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Problem size reduction for Set Partitioning problems

Marta Eso
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Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598
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Very large Set Partitioning Problems arising in practice often contain redundancies because

of the way the problem instances are generated. We examine techniques that remove re-

dundancies based on logical implications without eliminating any optimal solutions. These

problem size reduction techniques are useful not only for preprocessing problem instances

but also for propagating the effects of decisions made during a solution process (whether

it be heuristics or Branch and Bound). Our main contribution is a theorem of exhaustive

reduction for a set of well-known reduction operations. We show that applying these opera-

tions in any order until no more reductions are possible always results in the same reduced

problem. We also examine which reduction operations lead to (and to what kind of) new

reduction instances. We also sketch an efficient implementation of these techniques that

relies on lexicographically ordering the columns of the problem matrix before the reductions.

The ordering of the columns allows us to implement one of the reduction operations that

was thought to be too expensive before. Computational results are presented for a set of

crew scheduling problems.

(Set Partitioning, Preprocessing, Automatic reformulation)

1. Introduction

Given a ground set of m objects and a collection of n subsets of the ground set with associated

costs, the set partitioning problem (SP) is to select a cost-minimizing set of disjoint subsets

whose union is the ground set. Formally,

(SP) min cT x
Ax = 1m

x ∈ {0, 1}n

(1)
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where the columns of the m × n zero-one matrix A are the characteristic vectors of the

subsets, c is the cost vector and x is an array of decision variables indicating which subsets

are chosen.

Set partitioning problems arise in applications such as crew scheduling, vehicle routing,

political districting and circuit partitioning, just to name a few (see Eso 1999, for references

and an overview). Problem generators, especially in crew scheduling applications, often

introduce redundancy into the problem (sometimes as obvious as duplicate columns). It is,

therefore, desirable to devise methods that remove redundancies and, as a result, reduce the

size of the problem without eliminating any optimal solutions. Set partitioning problems are

NP-hard and are also difficult to approximate (MAX-SNP-hard). Whether the problem is

solved with heuristics or Branch and Bound based techniques, problem size reduction can be

applied to propagate the effects of decisions made during the solution process. For instance,

variables may be set to their lower and upper bounds as a result reduced costs or as a result

of branching, and these will have an effect on the variables that remain in the problem.

The reduction operations considered in this paper are folklore (Borndörfer 1997 provides

information about their origins) and implementations of some subsets of these reduction

operations have appeared in the literature before (Hoffman and Padberg 1993, Atamtürk at

al. 1995, Borndörfer 1997). However, these studies approached the problem from a practical

point of view where the reduction methods were a small part of the overall SP solution

process. Based on empirical evidence or estimates on the execution time (Borndörfer 1997)

they cut short on the more expensive procedures or do not implement them at all.

Our main contribution is a theorem of exhaustive reduction, that is, we show that applying

these reduction operations in any order to a set partitioning instance until no more reductions

are possible always results in the same reduced problem. To aid in deciding on the sequence of

reduction operations in an implementation we also examine which reductions can lead to (and

to what kind of) new reduction possibilities. We also present efficient implementations for six

reduction operations. We order the columns of the matrix lexicographically at the beginning

and then maintain the ordering throughout the reductions. Lexicographical ordering of the

columns enabled us to implement heuristics for one of the expensive reduction operations for

the first time (SUMC, see 2.2) and to carry out another reduction method (CLEXT, see 2.3)

to its full extent. We have implemented the reduction operations in separate modules where

the same operation is iterated through all columns or rows of the problem matrix. These

modules can be organized into strategies depending on the desired quality and the amount of
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time available. We thoroughly tested our implementation on four publicly available data sets

from crew scheduling applications (detailed results are available in Eso 1999) and present

our results for one of these sets here (available, for instance, from the OR-Library, see the

references).

In what follows we will first overview six reduction operations then present the theorem of

exhaustive reduction. We learned about two additional operations only after the completion

of our original study, we introduce these after the proof of the theorem and show how that the

theorem remains valid. This will be followed by a section on the order of reduction operations

and a sketch of the implementation. Finally, we present some selected computational results.

2. Description of reduction methods

We will describe the reduction methods as operations on the integer programming formu-

lation (1). First we introduce some technical definitions that will be used throughout the

paper. Fixing a variable to zero means that the variable, its objective function coefficient and

the corresponding column are permanently removed from the problem formulation. Remov-

ing a row means removing that row from the problem matrix along with the corresponding

right-hand side entry, and fixing any variable to zero whose resulting column has only zero

entries. Variables can also be fixed to one during reduction. In this case all rows in this

column’s support can be removed since they will be satisfied by the variable fixed to one.

Moreover, all other columns that belong to the support of any of these rows can be fixed to

zero. Indices of variables fixed to one are recorded in a list we call ONES. Sometimes columns

are merged during reduction which means that the (orthogonal) columns of two variables

are combined into one column and the original columns are deleted from the formulation.

The objective function coefficient of the merged variable will be the sum of the two objective

function coefficients. Index pairs of merged variables are recorded in a list we call MERGES.

In the following we describe six reduction operations and for each justify that no optimal

solution is lost by applying it. Figure 1 illustrates all the six cases. Note that the short

names introduced below will be used for both the occurrences of the conditions and for the

operations themselves. Denote the support of row i (the set of columns that intersect this

row) by N i and the set of all columns by N .
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2.1 Duplicate columns (DUPC)

If two columns are identical then the one with the larger objective function coefficient can

be removed from the problem.

v = w for some v, w ∈ N =⇒
if c(v) > c(w) then xv is fixed to 0, else xw is fixed to 0.

(2)

Justification: A solution is not optimal if the more expensive of the identical columns is in

the solution since it could be replaced by the cheaper one.

2.2 Column is a sum of other columns (SUMC)

If a column can be expressed as a sum of other columns and the total cost of the columns in

the sum is smaller than the cost of the single column then the column can be removed from

the problem.

w =
∑

K vk and c(w) ≥ ∑
K c(vk) for some w ∈ N, vk ∈ K ⊆ N \ {w}

=⇒ w is fixed to 0.
(3)

Justification: A solution is not optimal if the expensive single column is in the solution since

it could be replaced by the columns in the sum without increasing the cost of the solution.

Note: Although SUMC contains DUPC as a special case, it is reasonable to consider

them separately since detecting duplicate columns is very fast.

2.3 Column non-orthogonal to all columns in a row (CLEXT)

If a column is nonorthogonal to all columns in the support of a row, but is not in the support

itself, then the variable corresponding to this column can be fixed to zero.

(w)T (vk) ≥ 1 ∀vk ∈ N i, for some row i, and w ∈ N \N i =⇒
w is fixed to 0.

(4)

Justification: One of the columns from the support of the row must be chosen in every

feasible solution. Since the column is nonorthogonal to every column in the support, it

cannot be chosen if any of the columns in the support is chosen.

2.4 Dominated rows (DOMR)

If the support of a row contains the support of another row then the row with the smaller

support (the “shorter row”) dominates the row with the larger support (the “longer row”).
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In this case the longer row can be removed along with the variables that are in the longer

row’s but not in the shorter row’s support.

N i ⊆ N j for some rows i 6= j =⇒
v is fixed to 0 ∀v ∈ N j \N i, row j is removed.

(5)

Justification: One of the columns from the shorter row’s support has to be chosen in any

feasible solution. This column will make the longer row’s equality satisfied as well, so vari-

ables corresponding to columns that are in the longer but not in the shorter row can be fixed

to zero. After fixing these variables to zero the two rows become identical, so one of them

(not necessarily the one which was originally the longer) can be removed.

Note that columns deleted with this method could be deleted by CLEXT, but DOMR is

more efficient since it discovers many deletable columns at once, rather than one by one as

CLEXT would do.

2.5 Singleton row (SINGL)

If a row has only one nonzero entry in it (that is, only one column intersects the row) then

the variable corresponding to this column can be fixed to 1.

|N i| = 1, for some row i, and N i = {v} =⇒ v is fixed to 1. (6)

Justification: The equality in the row that has only one column intersecting can be met only

if the variable corresponding to this column is set to 1. (Note that according to the definition

of fixing a variable to 1 variables with columns nonorthogonal to column v are fixed to zero.)

2.6 Two rows differ by two entries (DTWO)

If the supports of two rows are identical except for two entries, one of which is in one of

the rows and the other is in the other row, then, depending on whether the two columns

are nonorthogonal or orthogonal, the two columns can either be removed or merged into one

column (also one of the rows can be removed).

|N i| = |N j| and N i ⊕N j = {v, w} for some i, j ∈ M =⇒
if vT w ≥ 1 then v, w are both fixed to 0, else v and w are merged;
one of the rows is removed in both cases.

(7)

Justification: Observe that the two variables will take identical values in any feasible solution.

If they are nonorthogonal then they cannot both be one, thus they have to be fixed to zero.

If they are orthogonal then they can be merged into a new column (with their costs added).

In either case, there will be two identical rows, one of which can be deleted.
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3. Theorem of exhaustive reduction

In this section we will show that applying the above defined reduction operations in any

order to a set partitioning instance until no more reductions are possible always results in

the same reduced problem.

Two reduction sequences (sequences of reduction operations) are equivalent if, when

applied to the same set partitioning instance, the resulting reduced matrices are identical up

to a permutation of the rows and columns of the matrices. A reduction sequence is exhaustive

if no reductions are possible after it.

Theorem 1 Given a set partitioning problem instance, any two exhaustive sequences of

DUPC, SUMC, CLEXT, DOMR, SINGL and DTWO are equivalent.

The proof of Theorem 1 will be completed in three steps in sections (3.1)–(3.3) below.

After the proof of the theorem we will introduce two additional reduction operations in

section (3.4) that appear in Borndörfer (1997) and show how to incorporate them into the

theorem.

3.1 Simplification of the reduction sequences

First we show that any sequence of the above six reduction operations can be replaced by an

equivalent sequence using only three types of these operations: SUMC, CLEXT and MERGE

(which is a simplified version of DTWO defined below) followed by the possible deletion of

duplicate rows and possible fixing of variables to one.

Observe that a SINGL operation can be thought of as a sequence of DOMR operations

since the row with the singleton in it dominates all the other rows that the corresponding

column intersects. After the DOMR operations the singleton row along with its column

are still in the problem, but the column will intersect only this row. Fixing this column to

one now means only recording its index in ONES and deleting its column and row from the

matrix.

Also, DOMR can be replaced by a sequence of CLEXT operations since columns in the

longer but not in the shorter row are all nonorthogonal to all columns in the shorter row.

Then we are left with two identical rows and we delete the one that was deleted with DOMR.

Note that if the two columns are nonorthogonal in a DTWO instance (that is they can

be deleted) then each extends the other row’s clique, so these two columns could be deleted
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with two CLEXT operations. If the two columns are orthogonal, we replace DTWO with

MERGE which simply merges the two columns but does not delete either row. In both cases

we are left with two identical rows and we delete the one that was deleted with the original

DTWO operation.

As we have seen earlier, DUPC is a special case of SUMC, so every DUPC operation can

be replaced by a SUMC with only one summand.

It is obvious that the reduction sequence obtained by the above substitutions is equivalent

to the original sequence. Also, since deletion of duplicate rows will not destroy old instances

of reduction, will not create new instances and the other operations can only create but

not destroy duplicate rows, these operations can be shuffled to the end of the reduction

sequence while equivalence is preserved. Similarly, the fixing of isolated variables to one can

be postponed until the very end of the reduction.

Now consider the original two exhaustive reduction sequences and apply the described

substitutions (with removal of duplicate rows and fixing of isolated variables postponed to

the end). In the rest of the proof we will show that the two sequences are equivalent up to the

point where duplicate rows are removed and isolated variables are fixed. From this statement

the theorem follows easily.

Note that SUMC and CLEXT delete one column, and MERGE merges two columns;

that is, the total number of columns in the current problem matrix is reduced by exactly

one each time a reduction operation is applied, thus the reduction sequences are finite. For

ease of explanation we associate time with the sequences and say that the reductions start

at time 0 with each reduction step taking one unit of time.

3.2 Reduction instances do not ”disappear”

First we will show that deletable or mergable columns do not become non-deletable or non-

mergable as a result of other operations.

Lemma 2 If a column is deletable at some time in a reduction sequence then it will remain

deletable after any reduction operation that does not involve (does not delete or merge) this

column. Similarly, if two columns are mergable then they will remain mergable after any

reduction operation that does not involve either of the two columns.

The following is a trivial corollary of Lemma 2 if the reduction sequence is exhaustive.
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Corollary 3 In an exhaustive reduction sequence, if a column could be deleted at some point

then it is either deleted or merged with another column at some later time. If two columns

could be merged at some point then they will either be merged or one of the columns is deleted

or merged with another column at some later time.

Proof of Lemma 2 First assume that column v is deletable with SUMC at some time;

that is, v =
∑

vl and c(v) >
∑

c(vl) for some columns v1, . . . , vk. This instance could

disappear if one of the summands is deleted or merged with another column. We will show

that v remains deletable after such an operation.

1. If a summand vl is deleted with SUMC; that is, vl =
∑

wj and c(vl) >
∑

c(wj)

then the wj’s can be used for vl in the sum for v since c(v) >
∑

i6=l c(v
i) + c(vl) >

∑
i 6=l c(v

i) +
∑

c(wj). Thus v is still deletable with SUMC.

2. If a summand vl is deleted with CLEXT; that is, there exists a row i so that vl is

nonorthogonal to all columns in the support of row i. Then v is nonorthogonal to all

columns in row i’s support since v intersects all rows that vl does. Also, v does not

intersect row i itself, since otherwise a summand would need to cover row i and thus

be in row i’s support and orthogonal to vl, which contradicts our assumption that vl

is deletable by CLEXT. Therefore v can be still deleted, now with CLEXT instead of

SUMC.

3. If a summand vl is merged with a column then v must be among the common columns

of the two rows that differ by two, thus the other column that vl is merged with must

be also a summand (since this is the only column that can cover the other differ-by-two

row that vl does not intersect). Therefore the merged column could be used instead of

vl and the other summand, thus v is still deletable using SUMC.

Second, assume that column v is deletable with CLEXT at some time; that is, there is a

row i so that v is nonorthogonal to all columns in i’s support. Then, since column deletion

does not change the orthogonality relationship of remaining columns, v remains deletable

with the same CLEXT operation after columns other than v are deleted from the problem.

Also, when two columns are merged, all columns that were nonorthogonal to either of them

will be nonorthogonal to the merged column. Therefore v remains deletable with the same

CLEXT operation if a column in row i’s support is merged.
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Finally, assume that MERGE could be applied to two columns, v and w at some time;

that is, there exist rows i and j such that their supports differ by two columns only: row i’s

support contains v but not w and row j’s support contains w but not v. Since the two rows

i and j are the same except for columns v and w, a column deletion or merge that does not

involve v or w will not remove the MERGE opportunity for v and w. ¥
As the previous lemma stipulates, we do not need to distinguish between deleting a

column by SUMC or CLEXT. Thus, as shorthand we will write del(v) for the deletion of

column v, and merge(v, w) for the merging of columns v and w.

Given two consecutive operations in a reduction sequence we say that the second oper-

ation is independent of the first if the column(s) deleted or merged in the second operation

is (are) already deletable/mergable before the first operation. Now we show that two such

operations can be interchanged. This will make sure that a reduction instance present at

time T0 but not done until time T can be “bubbled back” to time T0.

Lemma 4 Given a sequence of reductions containing two consecutive operations with the

second independent of the first, there is an equivalent sequence with the two operations in-

terchanged.

Proof of Lemma 4 Let us denote the two operations by O1 and O2 and assume their

order is O1O2 originally. Since the second operation is independent of the first, it could be

done at the time when O1 occurs in the original sequence. Moreover, columns involved in

O2 are not involved in O1 thus, by Lemma 2, the column(s) deleted/merged by O1 can be

deleted/merged by an operation O′
1 (perhaps not the same as O1, see the proof of Lemma 2

for details) after O2. So O1O2 can be replaced by O2O
′
1 resulting in an equivalent reduction

sequence (the resulting problem matrices will be identical if merged columns are inserted

into the same positions in the new sequence as in the old sequence). ¥

3.3 Equivalence of reduction sequences proved by induction

We will prove the equivalence of the two sequences by induction on the number of columns in

the matrix. If the number of columns is 1 then the statement is trivially true (the reduction

sequences are empty). So we assume the statement is true for matrices with n− 1 columns,

and we prove the statement for matrices with n columns.

Consider the first operation in one of the exhaustive sequences. We will show that we

can find an equivalent sequence to the other exhaustive sequence which starts with the same
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reduction. By applying the first operation to the original problem instance we are left with

n− 1 columns in the matrix; then the inductive statement shows that the two sequences are

equivalent.

The following claims summarize small but important observations needed later in the

proof.

Claim 5 If a deletable column v is merged with another column w then the merged column

vw is also deletable.

Proof of Claim 5 Suppose the two differ-by-two rows are i and j, row i’s support contains

v but not w and row j’s support contains w but not v. At the time when v and w are merged,

v can be deleted only with CLEXT (based on some row k 6= j) and not with SUMC since a

summand would need to cover row i, but all the columns in row i’s support are in row j’s

support as well and v does not intersect row j. After merging v and w, the merged column

vw is nonorthogonal to every column in row k’s support and it does not intersect row k itself

(otherwise w would need to intersect row k but w is orthogonal to v while columns in row

k’s support are not); thus it can be deleted with CLEXT based on the same row k. ¥

Claim 6 If v and w are mergable columns and v is deleted then w becomes deletable as well.

Proof of Claim 6 Let i and j be the two differ-by-two rows as in the proof of Claim 5.

After v is deleted w becomes nonorthogonal to all columns in i’s support but it is not in the

support itself, so it can be deleted with a CLEXT. ¥

Claim 7 Assume v and w are mergable but v is merged with a third column z instead. If z

and w are orthogonal then vz and w are mergable, otherwise both vz and w are deletable.

Proof of Claim 7 Let i and j be the two differ-by-two rows which show that v and w

can be merged. Since v and z are orthogonal, the two rows i and j will differ by the two

columns vz and w. Now if z and w are orthogonal then vz and w are orthogonal as well, so

the two columns become mergable as soon as v and z are merged. Otherwise both vz and

w can be deleted with CLEXT.

¥

Claim 8 The following replacements are equivalence-preserving.
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1. Suppose merge(v, w) del(vw) is in the reduction sequence at some time. Then it can

be replaced by del(v) del(w) if v is deletable at the same time.

2. Suppose del(v) del(w) is in the reduction sequence at some time. Then it can be replaced

by merge(v, w) del(vw) if v and w are mergable.

3. Suppose merge(v, w) merge(vw, z) is in the reduction sequence at some time. Then

it can be replaced by merge(v, z) merge(vz, w) if v and z are mergable. (Note that w

and w are orthogonal.)

4. Suppose merge(v, w) del(vw) del(z) is in the reduction sequence at some time. Then

it can be replaced by merge(v, z) del(vz) del(w) if v and z are mergable and w and z

are nonorthogonal.

Proof of Claim 8 These four statements follow directly from Claims 6, 5, 7 and 7,

respectively. Observe that the resulting problem matrices will remain the same if in the new

sequence the merged columns are inserted into the same positions as in the old sequence. ¥
Now we go back to the proof of our main theorem. The first operation is either a column

deletion or a merge of two columns. In Lemmas 9 and 10 we show that if a deletion/merge

could be done at time T0 in a reduction sequence then there is an equivalent sequence in

which the deletion/merge is done at T0. Applying the lemmas for time T0 = 0 will prove the

theorem since the first reduction instance is already present in the problem.

Lemma 9 If v is a column deletable at time T0 in an exhaustive sequence of reductions,

then there is an equivalent sequence in which v is deleted at T0.

Proof of Lemma 9 The column v can be deleted or merged at time T0, or nothing happens

to it. If it is deleted, we are done.

If it is merged then the merged column is deletable at time T0 +1 (Claim 5). The matrix

has one less column at time T0 + 1, so by induction there exists an equivalent sequence in

which the merged column is deleted at time T0 + 1. By replacing the merge of v and the

other column and then the deletion of the merged column by the deletion of v followed by

the deletion of the other column (part 1 of Claim 8) we obtain an equivalent sequence in

which v is deleted at time T0.

If nothing happens to column v at time T0 then v is still deletable at time T0 +1 (Lemma

2). Applying the inductive statement there exists an equivalent sequence in which v is deleted
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at time T0 + 1. We can swap the first two operations (Lemma 4) to obtain an equivalent

sequence in which v is deleted at time T0. ¥
Note that while the above proof is existential, it is easy to give an algorithm that con-

structs the equivalent sequence. Indeed, if v is deleted at some time in the sequence of

reductions then the deletion of v can be bubbled back to time T0 (Lemma 4) and we are

done. Otherwise, since the sequence is exhaustive, v will be merged with another column at

some later time (Lemma 2). The merged column is deletable (Claim 5), so in turn it will be

either deleted or merged further, and so on. The “supercolumn” V that contains v will be

deleted sooner or later since the reduction sequence is exhaustive and finite.

Now consider the time when V is deleted. V became deletable right after it was merged

from two columns, V ′ (containing v) and some column z. By Lemma 4, the deletion of V

can be bubbled back to be right after the merge of V ′ and z. Then, since V ′ is deletable,

merge(V ′, z) del(V ) can be replaced by del(V ′) del(z) (part 1 of Claim 8). Continue this

procedure with V ′ until the deletion of v appears in the equivalent sequence, and then bubble

this operation back to time T0.

Lemma 10 If v and w are mergable at time T0 in an exhaustive sequence of reductions,

then there is an equivalent sequence in which v and w are merged at T0.

Proof of Lemma 10 At time T0 the two columns are either merged, one of them is

deleted, one of them is merged with a third column or nothing happens to them. If they are

merged with each other then we are done.

If one of the two columns is deleted then the other column becomes deletable at time

T0 +1 (Claim 6), so there exists an equivalent sequence in which the other column is deleted

at time T0 + 1 (Lemma 9). Then applying part 2 of Claim 8 shows that we are done.

If one of the columns is merged with a third column (say v is merged with some column

z) then vz and w are mergable or both are deletable at time T0 +1, depending on whether z

was orthogonal to w or not (Claim 7). If they are mergable then, by the inductive statement,

there exists an equivalent sequence in which vz and w are merged at time T0 + 1. Applying

part 3 of Claim 8 shows that we are done. Otherwise, there exists an equivalent sequence in

which vz is deleted at time T0 + 1 and w is deleted at time T0 + 2 (Lemma 9). Now apply

part 4 of Claim 8 to see that we are done.

If nothing happens to the two columns at time T0 then they are still mergable at time

T0+1. By the inductive statement there exists an equivalent sequence in which these columns
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are merged at time T0+1. Swapping the first two operations (Lemma 4) we get an equivalent

sequence in which the two columns are merged at time T0. ¥
We can devise a constructive algorithm as in the previous case. If the two columns are

merged at any time in the sequence then this operation can be bubbled back to time T0.

Otherwise one of the two columns is deleted or merged with another column (Lemma 2).

Now columns containing v and w can be further merged until one of the supercolumns V and

W is deleted or V and W are merged together. Since the reduction sequence is exhaustive

and finite, one of these two cases must happen eventually.

Assume that one of the supercolumns is deleted, say V . When this happens, W becomes

deletable as well (Claim 6), and, as in Lemma 9, we can modify the sequence so that W is

deleted immediately. If V and W are orthogonal then they are mergable at the time when

V is deleted (Claim 7) thus we can replace del(V ) del(W ) with merge(V, W ) del(V W ) (part

2 of Claim 8) and default to the case in which the supercolumns are merged together.

Otherwise V and W are nonorthogonal, which means that there was a time when one of

the supercolumns was merged with a column that was nonorthogonal to the other supercol-

umn (since then both of the columns could have been merged with other, different columns).

After this merge both of the supercolumns became deletable (Claim 7), thus we can find an

equivalent sequence in which V and W are deleted right after this merge. Assume that this

merge produced V from V ′ and z. Since V ′ and W are orthogonal, z must be nonorthogonal

to W ; thus merge(V ′, z) del(V ) del(W ) can be replaced by merge(V ′,W ) del(V ′W ) del(z)

(part 4 of Claim 8) and we can default to the case in which the supercolumns are merged

together.

Now assume that V and W are merged together. These columns became mergable right

at the time when V and W were created (whichever happened later). Suppose V is the

column that was created later by merging V ′ (a column containing v) and z. Since W

already existed when this merge happened, the merge of V and W can be bubbled back to

immediately follow the merge of V ′ and z. merge(V ′, z) merge(V,W ) can be replaced by

merge(V ′, W ) merge(V ′W, z) (part 3 of Claim 8) since V ′ and W are mergable (Claim 7)

and z and W must be orthogonal if V and W are. We now continue this procedure with V ′

and W until the merge of v and w appears in the sequence.
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Figure 2: Two more reduction operations

3.4 Two additional reduction operations

In this section we will present two more reduction operations and show that the theorem

of exhaustive reduction remains true with these operations added. However, we have not

implemented these reduction operations.

3.4.1 Symmetric difference (SYMMD)

If the support of a row contains the symmetric difference of the supports of two other rows

(as illustrated on Figure 2) then all columns in the symmetric difference can be removed.

This results in two identical rows, one of which can be deleted.

Nk ⊇ N i ⊕N j for some rows i, j, k =⇒
v fixed to 0 ∀v ∈ N i ⊕N j, row j is removed.

(8)

Justification: If a column in N i \ N j is chosen to satisfy row i then row j can be satisfied

only by a column in N j \ N i, which implies that we have chosen two columns for row k, a

contradiction.

Note that columns in N j \ N i can be removed by CLEXT based on row i and columns

in N i \ N j can be removed by CLEXT based on row j; thus the theorem can be trivially

extended for this reduction operation.

3.4.2 Substituting for a column singleton (COLSINGL)

If a column is a singleton (contains only one nonzero) and the support of the row it intersects

is contained – with the exception of the singleton column – in the support of another row
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then we can substitute for the variable in the objective function and remove the singleton

column along with its row.

v intersects only row i, and N j ⊇ N i for some row j =⇒
substitute xv = 1−∑

w∈N i\{v} xw in the objective, remove row i and column v.
(9)

Justification: The variable xv can certainly be expressed in terms of the other variables of

constraint i and can be substituted into the objective function. However, in order to eliminate

the variable its bounds must also be satisfied implicitly by the substitution. xv ≤ 1 is obvious

since all variables xw are nonnegative. On the other hand,
∑

w∈N i\{v} xw ≤
∑

w∈Nj xw = 1,

thus xv will remain nonnegative.

Substituting for xv into the objective function results in

∑
w∈N

cvxw = cv +
∑

w∈N i\{v}
(cw − cv)xw +

∑

w 6∈N i

cwxw.

Note that the new coefficients can be negative as well.

Only columns intersecting row i are modified; column v is deleted and the other columns

in N i have their entries in row i removed and their objective coefficients reduced by the

coefficient of v. In any feasible solution either v or one of the other columns in N i must

be selected to satisfy row i. This operation adds the coefficient of v to the objective as if

the column was chosen, but compensates for this by subtracting the column from the other

columns intersecting its row in case one of these other columns was chosen. The covering

row j makes sure that at most one of the other columns is selected.

We interpret this operation as a column deletion in conjunction with minor modification

of some other columns. To show that the theorem of exhaustive reduction holds when this

operation is added to the others we will prove an extended version of Lemma 2. It is easy to

see that the rest of the proof presented in Section 3.3 carries over. Note that row i becomes

an empty row with a zero right-hand-side value after the operation. The removal of this

row can be postponed to the end of the reduction sequence the same way as the removal of

duplicate rows (Section 3.1).

Proof of Lemma 2 (extended to include COLSINGL) First assume that a column

v is deletable with SUMC, v =
∑

vl and c(v) >
∑

c(vl). This instance could disappear if

one of the summands is deleted using COLSINGL or some other column is subtracted from

either v or from one of the summands. In the first case v has to intersect the summand’s

row, and thus the summand will be subtracted from v and the cost of both v and the cost
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of the summand will both be reduced by the objective coefficient of the removed summand.

Therefore, the modified v can still be deleted with SUMC using the same summands except

for the one removed. In the second case if a column is subtracted from v then this column is

either a summand or the same column has to be subtracted from one of the summands. On

the other hand, if a column is subtracted from one of the summands then the same column

has to be subtracted from v as well.

Now assume that a column v is deletable with CLEXT, that is, there is a row r so that v

is nonorthogonal to all columns in r’s support. This reduction instance could disappear as a

result of COLSINGL if v becomes orthogonal to one of the columns intersecting row r. The

only way this could happen is when a singleton column (intersecting row i 6= r) is subtracted

from both v and a column w ∈ N r. However, v and w will remain non-orthogonal since by

assumption they both have to intersect the covering row j.

Assume that two columns, v and w could be merged, that is, there exist rows i and j such

that their supports differ by two columns only: row i’s support contains v but not w and row

j’s support contains w but not v. A COLSINGL operation that does not involve the two rows

has no effect on the MERGE instance. On the other hand, all columns that intersect row i

also intersect row j (with the exception of v) and thus they cannot be singleton columns.

Finally, assume that v can be deleted using COLSINGL, we need to show that v remains

deletable after another operation. Since we assume that this column itself is not deleted or

merged by another operation, no new entries can be introduced into its column. Removing

columns from N i does not cause any problems (v can be fixed to one if all such columns are

removed), and merging columns in N i does not have any effect on the instance. ¥

4. Implementation and computational results

Our primary goal in the implementation was to achieve the most reduction in a reasonable

amount of time. We approached the question of efficiency from three directions.

First, it is very useful to know which reductions can lead to (and to what kind of) new

reduction instances, so that we can avoid checking for reduction instances unnecessarily.

Second, for each of the six reduction types we have implemented a module where the

same operation is iterated through all columns and rows of the problem matrix, followed by

a matrix compression subroutine. The modules are organized into strategies that execute

reduction modules based on our requirements on quality and the amount of time available.
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Third, the reduction functions are implemented assuming that the columns of the ma-

trix are in lexicographically increasing order. This allows us to use special techniques that

speed up reduction instance identification considerably for DUPC, SUMC and CLEXT. The

ordering is carried out before the reductions and then it is maintained throughout the com-

putations.

In what follows we will first discuss how new reduction instances may arise, then describe

the implementation in detail. Selected computational results follow.

4.1 How can new instances arise?

Consider first the three operations (SUMC, CLEXT and MERGE) that the six reduction

methods can be replaced with. The first table in Figure 3 summarizes our observations.

It is clear that a new SUMC instance cannot be created by column deletion, so SUMC

or CLEXT cannot create a new SUMC instance. On the other hand, SUMC can arise as

the result of a MERGE when a merged column becomes the sum of some already existing

columns.

It is possible to create a new CLEXT instance by column deletion, when all but one

“bad” column in the support of a row are nonorthogonal to a given “outside” column, and

this bad column is deleted. This deletion cannot be a SUMC since all the summands that

make up the deleted column must be orthogonal to the outside column and one of them must

be in the support of the row. On the other hand, it is easy to construct an example where

the bad column in the row is deleted via a CLEXT operation. Merging columns can also

create new CLEXT instances; either by merging the outside column with some other column

and thus making it nonorthogonal to all columns in the support of a row, or by merging the

bad column in the row’s support with another column and thus making it nonorthogonal to

the outside column.

New MERGE instances can be created by all three operations; by deleting an “extra”

column (via SUMC or CLEXT) so that two rows will differ by exactly two columns, or by

merging two extra columns (based on two rows, one of which is different from the rows in

the new instance).

Based on the observations that enabled us to substitute the original six reduction methods

with three, we can extend the above table to include all the reduction methods. Which

reductions lead to what other reductions is summarized in the second table of Figure 3 for
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SUMC CLEXT MERGE

SUMC NO NO YES

CLEXT NO YES YES

MERGE YES YES YES

DUPC SUMC CLEXT DOMR SINGL DTWO

DUPC NO NO NO NO YES YES

SUMC NO NO NO NO YES YES

CLEXT NO NO YES YES YES YES

DOMR NO NO YES YES YES YES

SINGL NO NO YES YES YES YES

DTWO YES* YES* YES YES YES** YES

* only if the two columns are merged
** only if the two columns are deleted

Figure 3: Impact of reductions (entry (i, j) indicates whether reduction operation i can cause
a new instance of type j)

this case. The implications are easy to show, we refer the reader to Eso (1999) for more

details.

4.2 Modules, strategies and the Reduce() function

We designed a separate module for each of the reduction operations. At the heart of the

module is a reduction function that applies the reduction operation to all columns, rows,

or row pairs of the matrix and marks (but does not remove) some columns and/or rows for

deletion. Marked columns and rows are physically removed by a matrix compression routine

which is independent of the reduction operations. The reduction function and the matrix

compression routine are repeated in a loop while a certain percentage of columns (specified

by a parameter) are marked for deletion by the most recent application of the reduction

function. (Note that DUPC and SUMC need not be repeated since no new instances can

arise.) It is easy to see that in order to decide whether or not to repeat the reduction

function it is enough to check whether columns were marked for deletion (even if both rows

and columns could be marked).

A reduction strategy comprises of reduction modules. We have implemented two main

strategies, one that achieves maximal reduction and another that aims for fast execution and

thus limits the use of the more expensive modules (such as CLEXT and DOMR). Note that

since SUMC is far the least efficient among the reduction operations we invoke it only after

other modules are finished so that the input matrix is as small as possible. Each module
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is invoked at least once, but it is repeated only if other modules that might produce new

instances for this were successful.

Reduction strategies are accessible through a function called Reduce() that can be used

as a stand-alone application or can be invoked from other applications. Reduce() takes as

an input the problem matrix, parameters, and possibly non-empty ONES and MERGES

lists. Variables listed in ONES are fixed to one before the reduction strategy is invoked. The

function returns the updated problem matrix, ONES and MERGES lists and the feasibility

status of the problem. If the matrix can be reduced to nothing then an optimal solution

to the original problem can be deduced from the arrays ONES and MERGES. If there is a

row with an empty support at any stage of the computation then the original problem is

infeasible. Otherwise the feasibility status of the problem could not be determined during

the reduction procedure.

In what follows we will sketch the reduction functions for each of the operations. Note

that because of the lexicographical ordering of the columns we were able to implement some

of the reduction functions very efficiently.

4.2.1 The DUPC reduction function

In the DUPC reduction function the columns of the matrix are enumerated one by one, from

lexicographically smaller to larger. Due to the ordering, identical columns are located next to

each other in the matrix. When duplicate columns are discovered then all but the cheapest

column is marked for removal. To make this comparison even easier, identical columns are

ordered from cheapest to most expensive during the initial lexicographical ordering (if two

columns are identical in the matrix then the one with the smaller objective coefficient is

considered to be lexicographically smaller). Therefore the first of the identical columns will

be the one kept. Another way of detecting duplicate columns is to use hashing (Hoffman

and Padberg, 1993).

4.2.2 The SUMC reduction function

The SUMC reduction function enumerates columns of the matrix from left to right, for each

column v trying to find columns that sum up to v with combined cost less than that of

v. Any column which could be a summand for v is lexicographically smaller than v itself,

so the lexicographical ordering of the columns insures that all potential summands lie left

from v in the matrix (thus they have already been processed when v is being examined).
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1

first summand

v

0

0, 1

Figure 4: The SUMC reduction function on a lexicographically ordered set of columns.

Columns with the first nonzero at the same position as that in v are considered one by one,

from right to left, as the first summand, see Figure 4 for an illustration. When a column

can be subtracted from v (with nonnegative remainder) then this method is continued for

the remainder recursively (although the remainder is usually not a column in the matrix

itself, its would-be position is determined and the process is continued from there). If there

is no remainder left then costs are compared. If the sum is the more expensive then we

backtrack, forcing the last summand to be the remainder. Otherwise, if the sum is the

cheaper then v can be marked for deletion and the next column in the matrix is considered.

Since this column might become a summand later, the column is marked for deletion instead

of removing it from the matrix. Its objective function is replaced by the cost of the sum.

Note that we are not looking for a cheapest sum to replace columns, we continue with the

next column as soon as any sum cheaper than v is found. The recursion stops when a sum

cheaper than v is discovered or there are no more columns as potential first summands for

v. After each column is processed, the columns marked for deletion are removed from the

matrix.

Note that the above described algorithm runs in time exponential in the size of the matrix.

Therefore we introduced techniques that significantly reduce the running time by restricting

the group of columns examined and by limiting the scope of search for suitable summands.

We might not find all the SUMC reduction instances in the current matrix this way, so our

implementation of the reduction function can be repeated. In order to compare columns we
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compute their cost per length ratios (the cost of the column over the number of ones in it).

Then we examine only the (in this sense) most expensive columns, and only if a significant

fraction of these are marked for deletion by SUMC will we continue with the next most

expensive set of columns. This method prohibits too many columns from being examined

when only a few could be deleted with SUMC. Also, examining the most expensive columns

is only a heuristic guess; a group of columns could be chosen based on different criteria as

well. The search for summands is limited by restricting the depth of recursion to a small

number and by forbidding columns whose cost per length ratio is much larger than that of

the remainder, to become summands. Note that limiting the depth of recursion limits the

number of summands, though not necessarily to the same number since columns marked for

deletion can be summands themselves.

Although the above enhancements speed up SUMC considerably, it still remains slow in

comparison to the other reductions. A good estimate on the running time of SUMC for a

particular column can be obtained by observing that columns which are candidates to be first

summands must have a common first row with our column (that is, they must lie in the same

block of the lexicographically ordered matrix). Thus half of the columns of our column’s block

need to be considered on average as first summands. After the first summand is subtracted

from the column, the same is true for the remainder. Therefore, if the depth of recursion is

k, the amount of computation for one column is proportional to (average block length)k. So

in our implementation the depth of recursion and other parameters influencing computation

time (e.g., whether expensive columns are considered as summands) are decided using the

average block length. For problems with very large average block length SUMC is not even

attempted.

4.2.3 The CLEXT reduction function

Our CLEXT reduction function enumerates the rows of the matrix one by one, for each row

scanning through the columns and deleting those that are non-orthogonal to all columns

in the row’s support. A different approach would be to enumerate the columns of the

matrix, marking a column for deletion when it is non-orthogonal to the support of at least

one of the rows. Since with either of these methods every column has to be checked for

nonorthogonality against all columns intersecting all rows not in the column’s support, this

algorithm is inefficient if it is implemented in a straightforward manner. However, the

computation can be speeded up by not examining rows and columns unnecessarily, and by
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making the test of whether a particular column is non-orthogonal to all columns in a row’s

support more efficient. Some of our techniques rely heavily on the lexicographical ordering

of columns.

Our first observation is that if a row has a column in its support that does not intersect

any other rows then this row can be skipped since all columns outside of the row’s support

are orthogonal to the column.

Another observation is that if a row has a column with only two ones in it then all columns

to be deleted by CLEXT must be non-orthogonal to this column, that is, they must intersect

the other of the two rows. So for this given row only those columns that intersect the other

row need to be considered, which is a significant reduction in the number of columns for

sparse matrices. Also, if there are several “length two” columns intersecting the row then

only columns that intersect all the ”other rows” need to be considered. Since it would be

costly to construct the intersection of several rows explicitly, the shortest of these other rows

is chosen instead, and we make sure that columns which are candidates for extending the

row clique are tested against the “length two” columns first.

A third observation that further restricts the set of candidate columns is illustrated in

Figure 5. Two columns are surely orthogonal if the last row which the first column intersects

comes earlier in the matrix than the first row for the second column. Thus a column cannot

be deleted by CLEXT if this is true for the column and any of the columns in the row’s

support. Moreover, the row itself does not need to be included in the check since candidate

columns do not intersect the row itself. Therefore, by determining the last (or second-to-

last if the row to be extended is the last) row for each column in the row and then taking

the earliest of these last rows, columns whose first row is later than the earliest last row

need not be considered. Due to the lexicographical ordering of columns, all columns that

precede the first column of the earliest last row can be skipped, that is, the enumeration

of columns can begin with the first column of the earliest last row. Similarly, the last first

row of columns intersecting a row can be determined, thus columns not intersecting the row

whose last column comes earlier than the last first row need not be considered since they

cannot be nonorthogonal to all columns in the row.

We have organized our CLEXT reduction function so that the rows of the matrix are

enumerated in an outer loop. This enables us to prepare the row so that the one-by-one

tests for the many columns not intersecting this row will be more efficient. First the row is

sampled and the candidate columns are tested against the columns in the sample. Only if a
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Figure 5: Determining the earliest last row (dashed line) in the CLEXT reduction function
(the underlined 1-s are the last entries in their respective columns)

candidate is nonorthogonal to every column in the sample will testing continue for the entire

row. To make the test more effective, the “length two” columns intersecting the row are listed

first in the sample; the rest is chosen randomly. The length of the sample is proportional to

the size of the row’s support; the factor of proportionality is regulated through parameters.

4.2.4 The DOMR reduction function

The DOMR reduction function considers each pair of rows and examines whether the shorter

row dominates the longer; that is, whether the support of the shorter row is a subset of the

support of the longer row. When a pair of dominating rows is found, columns whose indices

are in the longer but not the shorter row’s support are marked for deletion, along with one

of the rows. Columns marked for deletion are removed from the matrix only after a full

pass through the row pairs, so DOMR instances not yet in the matrix at the time when the

function is invoked might not be discovered. This function also detects when two rows are

duplicates of each other (the two supports are identical). Since this function enumerates

all the row pairs in the matrix, the test for domination between two rows must be done

efficiently. Our data structures provide us with ordered lists for the supports, enabling a

fast comparison. Also, checking whether the first and last entries of the shorter support are

between the first and last entries of the longer support before comparing the two supports

entry-by-entry eliminates the need for explicit comparison of many row pairs.

As we have mentioned earlier, care must be exercised when deleting duplicate rows so
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as not to destroy the increasing lexicographical order of the columns. We claim that if the

duplicate row which comes later in the matrix is deleted then the ordering will be maintained.

Assume that i and j are two identical rows so that i comes first in the matrix, and that v

and w are two columns so that v is lexicographically smaller than w. The only way for w to

become lexicographically smaller than v by deleting one of the rows is if v and w are identical

up to the removed row, v has a 0 while w has a 1 in this row, and v has a 1 while w has a

0 in the next row in which the two columns differ. This could occur if i is the row removed.

On the other hand, if j is the row to be removed then, since the two rows are identical, the

two columns would not be the same up to row j, contradicting our assumption. This shows

that always removing the second of the two rows is justified.

4.2.5 The SINGL reduction function

The SINGL reduction function enumerates the rows of the matrix one-by-one. When a row

with a single one in it is found, the index of the only intersecting column is added to ONES,

and the consequences of this fixing are propagated; that is, rows intersecting this column

are taken one-by-one, and for each row, the columns in its support and the row itself are

marked for deletion. The implementation of this reduction function is straightforward, and

the function itself is very fast.

4.2.6 The DTWO reduction function

The DTWO reduction function enumerates all pairs of rows, and for each pair checks whether

the supports of the rows are of equal size and if so, whether they differ only in two entries.

If this is the case, the two columns corresponding to these entries are compared, and if

they are nonorthogonal then they are simply marked for deletion, otherwise their indices are

listed in MERGES and the columns themselves are marked for deletion. Also, similar to

DOMR, the later of the now identical rows is marked for deletion. The merged column will

be constructed and inserted into the matrix when the matrix is compressed. As with the

DOMR reduction function, this function will detect duplicate rows as well. Maintaining row

supports as ordered lists makes a fast and straightforward implementation possible.

4.3 Computational experiments

We will present here the results of the fast reduction strategy for a set of 55 airline crew

scheduling problems. As we have noted before, out of the six reduction method we imple-
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mented SUMC is the most expensive so our SUMC heuristics was applied only once at the

end (and to problems with average block length not exceeding 500). CLEXT and DOMR can

also be expensive so we try to invoke these modules sparingly (by not repeating them unless

a significant percentage of the columns have been deleted by the most recent pass). The

fast strategy compared very well with the maximal strategy (where all reductions except for

SUMC are repeated until no more reduction is possible), there is only one problem out of the

55 where the percentage of nonzeros deleted is worse by more than 2%. More computational

results can be found in Eso (1999).

Tables 1 and 2 summarize the results of our experiments. For each problem instance

the tables contain its name, original size (number of columns and rows); the lexicographical

ordering time; problem size after the fast strategy before SUMC is applied along with the

running time; the time spent in CLEXT and DOMR routines (with their multiplicity); the

average block length (Section 4.2.2), the percentage of columns deleted by and the running

time of the SUMC heuristics; and the final size of the reduced problem with the percentage

of nonzeros deleted during the entire process.

We can observe that the reduction operations applied to this set of problems cut down

on the problem size (defined as the percentage of nonzeros removed) considerably. The time

of the initial lexicographical ordering is acceptable compared to the overall execution time,

and, as we have expected, CLEXT and DOMR dominate in the fast strategy before SUMC

is executed. Although our SUMC heuristics is very restrictive, it can be very effective on

certain sets of problems (when it is attempted at all). This fact might be attributed to the

column generation technique used for these problems.

We compared our results with Hoffman and Padberg (1993) and Borndörfer (1997).

Hoffman and Padberg implemented an equivalent (in terms of reduction) of DUPC, CLEXT,

DOMR, SINGL and DTWO. However, they cut short the more time consuming routines (like

the CLEXT and DOMR/DTWO equivalents) based on heuristics. Our maximal strategy

(without SUMC) achieves at least as much reduction as they did. SUMC applied after

the maximal or fast strategies further reduces the number of columns by at least 25% on

26 of the 43 nw problems. Borndörfer implemented the two additional reduction methods

SYMMD and COLSINGL, but did not implement DTWO and applied only a limited version

of CLEXT. Our fast strategy (before SUMC) usually deleted a few more columns but a few

less rows than his method. Our running times cannot be directly compared to those of the

other two studies since they do not provide separate times for non-LP based preprocessing.
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Our experiments were carried out on an IBM RS/6000 with a P2SC chip, 128KB data

cache, 120MHz clock speed and 256MB memory; a thin node of the Scalable POWERpar-

allel System of the Cornell Theory Center in 1996. This architecture is rated SpecINT95

5.48, SpecFP95 15.64 (for more information see http://www.specbench.org). Note that the

problem size reduction methods rely mostly on integer arithmetic.

5. Conclusions

We have presented techniques that reduce the size of a set partitioning problem instance

based on logical implications. These reduction operations can be used not only for prepro-

cessing but for propagating the effects of decisions made during a solution process. We have

shown that if the reductions are carried out exhaustively we always end up with the same

reduced matrix, no matter what the order of the operations is. We have also presented

directions for an implementation and have shown that some of these reduction operations

can be implemented very efficiently if the columns of the problem matrix are lexicograph-

ically ordered. Up to our knowledge we are the first to provide any implementation for

SUMC. These reduction techniques were part of a Branch-and-Cut implementation for set

partitioning problems, of which details can be found in Eso (1999).
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