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Abstract— Interactive distributed applications such as multiplayer
games will become increasingly popular in wide area distributed sys-
tems. To provide the response time desired by users despite high and
unpredictable communication latency in such systems, shared objects
will be cached or replicated by clients that participate in the applica-
tions. Any updates to the shared objects will have to he disseminated to
clients that actually use the objects to maintain consistency. We address
the problem of efficient and scalable update dissemination in an envi-
ronment where client interests can change dynamically and the number
of multicast channels available for dissemination is Limited. We present
a heuristic based algorithm that can grenp objects and client in a way
that it handles limited bandwidth reseurces. We show that our algo-
rithm can produce better results than several algorithms that have been
developed in the past for update dissemination.

Kevwords— Distributed Interactive Application, Distributed Object,
Object Caching, CORBA, Multicast Grouping, Massive Multiplayer
Game

I . | NTRODUCTI ON

Interactive distributed applications like massive multi-
player games, virtual reality video conference, virtual shop-
ping malls, battle field simulations, and collaborative work
environments connect remote producers and consumers of
information together in real time over the Internet. The het-
erogeneity of the Internet along with real-time requirements
and farge number of users complicate the deployment of such
applications.

Distributed object platforms, e.g., CORBA, DCOM and
RMI, provide middleware support for distributed applica-
tions. However, they do not natively meet the real-time re-
quirements of interactive distributed applications over the In-
ternet. The state of an object is transferred “on demand” to
the remote user viaan RPC call. The large latency of tbe
Internet must be endured twice: first to request the object’s
state, and second to receive the object’s state.

Latency can be reduced by replicating an object at its re-
mote users rather than always transferring its state on de-
mand. When replicating an object, consistency must be con-
sidered between the object and its replicas. A replica of an
object does not need to be totally consistent with the object.
Different object may require different levels of consistency,
say, some critical objects require immediate updates on all
of its replicas while other objects require only periodical up-
dates. The replica of an object at aremote user may be more
or less consistent when compared to replicas of this object at
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other remote users. The consistency of areplica can depend
on the remote user’s available network resources. For exam-
ple, aworkstation with a broadband network connection can
maintain a more consistent replica of an object than a PDA
with a wireless connection. The frameworks and agorithms
about what to cache, where to cache, and when to cache are
very interesting topics but are out of the scope of this paper.

In this paper, we concentrate on the following problem:
how can the consistency of object replicas at a distributed in-
teractive application’s remote users be efficiently maintained
within each remote user’s consistency requirements? This
problem is interesting when the number of remote users and
replicated objects is very large and network resources are
limited. The key to making scalable applications in a het-
erogeneous environment with limited network resources is in
how the state updates of an object are disseminated to remote
replicating users.

Two transport technologies can be used to disseminate
state updates of an object to remote replicating users. The
first option is to use unicast, where the state update of an ob-
ject is transmitted to only one remote replicating user at a
time. However in an interactive application, multiple remote
users will replicate overlapping sets of objects. As a result,
unicast will use the object’s host’s outgoing bandwidth in-
efficiently. Another option is to use multicast. A multicast
channel can be allocated for each replicated object, and re-
mote users who replicate this object can listen to this channel.
The state update of an object can be transmitted over the ap-
propriate multicast channel and reach all replicating remote
users at the same time.

The above approach to using multicast is naive. Multi-
cast channels are not free; they consume resources inside the
network, i.e., router memory for storing multicast informa-
tion and router bandwidth for maintaining multicast infor-
mation [ 1][2]. The number of multicast channels available
for use by an application is limited. Since an application
can have a large number of replicated objects, severa objects
must be grouped together into the same multicast channel.
However a new problem arises. a remote user can receive
updates for objects that it does not replicate because these
objects are grouped with objects the remote user does repli-
cate. The result is that the remote user’s incoming bandwidth



can be used inefficiently.

The key to making large-scale distributed network appli-
cations feasible is to group objects into multicast channels in
an intelligent manner so that the following requirements are
satisfied:

1. The object servers should not send more data than its out-
going bandwidth capacity;

2. Bach replicating user should not receive more data than
its incoming bandwidth capacity;

3. Only limited number of multicast channels are used.

In this paper, we propose a mode! for the problem of find-
ing adequate grouping arrangements of replicated objects
and replicating users into multicast channels, Our model
takes into consideration that remote users have heteroge-
neous resource constrains and can replicate objects at varying
degrees of consistency. We also propose a greedy-heuristic
algorithm to solve this problem. Our algorithm is incremen-
tal: as the set of objects that remote users replicate changes,
a new grouping arrangement is derived from the previous
grouping arrangement. This allows the number of expensive
join and leave operations to be minimized and the running
time to be low. Our algorithm is also adaptive: if an adequate
grouping arrangement cannot be found in a timely manner,
the problem can be made easier according to the policy of the
application, For example in some applications, objects repli-
cated at low-degree of consistency at a remote user could be
dropped in favor of preserving the consistency more impor-
tant objects.

The remainder of this paper is organized as following. In
Section I1, we present a matrix-based model that formalizes
our problem. In section III, we present the greedy heuristic
algorithm to solve the problem. In section IV, we describe
related works. In section V, we evaluate our algotithm on
a simulated multiplayer game application. We conclude in
Section VI.

JI. GROUP ARRANGEMENT PROBLEM
A. Example Application: Massive Multiplayer Game

Massive multiplayer games (MMGs) are good representa-
tive of interactive distributed applications. MMGs involve a
large number players who play over the Internet, and state
updates must be disseminated in a timely manner in order for
the game to be playable. As MMGs become more sophisti-
cated, they demand more network resources or demand us-
ing existing network resources more efficientty. We will use
MMGs to demonstrate how our algorithm solves the group
arrangement problem.

In an MMG, many players interact in the same virtual
world. This virtual world consists of many game entities,
for example, the avatars of players, non-player monsters, and
props. At any given time, each player is only interested in a
relatively small subset of the virtual world’s entities, and can
be interested in each game entity at varying levels of detail.
Each game entity has state associated with it, for example,
location, posture, and physical condition. As the state of a

game entity changes, state updates must be disseminated to
players who would notice the change.

As an example, consider an MMG with thousands of play-
ers interacting in a sporting event taking place in a large sta-
dium. Players, or more concretely, the avatars of players,
can have different roles in this sporting event: they can be
participating directly in the sporting event on the field in the
stadium, or they can merely be spectators in the bleacheres.
Players of the MMG have interest in various game entities
in the stadium according to their role in the game. Direct
participants are going to be highly interested in other direct
participants on the field, and they might also be lightly inter-
ested in the spectators in the bleacheres. Spectators can be
interested in the game entities on the field, the scoreboard,
the announcer, and other spectators.

When such an application is implemented over a dis-
tributed object platform, game entity could be designed as
a set of objects, e.g., locations, outlines, colors and textures,
which incrementally define more details about the entity. For
displaying an entity with different levels of details, differ-
ent amount of objects are required. Objects could be im-
plemented at a game server and cached at client hosts. Up-
dates to an object, e.g., a component object of an avatar, are
first handled on local replica, then immediately unicast to the
server and last periodically multicast to other clients that also
cache the object. The consistency of objects and their repli-
cas determines whether an jumpy image is displayed.

B. Layered Preferences and Adaptive Group Arrangement

We focus on the periodical update dissemination from the
server to the clients in above example. Each client has its set
of replicated objects and consistency settings on these ob-
jects. Given certain amount of system resources, i.e., num-
ber of multicast channels, server’s outgoing bandwidth and
clients’ incoming bandwidth, the possibility of finding a fea-
sible group arrangement depends on both system resources
and client preferences. The more updates the clients ask for
and the lower resources the system has, the lower the possi-
bility is.

To increase the possibility of finding a feasible group ar-
rangement, the clients can choose to be very conservative.
They can ask for minimum amount of data — less cached
objects and less frequent updates. This often means lower
level of game image quality and meanwhile the system re-
sources are not fully exploited. On the other hand, the clients
can choose to ask for a lot of data to achieve higher game
image quality and resource utilization but risk the chance of
finding a feasible group arrangement. Because each client
act independently in such a distributed system, it is difficult
for the clients to give “suitable” preferences that neither over-
load nor waste the system resources. To solve this problem,
we propose layered preference and adaptive group arrange-
ment strategy as following: When clients submit preferences,
they assign different priorities to different objects; The server
starts to search a feasible group arrangement that meets all
the preferences without concerning the priorities; If it can



not succeed, it drops preference on some or all low priority
objects and tries again. This step is repeated until a feasible
group arrangement is finally found.

In the remainder of this section and in whole Section 111,
we only focus on the single step in the above repeating pro-
cedure. That is, when we try to find a feasible group arrange-
ment, we concern only the preferences themselves and ignore
the associated priorities.

C. Examples of Group Arrangement

We give a couple of simple examples of group arrange-
ment here. In this subsection and hereafter, we start to use
a set of more general terms and notations. We use source to
substitute for object, receiver for client, and channef for mul-
ticast channel. Source, receiver and channel are denoted by
s, 7; and ¢; respectively.

Table I shows the outgoing bandwidth of server and in-
coming bandwidth capacity of seven receivers and their pref-
erences to seven sources, ri,7s,73, 74,75 are low end users
that require less data and have lower bandwidth capacity;
76,7 are high end users that require more data and have
higher bandwidth capacity.

receiver | receiver’s preference | B/W
1 (51,482, 83) 4

r2 (51, 83, 84) 4

r3 (51, 54, 85) 4

T4 (g1, 85, %8) 4

T (51,55, 87) 4

re (51,82,83,86,87) | 8
rT (51,62,88,84,85) | 8
Server 12

TABLE [

REQUIREMENT CONDETIONS

To provide insights into the difficulty in grouping sources

and receivers, we try several possible group arrangements
with three channels and show how they may not meet all the
requirements.
o Case 1; Table I shows a grouping where all sources are
partitioned into three channels, which means no overlaps
among sources in different channels. In this case, we can
see that the server’s outgoing bandwidth is best optimized, it
only sends seven sources out, no duplicated sending. How-
ever, r3’s incoming bandwidth is overloaded.

channel | receivers SOUTCes
c1 "1,72,73, T4, 75,78, 77 51

C2 r1,72,73,76, 77 $2, 83, Sq
] 3,74, 15,76, Y 55,88, 87

TABLEH
GROUP ARRANGEMENT 1

» Case 2; Table III shows a group arrangement where re-
ceivers are partitioned into three channels, which means
no overlap among receivers in different channels. In this

case, server’s outgoing bandwidth is overused by four; also
r3, T4, Ts’s incoming bandwidth is overloaded.

channel | receivers sources
C1 1,72 81,82, 83, 84
cz T3, T4, T5 81,84, 85, 86, 87
cg re, 7 81, 82, 83, 84, 85, 86, §7
TABLE I
GROUP ARRANGEMENT 2

» Case 3: Table IV shows a feasible group arrangement.

channel | receivers SOUrces

€1 ™1, P2, Pe, F7 81, 82,383, 84

D) T3, 'y 81, 84,88

3 T4, 74,76 51, 85,86, 87
TABLE IV

GROUP ARRANGEMENT 3

D. Mathematical Representations

We represent receivers’ diverse preferences withanm x n
matrix, named preference matrix and denoted as M™. n
and m are the number of sources and that of receivers, re-
spectively. Each entry in M™ is either 0 or 1; if receiver r;
prefers source s;, Mf‘j equals to 1, otherwise it equals to 0.
Put in another way, row ¢ describes the sources that r; prefers
and column 7 describes the receivers that prefer s;. Fig. 1(a)
shows the preference matrix for example in Table 1.

cl ¢2 c3
5152 53 54 5556 57 11 0 0
11110000 210 0
1011000 B0 1 0
31001100

“1000110 00 1
51000101 50 0 |1
1110011 1 0 |
71 111100 71 1 0
(a)MI'S (b)Mrc

sl 82 s3 s45s65s7

rlf1 1 1 1000

2111 1000

B1 001100

st s2s3 s4s5 s6 s7 M100 011 1

ct 1111 0 00 5100 011 t

21001 1 00 21 1 1111

31000 1 11 721 1 2160 0

{c)M S (d) AT = MTC x M8

Fig, 1. (a) is the preference matrix; (b) is receiver subscription matrix; (¢}
is source subscription matrix (d) is the product of M and M®5;

The system resources are defined by server outgoing band-
width B, number of channels & and clients’ incoming band-
width vector BY. For example, in Table I, k = 3, BS = [12],
and BT = {4,4,4,4,4,8,8}.



When grouping receivers and sources into channels, we
use another two 0-1 matrices to represent the group arrange-
ment; a receiver subscription matrix and a source subscrip-
tion matrix. The former, denoted by M, is an m X k ma-
trix that describes how receivers are related to channels; M
equals to 1 means receiver r; listens to channel cg. The lattér,
denoted by M8, is a k x n matrix that describes how sources
are related to channels; Mg% equals to 1 means source s;
sends updates to channel ¢;. The two subscription matri-
ces corresponding to the example in Table IV are given in
Fig. 1{b) and Fig. 1{c).

The product of A and M8, denoted by A'S, represents
the actual amount of data received by receivers. Entry A
is the actual number of times that r; receives s;. Fig. 1(d)
shows the value of A™® corresponding to Table IV.

A feasible group arrangement must satisfies the following
conditions:

Preference Limitation Receivers’ preferences must be met.

Vi, Vi, ATy > Mi5 M
Bandwidth Limitation Server and receivers’ traffic must not
exceed their bandwidth.

k
3 zn: ME < B* (2)

t=0 =0

8y —

Vi, y AT < BI 3)
=0

I1I. FINDING FEASIBLE GROUP ARRANGEMENT: A
HEURISTIC SEARCHING ALGORITHM

A. Revised Goal

As previously discussed, a feasible group arrangement
must satisfy the following conditions:
« Only given number of channels are used.
» Each receiver receives preferred data.
« Each receiver receives no more data than its incoming
bandwidth capacity.
« Server sends no more data than its outgoing bandwidth ca-
pacity.
In practice, the server usually has much larger bandwidth
than the receivers does. If a group arrangement satisfies the
first three conditions, it is very unlikely that the arrangement
does not satisfies the last condition. Therefore, we do not ex-
plicitly attack the satisfaction condition on the server traffic
in our algorithm. Instead, we try to reduce the server traffic
whenever possible while finding a group arrangement that
satisfies the first three conditions.

B. General Idea

Qur algorithm starts from an initial group arrangement that
uses the given number of channels and meets the receiver
preferences. First, we must check if the group arrangement

satisfies receiver bandwidth conditions. If it does satisfy re-
ceiver bandwidth conditions, it is a feasible group arrange-
ment and the algorithm halts. Otherwise, it is not a feasible
group arrangement and it must be adjusted into another group
arrangement that also satisfies receivers preferences and use
% channels, and then rechecked to see if the receiver band-
width conditions are met. This check-and-adjust continues
until a feasible group arrangement is found.

The pseudo code for the algorithm is shown in Fig. 2. We
will go into detail about the single adjustment step in the next
subsection, but first we present two practical issues about our
algorithm,

First, if network resources are very low relative to receiver
preference requirements, a feasible group arrangement either
may not exist, or it might take a very long time to find. In
such a case, the algorithm would continue the check-and-
adjust loop for a long period of time without halting. Given
specific receiver preference requirements and network re-
source constraints, there is no formal way for us to judge how
many feasible group arrangements exist, or whether one ex-
ists at all. Given the real time nature of our system, the algo-
rithm cannot search for a solution for an unbounded amount
oftime. Instead, we limit the searching time of our algorithm.
If a feasible group arrangement cannot be found within the
specified limit, the receiver preference requirements are re-
laxed in an application specific manner, then the algorithm is
run on this new problem. This allows the algorithm to adapt
to low resource conditions or aggressive receiver preferences.
On the other hand, receiver preference requirements can be
tensed in an application specific manner to fully utilize avail-
able network resources.

Second, there are several ways to generate an initial group
arrangement. A simple way is to randomly generate a group
arrangement and patch it, which ensures that it satisfies re-
ceiver preference requirements. However, in most interac-
tive distributed applications the receiver preferences evolve
slowly. It is better to reuse the previously feasible group ar-
rangement, and patch it to ensure that it satisfies the new re-
ceiver preference requirements. In this case, the algorithm
is more likely to find the new feasible group arrangement
more quickly than if it started from a random initial group
arrangement. In this sense, our algorithm is incremental. By
using the previous group arrangement when searching for a
new group arrangement, parts of the previous group arrange-
ment that are not effected by new receiver preferences are
less likely to be changed in the new group arrangement. This
has the added benefit of reducing the amount of costly multi-
cast join and leave operations.

C. Two Phases of A Single Adjustment Step: Splitting and
Merging

First, we will explain some terminologies that are going to
be used later:
« waste is the unwanted data received by a receiver;
o bad-waste is the waste that exceeds a receiver’s bandwidth
capacity. It is the amount of data received minus receiver’s



Algorithm Greedy_Grouping{):

1.

Generate an initial grouping that uses
k channels and satisfies all receivers
preference requirements
while there are overloaded receivers {
// Derive a better grouping that
// s8£ill uses k channels

gplit()

Merge ()
}

Algorithm Split{):

1.
2.

3.

While there are overloaded receivers {
Select the receiver ri that 1is
most overloaded
Select the channel Ci that sends
the most waste to ri

(cil, €i2) = Commection_Partition(Ci)
// 8plit Ci into two subchannels Cil
// and Ciz.

Remove Ci from the list of

channels

24dd ¢il and Ci2 intc the list of
channels

}

Algorithm Merge{):

1.
2.

3.

>

While we are using more than k channels ({
For every possible pair of
channels {Cx, Cy) {

Calculate the increased waste
and bad-waste of merging Cx
and Cy
}
Select the pair (Cl, C2} that has
the least increased bad-waste or
waste if bad-waste is tied
Merge C1 and C2 into a new channel
3
Add C3 into the list of channels
Remove Cl and C2 from the list of
channels

}

Algorithm Connection_Partition{ Cci ) {

1.

Z.
3.

n

[l =B+ <t I+

S =

12,

13.
14.

Identify each valid connection Liri,sjl
in channel Ci
For every palr of connections (L1, L2) {
Calculate D(L2,L2), the distance
between the connections L1 and L2
H
Create two new empty chammels Cil and Ci2
Select the pair of connections (Lx, Ly) that
have largest distance
2add Lx into ¢il
Add Ly into Ci2
Remove Lx, Ly from Ci
While Ci is nof empty{
For every connection Li in channel Ci (
Calculate the reduced waste if moving
Li into Cil or Ci2
}
Select the connection Li and channel
Cix that has the most reduced waste
Remove Li from Ci
Add Li into Cil or Ci2 depending
on which one reduces more waste

Fig. 2. Split‘Merge Greedy Algorithm

bandwidth capacity if a receiver receives more data than its
bandwidth capacity; otherwise it is 0.

o distance between connection L; {r;, $;] and connection
Ly [re, 8y] is called D(Ly, L); [ri, 8;1 is a connection
if r; is interested in s;. Distance between two connec-
tions/sources/receivers describes the similarity between two
connections/sources/receivers.

D(L1,L2) = X D(T‘,;,Tm) + We X D(sj,sy)

wy and wq are weight of D(r;,r,) and D(s;,sy) corre-
spondingly

|sources(r;) || sources(rz)|
lsources(r;) () sources(r;)|

Diry,re) =

sources(r;) represents the set of sources that are preferred
by r;; similarly, D(s;, s,) can be defined.

_ |receivers(s;) | ) sources(s,)|
" |receivers(s;) [\ receivers(sy)|

1)(3j13y)

receivers(s;) represents the set of receivers that are inter-
ested in s;.

When any receiver is overloaded, we use the split opera-
tion. First, the most overloaded receiver is chosen. Then, the
channel that brings the most waste to the overloaded receiver
is chosen. This channel is split into two sub channels in the
way that reduces the most bad-waste. For a channel with z
receivers and y sources, there are 2°+¥ ways of splitting it
into two sub channels. This is computationally too expensive
and unnecessary.

In our algorithm, splitting a channel into two subchannels
to reduce receivers waste is done by partitioning the connec-
tions [r;, 8;] in the channel into two groups. Partition here
means that an entity will appear in only one group, not both.
We can see that the six connections in Fig 3(a) are partitioned
into two groups in Fig 3(b). From (a) to (b), the dashed lines
are reduced by two, which means receivers are receiving two
units less waste. We want to reduce the most waste data for
receivers when splitting a channel. The connection partition
is shown in Fig 2. By splitting the connections in a channel,
we are not biased in favor of either receivers or sources. This
frees us from doing just receiver partitions where a receiver
can only appear in one channel and source partitions where a
source can appear only in one channel [3]. In our approach
receivers and sources will appear in any number of channels
as long as it reduces receivers waste. The splitting opera-
tion is repeated until no receiver is overloaded anymore. But,
when this condition is reached, it is possible that we may be
using more than k channels.

When more than k channels are used, we will use the
merge operation to combine two channels into one. Merg-
ing ¢; and ¢o in figure 3(b), we can get ¢; in Fig 3 (a). After
the merge, the server needs to sends out only three source
objects, instead of five. However, receivers ro and rz now
receive more waste. In general, merging two channels will



cause receivers to reccive more waste and the server to send
less data. The increased receiver side bad-waste (or waste)
after merging two channels into one is calculated for each
pair of channels. We choose the pair of channels that Ieast
increases receiver side bad-waste (or waste if bad-waste ties)
after a merge and merge again greedily. The merge operation
is repeated until only & channels are left.

(b)

Fig. 3. Receiver r{ is interested in Source s1, 2, §3; receiver ro is inter-
ested in source s2, 93; receiver 73 is interested in source s3. There are
six connections which are connected by six solid lines. Dashed line con-
necting a receiver and a source means this receiver is not interested in
this source, but is receiving this source since they are in the same group.
The two channels in (b) is gotten by splitting the six connections in {a}
into group (1, 2, 3) and group (4, 5, 6). From (b) to (a) is merging two
channels into one

D. Computation Complexity

Our algorithm consists of repeated splitting and merging
steps. The splitting steps are repeated until no receiver is
overloaded. Assuming that the number of channels used is
& when no receiver is overloaded, then splitting is repeated
 — k times when no receiver is overloaded. When we need to
merge the z channels back to k channels, merging is repeated
& — k times since each merge reduces one channel used.

When splitting a channel with m receivers and n sources,
the number of connections ¢ is bounded by m x n. If we
move a connection from the original channel into one of the
two new channels, we need to calcuiate the reduced waste of
moving each connection in the original channel. The over-
head of moving a connection into one of the two new chan-
nels is equivalent to the overhead of set merging. Assuming
the overhead of set merging is a constant a, the computation
complexity of splitting a channel into two is O(zc?).

While using the merge operation, we need to choose which
two channels to merge. To make this choice, we need to
calculate the increased waste and bad-waste resulting from
merging every possible pair of channels. The overhead of
one step in this calculation is the overhead of set merging,
assumed to be the constant b. Since this is repeated for all
possible pairs of channels, the computation complexity of the
merge operation is O(z?). Since the merge needs to be re-
peated = — k times to reduce the number of channels to k. So
the computation complexity of merging # channels into & is
channels is O(z?).

So the computation complexity of one loop iteration is
O(z® + zc?). The number of loop iterations is bounded by
an input parameter, which is used to reduce running time to
reasonable limits for a server.

IV. RELATED WORK

Middleware-level support to interactive distributed appii-
cations has been discussed in the literature. To name a few,
Krishnaswamy et al. presented a framework for caching dis-
tributed objects at client sites and a consistency QoS specifi-
cation interface that is meaningful at the application level [4];
(‘Ryan et al. extended the CORBA Event Service so that it
is better suited for distributed interactive simulation applica-
tions [5].

Multicast group arrangement problem is not new. Re-
searchers have met this problem in distributed interac-
tive simulation applications and proposed cell-based and
entity-based group arrangement algorithms {6] [7] [8] [9]
[10] [11] [12] Their efficiency are extensively investigated
in [13] [14]. The algorithms are simple yet powerful in
simple gaming environment, where the relationships between
game entities can be defined by simple vision domain rules,
However, they might not be flexible enough for more com-
plex gaming environments(e.g. one as described in Section
II.A) or other interactive distributed applications and there-
fore cannot serve for a general distributed object platform.

Wong et al. were the first to investigate the multicast group
arrangement in a general form and proposed an algorithm
based on the k-means clustering method [3]. The algorithm
does not serve our purpose for two reasons. First, the al-
gorithm targets on optimizing the overall traffic received on
all receivers. The heterogeneity of receivers is totally ig-
nored and therefore the algorithm may give 2 solution that
overloads certain individual receivers. Second, the algorithm
considers either only similarity among sources or only that
among receivers, while the similarity between connections
could be a more general and flexible criteria. This limits its
scope of finding better group arrangement.

V. EVALUATION

To show the effectiveness of our algorithm of finding fea-
sible group arrangement, we conduct experiments in the con-
text of applying our algorithm to a simulated multiplayer
game, We compare the performance of our algorithm against
that of the cell-based grouping algorithm. We are also in-
terested in finding the effective advantage of the connection
similarity that used in our algorithm over the receivers{or
sources) similarity that is used in [3].

A. Generating Preferences With Simulated Multiplayer
Game

For our experiments, we generate preference matrices with
a simulated multiplayer game. We use a model similar to that
used in [13]. The virtual world of the multiplayer game is
a rectangular battlefield, There are two sets of stationary or
moving entities in the battlefield; receivers and sources, and
we assume the two sets do not overlap.

To make our algorithm comparable with cell-based algo-
rithm, vision domain circles around receivers are used in the
calculation of their preferences to sources. To simulate di-



verse receiver preferences and diverse source popularity, we
assign random brightness to each source and assign random
vision domain size to each receiver. We define receivers’
preferences as follows; if the distance between a source and
a receiver is less than the receiver’s vision domain size mul-
tiplied by the brightness of the source, then this source is in
this receiver’ preference set.

The brighter a source is, the more receivers that can see
it; the larger a receiver’s vision domain is, the more sources
it can see. There could be hot receivers, who have far more
preferences than other receivers do. There could also be Aot
Sources, which are preferred by far more receivers than other
sources are. By configuring different number of hot sources
and hot receivers, we can simulate diverse preference, which
can in turn affect the quality of grouping.
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Fig. 4. Receivers r0 and r1 and sources 5O and s1; the vision domain
of each receiver is drawn as two circles; the area of the inner circle
around a receiver represents interest in sources of brightness one, and
the area of the outer circle represents interest in sources of brightness
Iwo; receivers and sources with larger vision domains and brightness are
drawn as larger filled dots.

An example of variable vision domains and brightness is
shown in Fig 4. Receiver 0 has an interest in sources s0
and s1. The source 50 has a brightness of one, and it is just
within receiver r0’s vision domain, The source s1 is twice
as bright as the source s0, so it can been seen twice as far
away by receiver r0. The receiver r1 has a vision domain
that is twice as large as receiver r0. As a result, it can see
source s1 but cannot see the source s0, since it is outside of
source s1’s brightness-one vision domain,

Receiver and sources move around the virtual world at
varying velocities. The preferences of all receivers are pe-
riodically sampled to create a preference matrix, taking into
account receiver vision domains and source brightness. The
result is a sequence of preference matrices, which can be used
as the input for various group arrangement algorithms.

We also simulate network resource conditions. We set val-
ues for the number of available multicast channels, receiver
incoming bandwidth, and server outgoing bandwidth. We

vary these values to see performance of group arrangement
algorithms under different resource conditions. .

Finally, we limit the running time of our algonthn}. As
we have mentioned previously, given a preference mam and
available network resources, it is possible that our algorithm
does not find a feasible group arrangement within a bounded
amount of time. In this case, the application adapts to make

the problem easier and then our algorithm is reran. When
a solution cannot be found, we have chosen to reduce qual-
ity by reducing the bandwidth needed to transmit a state up-
date by [0%. When a feasible group arrangement is found
without the need to reduce quality, we successively increase
quality by 10% until a feasible Broup arrangement cannot be
found. The effect is that the quality of the game experience
can vary according to receiver preferences and available net-
work resources, though the game should always be playable.
Cell-based algorithm does not intend to search for a Sfeasi-
ble group arrangement, so it always halts within certain run-
ning time. However, the group arrangement they derive may
not be feasible with respect to available network resources,
We use the same adaptation policy for these algorithms by
increasing and decreasing quality so that quality is as large as
it can be while the group arrangement they find is still feas;-
ble. Thus, one benchmark for comparing group arrangement
algorithms is to compare the quality of the game that can be
supported when they are used.

B. Comparison With Cell-based Algorithm
B.l Game Quality

In cell-based algorithm, the battlefield is evenly divided
into & rectangle cells, each of which is associated with a muyl-
ticast channel. The receivers listen to the multicast channels
associated with the cells that overlap with his vision domain,

We compare the game quality supported by our greedy al-
gorithm against that by cell-based algorithm for each prefer-
ence matrix given a set of resource conditions.Fig § shows
that our greedy algorithm supports higher game quality than
cell-based algorithm does.
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Second we show the trend of game quality when resource
conditions change. Fig 6 shows the different level of game



quality when different number of muiticast channels are used
and when receivers have different bandwidth capacity. The
figure shows that as more channels used, the quality sup-
ported by an algorithm becomes better, Too few channels can
provide only very low game quality; but too many channels
are not necessary either.

With cell-based algorithm the recejvers simply receive
data from all the cells that overlap with their vision domains.
When it chooses group arrangement, it does not consider
individual clients’ specific preferences and bandwidth con-
strains. How much data a receiver can get totally depends
on the location of the receiver in the battlefield instead of its
actual bandwidth. So receivers can receive large amount of
waste data and the overall game quality is degraded. When
same number of multicast channels are used, our greedy al-
gorithm is always able to support higher game quality. This
suggests our algorithm provides higher game quality under
same level of network resource conditions. We see the same
trend when we run the experiment under several different re-
source configurations.
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Fig. 6. Game Quality when varying channel number and bandwidth. 50p
means there are 50 receivers; 60v means each receivers’s vision circle
radius is 60; the number before ¢ represents the number of channels used

B.2 Number of Joins and Leaves During Regrouping

When receivers’ preferences change, group arrangement
changes. Since joins and leaves of members can introduce
overhead to the maintenance of a multicast channel, a bet-
ter group arrangement algorithm should incur less Jjoins and
leaves during regrouping.

Fig 7 shows that our group arrangement incurs much less
joins during regrouping given same resource conditions and
same sequence of preference matrices. The total number of
leaves follows.

C. Connection Similarity Versus Receiver(source) Similarity

Receiver(source)-based Clustering is proposed in |3]. Be-
cause [3] intends to reduce the overall traffic received by

total join times for each regrouping
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Fig. 7. Total number of joins when regrouping 100 receivers and 100
sources into 16 channels

all receivers rather than finding a feasible group arrangement
that satisfies given resource conditions, it is hard to compare
its performance and that of ours. But it would be interesting
to make a comparison between the two by having a close-up
look into their underlying methodologies.

We focus on the task of channel splitting, which is com-
mon in both algorithm. In Fig. 2, this task is carried by the
code segment “Connection partition for channel Cy”, which
make use of the similarity among connections. In [3], this
task is a done by clustering receivers(sources) based on the
similarity among receivers(sources).It has been shown in [3]
that receiver-based clustering is suitable for multiplayer gam-
ing and source-based clustering is suitable for stock quote
streaming. However, both similarity among receivers and
that among sources are only approximations of similarity
among connections, and therefore they are somewhat less ac-
curate compare to latter, especially when an application does
not have constant preference pattern or a pattern that can fit
into either multiplayer gaming or stock quote streaming,

To highlight the difference between connection similar-
ity and receiver(source) similarity, we split a channel with
receiver-based clustering using the k-means package in
MATLAB and compare the result with that of our algorithm.
We examine three cases. In first case, all sources have same
brightness and all receivers have same vision domain size
and bandwidth capacity. As shown in Fig 8(a), two algo-
rithm bring similar amount of incoming traffic at receivers.
In second case, all sources have same brightness but there
is large variation in receivers’ vision domain size and band-
width capacity. As shown in Fig 8(b), the two algorithms
bring similar amount of incoming traffic at the receivers but
less outgoing traffic at the server. In the last case, there are
large variance in sources’ brightness and receivers’ vision do-
main size and bandwidth capacity. As shown in Tig 8(c), the
latter algorithm brings less receiver incoming traffic and less
server outgoing traffic.
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Fig. 8. Algorithm Using Connection Similarity(greedy) Versus Algorithm
Using Receiver Similarity(GR)

VI CoNcLusioN

We have presented an incremental and adaptive heuristic-
based algorithm that c¢an group sources and receivers in away
that it handles limited network resources. We have shown

Since our algorithm considers individual receivers’ band-
width capacity, it can migrate bad-waste from overloaded re-
ceivers to the receivers that are not overloaded thereby better
preserves the bandwidth of low-end users. Also, since a new
feasible group arrangement is incrementally derived from a
previous feasible one, number of joins and leaves of multi-
cast channels is reduced. In addition, our algorithm allows
both receivers and sources to subscribe to multiple channels
and therefore are suitable for a wide range of applcations.
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