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FAST DCT-DOMAIN IMAGE SHIFTING AND MERGING

Timothy J. Trenary, Charles A. Micchelli, J. Q. Trelewicz, Marco Martens, Joan L. Mitchell

IBM T. J. Watson Research Center, Route 134, Yorktown Heights, NY 10598, USA

ABSTRACT

In high-speed color image processing applications, it is
desired to manipulate DCT-domain images in real time.
Because of throughput requirements, operations required
for the building of a printer page, such as merging and
shifting, cannot be performed in the sampled domain –
the overhead associated with the DCT slows computa-
tion. In this paper we present an efficient method for
the merging or shifting of JPEG-compressed images, per-
formed in the DCT domain to avoid additional overhead.
The algorithm exploits quantization to achieve further gains.
The resulting algorithm can save between 25% and 75%
of the required operation cycles in a typical image pro-
cessing system.

1. INTRODUCTION

Fast color image processing is required in a number of
applications. For example, high-speed color printing, where
full-image pages are printed at more than 100 pages per
minute, requires pages to be built and imaged very rapidly.
Web-based e-commerce applications, where high-quality
images must be downloaded and displayed quickly, give
another class of examples, where the application devel-
oper has little or no control over the client equipment
that must perform the rapid display of images, preclud-
ing the use of specialized hardware. Many of the images
used by these applications are stored and transmitted in
compressed format, such as the JPEG standard. The im-
ages must be manipulated for the building of pages, in-
cluding merging and shifting images within a larger page.
While straightforward in the sampled domain, these oper-
ations introduce challenges in the Discrete Cosine Trans-
form (DCT) domain, since partial DCT blocks may need
to be combined with other partial DCT blocks without
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destroying image content. This paper focuses on pro-
cessing images, such as those compressed with JPEG,
in the DCT domain. However, because the methods de-
scribed herein may be extended to other linear orthogonal
transforms, the algorithms are useful for a wide class of
image compression formats, including algorithms based
on Fast Fourier Transform (FFT) and certain wavelet or
other transform bases.

DCT-domain processing algorithms for image are well
known. High-quality scaling in the DCT domain (e.g.,
[1]) for videoconferencing applications has been an area
of much recent activity. In [2], a multiplicative alpha
mask, which determines the transparency of pixels, is
implemented as a convolution in the DCT domain. In
[3], nonseparable masks are implemented as sparse ma-
trix multiplications in the DCT domain. For masking and
merging applications, the algorithms developed in this
manuscript2 make further reductions in computational com-
plexity by exploiting the nature of merging and shifting
in our applications, where blocks are masked along rows
and columns, which may not align with the DCT block
boundaries. Our algorithms are further distinguished by
their combination with quantization and consideration of
coefficient magnitude for additional reduction in compu-
tational requirements.

2. MERGE AND SHIFT OPERATORS IN THE
DCT DOMAIN

The following notation is used in the paper. LetD :
<8 → <8 be the 1-D DCT, given by

Dux = Cu cos
( π

16
u(2x+ 1)

)
, u, x ∈ 0, 1, . . . , 7

where

Cu =
{

1/(2
√

2) if u = 0
1/2 otherwise

This matrix is unitary, so that the inverse of the matrix is
equal to its transpose,D−1 = DT . The input domain of
D comprises the real or sampled domain; e.g., a digital
photograph. The output is said to be in the DCT domain.
Vectors or matrices in the real domain are denoted asF .
The vector of points in the DCT domain is denoted by
F̃ = DF , and the matrix bỹF = DFDT .

2Patent applications have been filed.

1



σ
* * * * *

8− σ
* * *

Figure 1: A shift byσ pels.

Merge operators in one dimension are developed first
because of notational simplicity. The 2-D merge opera-
tors are shown to be a straightforward extension with the
application of appropriate lemmas. Merges along hori-
zontal cuts are discussed, since merges along vertical cuts
are a triviality, given the horizontal cut algorithms. The
operators defined in this section may also serve as shift
operators, since a shift along a horizontal or vertical di-
rection is essentially a merge from two adjacent blocks.
A general merge operation in two dimensions can be per-
formed by applying a vertical and horizontal algorithm as
described above. All merge operations described herein
allow such a decomposition. Figure 1 shows an example
of the merging of two DCT blocks required to realize a
shift.

Define matrixUσ, which masks theσ upper rows of
its argument, as follows:

(Uσ)x,y =
{

1 y ∈ {0, 1, ..σ − 1}, x = y
0 otherwise

.

The matrixI − U8−σ masks theσ lower rows of its ar-
gument. Similarly, defineVσ, which masks theσ lower
rows of its argument as follows:

(Vσ)x,y =
{

1 y ∈ {0, 1, ..7− σ}, x = σ + y
0 otherwise

.

Similarly,V Tσ = V−σ, andV−σ ≡ V8−σ masks the upper
σ rows of its argument. Then, the merge operators may
be denotedM = (Mσ,M8−σ), whereMσ ∈ {Uσ, I −
U8−σ, V±σ} determines whether the upper or lower rows
of the argument are used in the merge.

Suppose that the composite is to be formed from the
elements ofG andH. The merged sample vectorF is
given by

F = M

(
G
H

)
= MσG+M8−σH.

BecauseD is unitary,

F̃ = DMσGD
T +DM8−σHDT

= M̃σG̃+ M̃8−σH̃ ≡ M̃
(
G̃

H̃

)
,

where the merge operator in the DCT domain may be
denotedM̃ .

A computational improvement on this method can be
achieved by working withS = G+H andD = G−H,
using the sum-difference merge operatorM ′ defined as

M ′ = (Mσ +M8−σ,Mσ −M8−σ)/2. Then

F̃ ≡ M̃ ′
(

S̃

D̃

)
.

The advantage of working with̃M ′ is that many of the
entries in the operator matrix will be zero, reducing sig-
nificantly the number of operations required for the sum
and difference computation. For example, using8 × 8
DCT blocks and shifting by 4 positions in one dimen-
sion, 75 of 128 entries of̃M ′ are zero. The significant
number of zero entries occurs because of the structure of
the DCT basis, since the block matrices inM ′ are essen-
tially low-frequency sample matrices.

3. QUANTIZATION

Further computational improvements are realized by in-
corporating quantization into the merge calculations. Since
quantization involves, in effect, scaling the results prior
to integer truncation, the incorporation of the quantiza-
tion scales allows quantization to be performed through
integer truncation at the output of the merge procedure.

It is shown in this section that quantization can be
incorporated with the other operations, so that the DCT-
domain operatorM̂ becomes an operator of the same
form asM̃ . Specifically, the matrices of̂M have the same
zero entries as̃M , since the matricesQ andQ̂ are diago-
nal.

Let [·] be the integer truncation operator. Consider a
1-D merge operator

F̃ =
(
A B

)( S̃

D̃

)
,

with S,D defined as above. Letq ∈ <8 be a quantization
vector and letQ = diag(q) be the corresponding diagonal
matrix. Because the quantization is the same for both
vectorsG̃ andH̃,

QG̃±QH̃ = Q(G̃± H̃) ∈
{
QS̃,QD̃

}
.

Assume thatG̃, H̃ ∈ Z8 is input quantized with re-
spect toq, both quantized on the same scale. This is not
a restriction if we are considering shift operators. In the
case of merging two picture, we have to quantize them
on the same scale before performing the merge for the
following improvement to be successful.

Let q̂ ∈ <8 be the desired quantization vector for the
output andQ̂ = diag(q̂) be the corresponding diagonal
matrix. An elementary computation of the quantized out-
put leads to

F̃ =
[(

Q̂−1AQ Q̂−1BQ
)( S̃

D̃

)]
,
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where the square bracket indicate the integer part, the ac-
tual quantization. Let̂A = Q̂−1AQ andB̂ = Q̂−1BQ.
Then by incorporating the dequantization and quantiza-
tion we get

F̃ =
[(

Â B̂
)( S̃

D̃

)]
.

The matricesÂ andB̂ have the same zero entries as
the matricesA andB, since the matricesQ and Q̂ are
diagonal. In particular,

Âuv = qv/q̂uAuv
B̂uv = qv/q̂uBuv,

so that the matriceŝA andB̂ can be computed once and
reused throughout the image.

In a traditional JPEG implementation, the values would
first be scaled byqv, for a total of 8 multiplies for the
vector, later scaled down bŷqu, for another 8 multiplies.
Since quantization is combined with the matrix opera-
tions in our approach, the scaling required for quantiza-
tion essentially takes no additional operations.

4. EXAMPLES

The shift by four positions, which is equivalent to merg-
ing the four left columns of one block with the four right
columns of the adjacent block, results iñM ′ having 75/128
(about 58%) of its elements zero. Assuming 1-D DCT
and no non-zero DCT coefficients, the calculation ofS
andD require a total of 16 addition operations. A brute
force application of the matrix operation adds 52 mul-
tiplies and 58 additions. As stated above, quantization
requires no additional operations. On the other hand,
conversion to the pel domain requires 2 each inverse and
forward DCTs ofG andH, in addition to any cycles re-
quired for the shift of the samples (not included in the
summary numbers). Additionally, dequantization and re-
quantization require 24 multiplications. This conventional
approach, using the binDCT-C fast DCT [4] and the AAN
fast DCT [5] is summarized in Table 1. The percentage
of operations saved through our approach, called “SD”,
is shown in the last column of the table. The table as-
sumes one execution cycle for each of multiplications,
additions, and shifts, a reasonable assumption on modern
DSPs and RISC microprocessors. A finessed application
of our algorithm, using the Fast Paths discussed below,
would save even more cycles through intelligent group-
ing of operations.

The non-zero coefficients of the matrix in SD lie be-
tween 0.01 and 0.5. Thus, the integer methods described
in [6] could be useful for a hardware or an embedded soft-
ware implementation of the transform. Those methods
allow the implementation of multiplierless transforms, which

Table 1: Operation counts for shift example.
Algorithm Mult Add Shift SD saves

Tran 24 120 52 > 35%
AAN 20+24 116 0 > 20%
SD 52 58+16 0 -

have real estate advantages in FPGA implementations.
The methods also guide the allocation of precision in cal-
culations, allowing efficient low-error implementation in
narrow-bus embedded processors.

In contrast, the operator for shift by one position has
only about 25% of its elements zero. The algorithms
for each of theσ values can be coded and optimized in
advance, so that a different approach can be chosen for
those cases where the DCT domain algorithm does not
perform best.

5. NATURAL IMAGES

A further reduction in computation cycles may be achieved
with natural images. The typical quantized coefficient
vector from a natural image has the property that only
the first several coefficients are non-zero. One could even
suppress entries; e.g., if somẽG(i, j) with (i, j) ∈ R is
small, and if their omission will not appreciably affect
image quality.

Assume that only the firstτ ∈ 1, 2, . . . 8 entries of the
input vectorsG̃ andH̃ are non-zero. LetPτ : <8 → <τ
be the projection onto the firstτ entries. Then

Pτ G̃± Pτ H̃ = Pτ (G̃± H̃) ∈
{
Pτ S̃, Pτ D̃

}
.

Consider the merge operator on the DCT domain

F̃ =
[(

Â B̂
)( S̃

D̃

)]
,

with dequantization and quantization incorporated. Let
S̃τ = Pτ S̃ andD̃τ = Pτ D̃ be τ−vectors andÂτ , B̂τ
be the8 × τ matrices formed by the firstτ columns of
respectivelyÂ andB̂. An elementary computation shows

F̃ =
[(

Âτ B̂τ
)( S̃τ

D̃τ

)]
.

This improvement is referred to as “Fast Paths”. The im-
provement of the Fast Paths comes from the effective re-
duction in matrix size resulting from the omission of co-
efficients, similar to the technique used in [2] for reduc-
ing operations required for convolution.

It should be noted that Fast Paths considerations re-
duce both the number of operations required for our brute-
force DCT-domain approach and for the conventional ap-
proach; however, while Fast Paths reduce all of our steps

3



(sum/difference of DCT coefficients, and matrix opera-
tions required for shift/merge/quantization), in the con-
ventional approach, only the operations required for the
DCTs are reduced, since the pel-domain blocks may be
fully populated. Specifically, in the example described
above, assume that only the first two DCT coefficients are
non-zero. Then the calculation ofS andD require only
4 addition operations, the matrix operation adds 13 mul-
tiplications and 11 additions. In contrast, the AAN fast
IDCT requires a total of 8 multiplcations and 30 addi-
tions (assuming that operations associated with zero co-
efficients are dropped), and the forward DCT requires the
full total 10 multiplies and 58 additions. Dequantization
requires only 4 multiplies, but requantization requires all
8. Thus, our Fast Paths approach uses about 75% fewer
operations!

6. EXTENSION TO TWO DIMENSIONS

We now extend the description to include 2-D merge op-
erators and the corresponding action on the DCT-domain.
In the 2-D case the input space, again called real domain,
is the space of8 × 8 matrices,M(8). The 2-D DCT-
operator, denoted byD2 :M(8)→M(8), is

D2 : G̃ 7→ (D(DG̃)T )T ,

whereD is the 1-D DCT operator. The output domain is
called the DCT-domain.

It is sufficient to derive the DCT-domain action cor-
responding to purely vertical merge operators, since gen-
eral 2-D shifts or merges may be constructed as the com-
position of vertical and horizontal shifts or merges. Let
M =

(
A B

)
be a 1-D merge operator. This merge

operator defines a 2-D merge operator as follows. Let
G1, G2 ∈ M(8) be elements in the real domain,G1 is
thought to be a block aboveG2. Now we can merge the
G1 andG2 by columns:

F =
(
A B

)( G1

G2

)

or F = AG1 + BG2. This 2-D merge operation can be
described completely on the DCT domain. In particular,
let F̃ = D2(F ), G̃1 = D2(G1), G̃2 = D2(G2) and let
M̃ =

(
Ã B̃

)
be the representation on the 1-D DCT

domain of the merge operatorM . In particular,Ã =
DAD−1 andB̃ = DBD−1.

Lemma 6.1 The 2-D vertical merge operation can be
performed on the 2-D DCT domain by applying the cor-
responding 1-D merge operator on the columns:

F̃ =
(
Ã B̃

)( G̃1

G̃2

)
= ÃG̃1 + B̃G̃2.

The proof of this Lemma is a computation, which fol-
lows fromF̃ = (D(DF )T )T = DFD−1.

The application of the operator by columns provides
a natural parallelization in the algorithm that allows fur-
ther computational gains to be made through application
of the methods described in [7], which describe a method
by which parallel operations can be performed in scalar
processors through use of a vector representation. The
vector representation allows computation to be reduced
by several times, dependent on the size of the registers in
the processor and the required precision in the calcula-
tions.

A general 2-D merge operation is an operation which
combines a vertical 1-D merge operatorM̃v and a hori-
zontal 1-D merge operator̃Mh. Let M̃v =

(
Ãv B̃v

)

and M̃h =
(
Ãh B̃h

)
be the representations of the

1-D merge operators in the DCT domain. Now we will
describe the action of this 2-D merge operatorM̃ on the
DCT-domain. Let

G̃ =
(
G̃11 G̃12

G̃21 G̃22

)

be a square consisting of4 blocks in the DCT-domain,
G̃ij ∈ M(8). The following Lemma is obtained by ap-
plying the previous Lemma to the vertical and horizontal
parts of this 2-D merge.

Lemma 6.2 The merge operatorM̃ on the 2-D DCT-
domain is

F̃ = [M̃h[M̃vG̃]T ]T = M̃vG̃M̃
T
h

or in block form

F̃ =
(
Ãv B̃v

)( G̃11 G̃12

G̃21 G̃22

)(
Ãh B̃h

)T
.

We finish this section with the application of the three
1-D improvements,S andD, Quantization, and Fast Paths,
to the 2-D case. The example uses the notation forG̃,
M̃h, andM̃v as above.

6.1. Sum-Difference

Consider the transformed input
(

S̃1 S̃2

D̃1 D̃2

)
=
(
G̃11 + G̃21 G̃12 + G̃22

G̃11 − G̃21 G̃12 − G̃22

)
.

An elementary computation with the block matrices shows

Lemma 6.3 The merge operatorM̃ on the 2-D DCT-
domain is

F̃ = (Ãv(S̃1 + S̃2) + B̃v(D̃1 + D̃2))ÃTh
+(Ãv(S̃1 − S̃2) + B̃v(D̃1 − D̃2))B̃Th ,

whereÃh, B̃h and Ãv, B̃v are the sum-difference repre-
sentation of the 1-D horizontal and vertical merge, re-
spectively.
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A purely vertical (or horizontal) merge operation be-
comes the operation consisting of applying the 1-D merge
operator on the columns (or on the rows).

6.2. Quantization

Let Q ∈ M(8) be a 2-D quantization matrix. Gener-
ally speaking quantization matrices do not satisfy special
properties. This generality implies that we cannot incor-
porate the dequantization and requantization completely
within the merge matrices; instead, we have to work by
columns. IfX is a matrix we will denote thekth col-
umn ofX by Xk and thekth row by kX. Moreover let
Qk = diag(Qk), the diagonal matrix using the entries of
the kth column. The quantized input̃Gij is given and
quantized using the same quantization matrix. Let the
transformed input be denoted by

(
S̃1 S̃2

D̃1 D̃2

)

After performing the vertical merges we obtain the fol-
lowing unquantized information:̃X1, X̃2 ∈M(8) with

X̃k
j = ÃvQkS̃

k
j + B̃vQkD̃

k
j .

The unquantized output is given by

F̃ = (X̃1 + X̃2)ÃTh + (X̃1 − X̃2)B̃Th .

Let Q̂ be the desired quantization matrix for the output
and(Q̂T )k be the diagonal matrix using the entries of the
kth row of Q̂.

Lemma 6.4 Thekth row of the requantized output is given
by kF̃ = kS̃+Ã

T
h Q̂
−1
k + kS̃−B̃Th Q̂

−1
k , where

kS̃± = (ÃvQk)(S̃k1 ± S̃k2 ) + (B̃vQk)(D̃k
1 ± D̃k

2 ).

The previous Lemma implies that the dequantization
and requantization can be completely incorporated in the
computation: the sum-difference computation described
previously for unquantized input has the same perfor-
mance as the computation including de- and requantiza-
tion. Furthermore, the matrices̃ATh Q̂

−1
k , B̃Th Q̂

−1
k , ÃvQk,

and B̃vQk can be computed once and used throughout
the image, with the same non-zero entries as their coun-
terparts in the sum-difference formula.

In the case of a pure vertical (or horizontal) merge
operation we have

Lemma 6.5 Thekth column of the requantized output is
given byF̃ k = Q̂−1

k ÃvQkS̃
k + Q̂−1

k B̃vQkD̃
k.

The matriceŝQ−1
k ÃvQk andQ̂−1

k B̃vQk can be com-
puted once and used throughout the image, with the same
zero entries as̃Av or B̃v, respectively.

Using the combined operations as described above,
this DCT-domain method saves about 20% of the cycles
of conventional approaches, even before considerations
are made for zero DCT coefficients. This saving occurs
from the elimination of additional operations required for
quantization and the reduction of elements in the com-
bined matrix, as shown in 1-D in Section 4. A finessed
application of our algorithm would save even more cycles
through intelligent grouping of operations. Furthermore,
the Fast Paths, discussed in Section 5, significantly re-
duce the operations required for our approach.

7. CONCLUSIONS

We have outlined a DCT-domain fast algorithm for per-
forming shifts and merges of images along a rectangu-
lar grid. The algorithm exploits de- and re-quantization
to achieve further gains, both in combining the quanti-
zation operation with the algorithm, and in reducing the
number of operations required by omitting calculations
on zero coefficients. The resulting algorithm can save at
least 25% of the required operation cycles in an average
image processing system.
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