disambigunation hardware is required to detect violations and restart
task executions as needed. In this paradigm also, if the performance can be shown to scale well
with the number of tasks, and if each processor is designed as a limited-issue, limited-speculation
(low complexity) core, it is possible to achieve better overall scalability of performance-power
efficiency.

Another trend in high-end microprocessors is true chip multiprocessing (CMP), where
multiple (distinct) user programs execute separately on different processors on the same chip. A
commonly used paradigm in this case is that of (shared memory) symmetric multiprocessing
(SMP) on a chip (see Hammond et al. in [23]). Larger SMP server nodes can be built from such
chips. Server product groups such as IBM’s high-end PowerPC division have relied on such
CMP paradigms as the scalable paradigm for the immediate future. The Power4 design [11] is
the first example of this trend. Such CMP designs offer the potential of convenient coarse-grain
clock-gating and “power-down” modes, where one or more processors on the chip may be
“turned off” or “slowed down” to save power when needed.

5. Conclusions and Future Research

In this paper, we first discussed issues related to power-performance efficiency and
metrics from an architect's viewpoint. We limited the discussion to dynamic power consumption.
We showed that depending on the application domain (or market), it may be necessary to adopt
one metric over another in comparing processors within that segment. Next, we described some
of the promising new ideas in power-aware microarchitecture design. This discussion included
circuit-centric solutions like clock-gating, where microarchitectural support is needed to make
the right decisions at run time. Later, we used a simple loop test case to illustrate the limits of
power-performance scalability in some popular paradigms that are being developed by various
vendors within the high-end processor domain. In particular, we show that scalability of current
generation super scalars may be extended effectively through multi-clustering, SMT and CMP.,
Our experience in simulating these structures points to the need of keeping a single core (or the
uni-threaded core) simple enough to ensure scalability in the power, performance and verification
cost of future systems. Detailed simulation results with benchmarks to support these conclusions
were not provided in this tutorial-style paper. Future research papers from our group will present
such data for specific microarchitectural paradigms of interest.

We limited our focus to a few key ideas and paradigms of interest in future power-aware
processor design. Also, we did not consider methods to reduce static (leakage) power: a
component of net processor power that is expected to grow significantly in future technologies.
Many new ideas to address various aspects of power reduction have been presented in recent
workshops (e.g. [30-32]). All of these could not be discussed in this paper; but the interested
reader should certainly refer to the cited references for further detailed study.

AtIBMT. J. Watson Research Center, a project on power-aware microprocessor design,
led by the author of this article, is currently engaged in designing a research processor prototype,
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called LPX (low-power issue-execute processor). This processor has many of the elements
touched upon in this paper among other new innovations. By incorporating on-chip monitoring
hardware, we shall attempt to measure power reduction benefits and performance degradations
(if any) resulting from the various ideas that are being tried. This hardware prototype will also
enable us to validate our power-performance simulation methodologies, e.g. the PowerTimer
toolkit referred to in [2]. Details of the LPX design will be described in later publications.
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