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Abstract. We develop a general framework in which real-time Dynamic Program-
ming (DP) can be used to formulate agent bidding strategies in a broad class
of auctions characterized by sequential bidding and continuous clearing. In this
framework, states are represented primarily by an agent’s holdings, and transition
probabilities are estimated from the market event history, along the lines of the “be-
lief function” approach of Gjerstad and Dickhaut [6]. We use the belief function,
combined with a forecast of how it changes over time, as an approximate state-
transition model in the DP formulation. The DP is then solved from scratch each
time the agent has an opportunity to bid. The resulting algorithm optimizes cumu-
lative long-term discounted profitability, whereas most previous strategies such as
Gjerstad-Dickhaut merely optimize immediate profits.

We test our algorithm in a simplified model of a Continuous Double Auction (CDA)
market. Our results show that the DP-based approach reproduces the behavior of
Gjerstad-Dickhaut for small discount parameter ~, and is clearly superior for large
values of « close to 1. We suggest that this algorithm may offer the best performance
of any published CDA bidding strategy. The framework our algorithm provides is
extensible and can accommodate many market and research aspects.

1 Introduction

Every day, trillions of dollars are exchanged in auction marketplaces such as eBay,
priceline.com, NASDAQ and NY SE. Much of the bidding and trading action in
these markets is aready done by software agents that execute relatively smple
sniping or arbitrage strategies. It isintriguing to consider the prospects for devel-
oping more sophisticated trading agents that can outperform their human counter-
parts. Agents have much faster reaction times, can process much larger information
sets, and are not subject to fatigue or emotional swings that affect human perfor-
mance. Already software agents dominate human competitors in domains such as



chess [3], checkers [12], and backgammon [16], and there is evidence that software
agents outperform non-expert humans in laboratory simulations of double-auction
trading [5]. If superhuman agents could be developed for real-world auctions, they
could have a direct and powerful financial impact—one that might be measured
in billions of dollars.

There are, however, a number of daunting theoretical and practical challenges
in developing such agents. In general, auctions are complex multi-agent systems
that are not amenable to exact game-theoretic solutions (e.g. a Bayes-Nash equi-
librium strategy) except in the most trivial cases. They contain hidden and private
information, and are subject to non-stationarities due to external couplings that
are hard to understand or predict. In the absence of exact solutions, one might
consider using heuristic approaches from Al or machine learning. If multiple in-
teracting agents in an auction simultaneously learn to improve their performance,
however, then each agent faces a non-stationary environment due to the adapta-
tion of other agents. In this case, standard single-agent learning algorithms that
assume a stationary environment would not apply.

In this paper, we develop agent strategies for a broad class of auctions: those
auctions in which a participant can submit a sequence of bids, either in continuous
time or in discrete rounds, and in which transactions between buyers and sellers
can take place at any time during the auction. This class of auctions is motivated
by but not limited to the Continuous Double Auction (CDA) institution. In the
CDA, buy orders (bids) and sell orders (asks) may be submitted at any time during
the trading period. Whenever there are open bids and asks that are compatible in
price and quantity of good, a trade is executed immediately. New orders and trades
are typically announced immediately to all participants. The CDA is the dominant
institution for real-world trading of equities, derivatives, and commodities.

Other continuously clearing auctions where participants submit bid sequences
include reverse auctions such as those at priceline.com, in which a buyer may
submit bids on single goods or multiple goods (e.g. airplane tickets and hotel
rooms) in real time, and may submit revised bids if the initial bids are rejected by
the sellers. An example of an auction which does not fit this description is a normal
ascending-bid English auction: while there are sequential bids in this auction, the
transaction between buyer and seller only takes place at the end of the auction.

For auctions with sequential bidding, an agent’s ultimate objective is to max-
imize cumulative surplus or profit obtained over the entire trading period. This
suggests that approaches such as Reinforcement Learning (RL) [15! or Dynamic
Programming (DP) [1] which learn value functions representing cumulative long-
term reward, may be useful in this domain. This is in fact the motivation for the
present work. We present a formulation of real-time DP in which the agent solves
the DP from scratch each time it is faced with a new bidding opportunity. Some



initial work on DP-based bidding strategies [2,9] focused on a specific sequence
of single-round auctions in which exactly one good was sold in each auction. Our
formalism is much more general in that any good or combination of goods can be
sold at any time, and furthermore, goods can be bought and resold without limit.

Two key ingredients are required in order for DP to be feasible for this appli-
cation: (1) A sufficiently compact state-space representation is needed in order for
the DP solution to be tractable in terms of table size and CPU time; (2) A state-
transition model is needed, which specifies the distribution of successor states =’
that will arise when the market is in state z and the agent takes bidding action
a. A proper representation of the agent/market state would potentially include
the history of every observable market event {order or trade) from the start of
trading to the current time. Clearly DP would be intractable using such a state
description.

As an alternative approximate formulation, we advocate using an “agent-
centric” state description consisting primarily of the agent’s current holdings M,
and the time remaining 7" until the close of trading. In some markets, it may also
be necessary to include the agent’s outstanding bids b, if such bids constrain the
legal bid actions, or if there are costs associated with canceling or replacing open
bids.

All other events in the market history can be omitted from the state description,
and can instead be used to estimate state-transition probabilities, by methods ex-
ternal to the DP solution. For example, Gjerstad and Dickhaut {6] propose a fairly
simple method for using recent market history to estimate a “belief function” f{p)
representing the probability of a bid at price p for a single unit of commodity re-
sulting in a trade. We suggest that methods such as Gjerstad and Dickhaut’s that
estimate current trade probabilities, combined with standard time-series forecast-
ing methods (e.g. ARMA models [8]) to estimate future trade probabilities, can
be used to estimate general state-transition probabilities in the DP formulation.
Provided that the range of possible agent holdings and legal bid actions are not
unreasonably large, it is then feasible to solve the DP from scratch each time that
the agent faces a new bidding decision. While this requires more on-line computa-
tion than solving the DP off-line, it has the ability to adapt to non-stationarity of
market conditions. In contrast, an off-line DP solution based on a specific set of
market conditions would be invalid under different market conditions.

We have tested our DP-based bidding strategy in a simplified model of a Con-
tinuous Double Auction (CDA) market. In this model CDA, there is a single ficti-
tious commodity, and bids and asks are for single units of the commodity. Agents
have a fixed role of either Buyer (submits only bids) or Seller (submits only asks),
and have a fixed schedule of seller costs or buyer valuations for each unit to be
bought or sold during a trading petiod. This is a standard CDA model which has



been extensively used in laboratory studies of human traders [13,14] as well as
computerized bidding agents [11,7, 4, 6].

Our DP-based agents are tested in head-to-head competition against several
other agent strategies, including the “Zero-Intelligence-Plus” (ZIP) strategy [4]
and the Gjerstad-Dickhaut (GD) strategy [6]. The latter strategy corresponds to &
short-term greedy strategy that maximizes the immediate expected surplus from
a trade, defined as probability of a trade occurring times surplus obtained from
the trade. We note that our DP-based bidding strategy, which we call “GDX,”
is related to GD in that it uses the same belief function, but optimizes long-
term rather than short-term reward. If future rewards are weighted by a discount
parameter 7, then GDX will reproduce the GD strategy as v — 0, whereas for
v — 1, GDX places maximal weight on future profits, and should correspond to
the greatest deviation from the GD strategy.

We proceed by outlining in Section 2, following [6], how belief functions may
be estimated and used to optimize short-term profit from a single transaction
opportunity. We then formulate our general DP algorithm for optimizing long-
term profit in Section 3, followed by an example application of the algorithm to
equities trading in Section 4. We describe our model CDA test environment and
our implementation of the GDX strategy for this environment in Section 5. Finally,
we test our trading strategy in Section 6 and find that our strategy outperforms
other strategies that we examine. We outline related work in Section 7.

2 Belief Functions

We define a “belief function” to be any function on the history H of market activity
that estimates a scalar probability of an order being traded during some current
or future time interval. Belief functions are generally of the form f-(H,p, £q,1),
where p is the order price, +q is a bundle of goods specified in the order (denoting
buy orders by +q and sell orders by —q), 7 is the duration of the time interval, and
{ is the time remaining until the close of trading. Our work can leverage any such
belief function, including in particular the Gjerstad-Dickhaut (GD) belief function
(6], which we summarize in this section.

The GD trading strategy utilizes a simple belief function to trade individual
units in a model single-commodity CDA market. Traders are assumed to have
fixed roles of either buyer or seller, and each unit of commodity traded has a fixed
limit price ! (i.e. seller cost or buyer value). In such markets, the GD strategy uses
the history H, of recent market activity (the bids and asks placed in the market
leading to the last z trades) to calculate buyer and seller belief functions, fy{p)
and fo(p). A moderate value of z ~ 4 ~ 5 is suggested, to balance the accuracy of
bidding statistics with the need to respond rapidly to changing market conditions.

L



Given the belief functions, an agent’s bid price or ask price is chosen to maximize
immediate expected surplus, defined as the product of f(p) times the gain from
trade at that price (equal to p — [ for sellers and [ — p for buyers). Note that
this calculation ignores the agent’s other units, the time remaining until the close
of trading, and implicitly assumes only one bidding opportunity for the specified
unit.

Gjerstad and Dickhaut treat each order in H; as an independent data point
providing positive or negative evidence of trade likelihood, based on its price and
whether or not it was traded. For example, suppose a seller considers submitting
an ask at price p. Events in the history providing positive evidence that the ask
will trade include accepted asks with price > p, AAG(p), and any bids with price
> p, BG(p). On the other hand, unaccepted asks with price <p, U AL(p), provide
negative evidence of trade likelihood.

To compute the belief function, the GD algorithm computes the observed like-
lihood that an order trades for every bid or ask price contained in H,. These prices
define knot points for f(p). The value returned by f(p) at a knot point is the pos-
itive evidence that a trade at price p occurs, divided by the sum of positive and
negative evidence for the trade. For a seller, the belief function at each knot point
is

_ AAG(p) + BC(p)
1) = Z3Gm) + BG®) + UALD) @

whereas the corresponding buyer belief function is

ABL(p) + AL(p)

felp) = ABL(p) + AL(p) + UBG(p)’ @)

where ABL(p) is the number of accepted bids priced at most p; AL(p) is the
number of asks priced at most p; and UBG(p) is the number of unaccepted bids
priced at least p.

For prices other than those observed in H, the belief function f(p) returns a
cubic-spline interpolation between the knot points immediately greater and less
than p. Implicit in the belief function is that an ask of price zero always trades
and that there is some maximum price, f, at which a bid is always accepted. By
construction seller belief decreases with p, whereas buyer belief increases with p.
Figure 1 plots a typical example of a buyer’s belief. Generally belief functions
are sigmoidal in nature. As the market converges towards equilibrium, the belief
function more closely resembles a step function centered at the equilibrium price.

A seller applies the GD bidding strategy by formulating a belief function and
then searching for the price p* that maximizes the expected surplus u,,
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Fig. 1. Example GD buyer belief as a function of bid price, taken from one of our experiments
in Section 6. For markets that converge to uniform trading at a fixed equilibrium price, the belief
function converges to a step function at the equilibrium price.

p" = argmax fs(p)(p — 1) (3)

Similarly a buyer maximizes expected surplus up,

p* = argmax Sr(p)( = p)- (4)

The GD algorithm has been extensively tested and, with slight modifications,
appears to be the strongest bidding algorithm published for this class of CDA
markets [17].

3 DP-Based Bidding Strategy

Our formulation of the DP to calculate the optimal bidding strategy works as
follows. We Tepresent the current state of the auction by (H,T) where H is the
event history and 7' is the time remaining until the close of trading. Given T,
the agent first estimates the number N of future opportunities it is likely to have



to submit new and/or replacement bids. For example, if the agent expects to bid
on average every K seconds, then N = T/K. Also assume that there is a set of
expected bid times {t,} associated with each of the N bidding opportunities. The
agent also uses (H,T) to compute f(p, ¢, ), a general estimate of the probability
that an order clears for a bundle of single-attribute or multi-attribute goods ¢ at
price p with £ time remaining. (We denote buy orders by +¢q and sell orders by —g.)
The implicit time interval for the probability estimate is the time scale for a single
bidding opportunity. Note that the trade probability estimate ignores any effects
due to the agent’s own bidding decisions, i.e. it assumes the agent has negligible
market impact. This should be a reasonable approximation for sufficiently large
markets.

Having estimated N and f(p, £q,t), the agent then calculates a table of ex-
pected values V(z,n), where x is the agent’s internal state, and n is the number
of remaining bidding opportunities (0 < n < N). In general x will consist of the
agent’s holdings M, including cash, as well as any outstanding bids/asks b. In
the absence of bid-switching costs and constraints on new or replacement bids,
however, the expected value depends only on holdings, so that we may set x = M
ignoring the outstanding bids.

Calculation of V(x,n) begins by evaluating the terminal states V(z,0). In
some cases this can be done using the agent’s private valuation and/or sunk costs
of the holdings, whereas in some markets f(p, £g, 0), the forecast of trade proba-
bilities at the end of the period, can be used to estimate fair market value of the
holdings. Starting from V(zx,0), the algorithm works backwards over the bidding
opportunities to evaluate V{(x, n) in terms of V{x,n— 1). Algorithm 1 outlines the
computation.

The function s(x,p,+q) is the immediate surplus obtained in state & from
trading bundle g at price p (including transaction costs); r{x)} is the expected
return from possession of the holdings (e.g. interest earned on cash or dividends
paid by stock) on the timescale of one bidding opportunity; and v is the discount
parameter. We understand the max operation over {p, 2q} to be a search over legal
bid actions, constrained by any market rules, agent holdings, and agent outstanding
orders. Additionally, we use the shorthand @ % g to update the agent’s internal
state conditioned upon execution of the trade of g units at the understood price
p. The agent issues a new bid if there are no outstanding bids, otherwise the agent
submits a replacement bid.

Having solved for the expected-value table, the agent then chooses the optimal
bid action at time remaining T', (p*, ¢*)(T), to satisfy



Algorithm 1 General expected-value table computation

1: forn=1to N do

2:  for all reachable states z(n) do

3 V(z,n) = mgx(/* The value of trading */
p.Eq

f(p= iQ=tn)[3(a’=p?iQ) + 'YV(’J! + q.n— 1)}

/* The value of not trading */
+(1— flp. g, ta)YV (2,0 = 1)

/* The return on holdings */
+riz))

4: end for

5: end for

(p*, q*{(T)=arg gkg;;(f (p, £q,T)[s(z, p, £q)
4V (z+q,N-1)] (5)
+(1 - f(pv iq, T))’YV(:B, N — 1))1

where p* is the price offered to buy (or sell) the bundle of goods g~.

So far, the agent’s calculations are predicated on maximization of the expected
outcome of each bidding opportunity. A risk-averse variant of this calculation may
also be performed by defining a risk-aversion parameter & lying between 0 and 1,
and by maximizing a weighted average of a times worst-case outcome plus (1 —a)
times expected outcome.

We note that the size of the expected-value table is given by N times the size
of the holdings space times the size of the bid space (if necessary). The latter
two factors depend exponentially on the number of distinct commodities d that
can be traded in the market: the number of possible bids or holdings states scales
as H,L‘-izl M;, where M; is the maximum number of units of commodity i that
can be held or bid on. (There would be a similar scaling in the case of multi-
attribute goods with d attributes and M; possible values for attribute i.) The
bid-space scaling also affects the amount of computation required to perform the
max operation over allowable bids in Algorithm 1. Hence in terms of both CPU
and storage requirements, the DP bidding algorithm is most feasible when trading
a small number of different commodity types and/or different attribute types.

We also point out that the above formalism assumes that the agent has at most
one open bid at any time, and the bundle g is indivisible in the sense that the order
cannot be partially filled. For markets in which partial filling can occur, the formal-
ism can be generalized by using a partial filling probability function f(p,q, q,t)
and by summing over all possible sub-bundles g in the above equations.



Algorithm 2 Expected values trading multiple units of a single equity.
1: forn=1+to N do

2:  for m = Mmin(n) 10 Munes (n} do

3 for C = Chin(n) t0 Cmas(n) do
V{m,C,n) = {Igli.;(}(f(p, g, te)YV(m+q,CFp-6,n—1)

4:
+(1 = flp£q,ta)V (M, Con = 1)) + 11 C + rym
5: end for
6: end for
7: end for

4 Application to Equities Trading

We now consider how the decision algorithm defined by Equation 5 may be applied
to trading of shares of a single stock. In this case, the state = consists of an integer
pair (m, C), where m is the number of shares and C is amount of cash held by the
agent. Outstanding bids need not be included in the state representation, since
they typically provide no restriction on subsequent bidding.

Values of the terminal states V(m, C,0) may be estimated using the belief
function. In the case of a day-trader type situation where positions are closed out
at the end of a period, the belief function can estimate prices for which positions
will be closed out with probability 1 at the last bidding opportunity; this provides
an evaluation of V(m, C, 1). Otherwise, if positions do not have to be closed out,
the belief function may simply provide an estimate of the fair market value of the
holdings at the end of trading.

Looping over all possible agent states consists of defining a maximum and
minimum number of shares M., and Mmumi, and amount of cash Cinaz and Cpn
reachable at each bidding opportunity, and looping over all values of m and C lying
between these bounds. The bounds are determined by the agent’s initial holdings,
the expected market behavior, and market rules. In some cases the market rules
may allow for negative amounts of cash (buying on margin) and negative share
holdings (short selling).

When a trade of +q shares occurs, the number of shares changes by +¢ and
the amount of cash changes by Fp — 8, where § is the transaction cost. From
this perspective there is no immediate reward term s(z, p, +q) associated with the
trade. Any interest or dividend payments may be represented by () = r,C+rym,
where r; is the interest rate and r9 is the dividend rate per bidding opportunity.
Algorithm 2 computes the state evaluations with analogous changes being made
to Equation 5 to compute the optimal bid decision.



5 Application to Model CDA

We test our DP-based bidding strategy in a standard CDA environment con-
forming to numerous prior studies. In this model CDA, there is a single fictitious
commodity, and bids and asks are for single units of the commodity. Agents have a
fixed role (buyer or seller) and a fixed sequence of limit prices (seller costs or buyer
values) for each unit that can be bought or sold. We represent the limit prices by a
vector L of length M. The limit prices are arranged in order of increasing cost or
decreasing value, and agents must trade one unit at a time in the order specified
by L. We have experimented with a variety of limit price schedules. Most of the
results quoted in this paper use a uniform random distribution to generate the
limit prices, however, results are qualitatively similar using other distributions.

An experiment in this environment consists of a number (typically five) of
sequential trading periods. Agents retain the same list of limit prices in each of
the periods. At the start of each period, buyers and sellers receive a fresh supply of
cash or commodity, and orders and trades can occur at any time during the period.
Under these conditions, one expects populations of rational agents to converge to
uniform trading at the competitive equilibrium price peg, defined as the price
for which the total supply (number of units that can be sold for positive surplus)
equals the total demand (number of units that can be bought for positive surplus).
If all units trade at pe,, the population achieves the theoretical maximal surplus.
Our primary performance measure for both populations and individual agents is
efficiency, defined as the ratio of actual to theoretical surplus. We note that, while
a population’s efficiency can never exceed 1.0, individual agents can on occasion
exceed this limit, by exploiting errors made by other agents.

We emulate stochastic, asynchronous real-time market dynamics using a stan-
dard discrete-time simulator. At each time step, each agent has probability o of
being active and eligible to submit a bid. Any activity during a time step is pro-
cessed by the institution in a random order, and agents are informed of the results
at the end of the time step. Orders submitted by agents are persistent, subject to
various termination conditions: they can be traded, modified, or expire untraded
after some expiration time (typically the end of a trading period). We also typi-
cally use the standard “NYSE” market rule, which stipulates that any new bids
or asks must improve on the current best bid or ask in the market.

Since bids and asks are for a single unit, the choice of optimal bundle is elim-
inated from the bid decision, with the understanding that ¢ = +1 for buyers and
g = —1 for sellers in all cases. Likewise, the state description simpilifies to a sin-
gle integer m representing the agent’s inventory, i.e., the number of units that
can be sold or bought (0 < m < M). (This assumes that buyers have no budget

1D



constraints on their purchases.) When an agent trades the é-th unit at price p, it
obtains surplus s;(p) = L; — p for a buyer, or s;(p) = p — L; for a seller.

The V(m, n) table is computed by initializing V(m, 0) = 0 for all m; V(0,n) =
0 for all n, and then executing Algorithm 3. The resulting optimal bid price at
time T, p*(T") is then given by

p(T)=argmax(f(p, T)[sm(p) + 7V (M — 1, N - 1)] (6)
+(1 = f(p, )YV (M, N - 1)).

Algorithm 3 Expected value computation in our model CDA.

l: forn=1to N do
2: form=1TO M do
V{m,n)=maxp( f(p,tn}{sm{p) + vV {m —1,n - 1)]

3:

+{1 = flp,ta)yV(m,n — 1))
4: end for
5: end for

Our GDX bidding strategy for this environment executes Algorithm 3 and
Equation 6 each time the agent becomes active and eligible to bid. The belief
function f(p,t) used in this calculation is the GD belief function f,(p) or f5(p) as
specified in Equations 1 and 2. Note that GD belief functions generate a time-
invariant forecast of the trade probability at all future times during the remainder
of the period. In general, we expect this time-invariant forecasting to contribute
to errors in the bidding strategy, particularly as the number of future bidding
opportunities becomes large.

Figure 2 shows a sample GDX bid calculation, as a function of the remaining
bidding opportunities, taken from one of our experiments. This calculation utilized
the belief function plotted in Figure 1. With only one bidding opportunity, GDX
returns the same bid price as GD. With more opportunities, however, the algorithm
decides to post a higher surplus-yielding bid and wait for a bargain.

We expect GDX to deviate most significantly from GD under two conditions.
First, if the time remaining per unit of inventory is large, then the GDX agent
can spend a great deal of time “haggling” over the trade price of each unit, i.e.,
submitting low bids and waiting for the other side to make concessions. In con-
trast, for low time remaining, the agent has to trade each unit fairly quickly, and
thus must submit reasonably “honest” bids close to the GD price. Second, the bid-
ding behavior may change if the forecast of future beliefs varies significantly from
present beliefs. If future prices are forecast to be more favorable, the agent will
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Fig. 2. SBample GDX price calculation versus the number of bidding opportunities, using the belief
function plotted in Figure 1. The price calculation with only one bidding opportunity is equal to
the GD bid price.

wait to trade later, while if the forecast is unfavorable, the agent will tend to trade
quickly. This could significantly improve profits, although we caution that in many
real-world CDAs, it is extremely difficult to forecast future market behavior. It is
unknown whether non-stationary forecasts can be made accurately for our model
CDA markets, and if so, whether GDX agents can use such forecasts to enhance
their profits. This is an important issue to address in future research.

We measured performance of bidding strategies in two different types of het-
erogeneous populations: (1) a “one-in-many” test in which a single agent of one
type competes against an otherwise homogeneous population of a different type;
(2) a “balanced-group” test in which the buyers and sellers are evenly split be-
tween two types of agents, and every agent of one type has a counterpart of the
other type with identical limit prices. The first test indicates whether there is any
incentive for strategy deviation in a homogeneous population, while we believe the
latter test to be the fairest way to test two different algorithms against each other.
Ultimately, agents should be tested in populations comprising many different and
potentially changing strategies, but as a first step, these two tests seem to provide
the clearest head-to-head comparison of two strategies.

A



Our typical agent population consists of 10 buyer agents and 10 seller agents.
Each agent is given a list of ten limit prices, ordered from lowest to highest seller
cost, or highest to lowest buyer value. The limit prices are usually fixed random
values drawn from a uniform distribution between 100 and 200, and do not vary
during the experiment. About half of each agent’s units are tradeable for positive
surplus at equilibrium. Allowable prices in the auction range from 0 to 400. Each
auction experiment consists of a sequence of five consecutive trading periods, each
lasting 300 time steps. All agents have a constant activation probability per time
step of o = 0.25. Market rules included NYSE spread-improvement, an open-order
queue, and allowance of order modification.

6 Results

We tested the GDX algorithm against the GD and Zero-Intelligence-Plus (ZIP) [4]
strategies. Each experiment represents 1000 CDA trials with different random
initial conditions.

We first examine the performance of GDX vs. GD in a market in which each
agent has a single tradeable unit in each period; this should provide the largest
advantage of GDX over GD. We use a population of 22 buyers and 22 sellers. As
in [4], the limit prices are uniformly spaced between 75 and 325 in increments
of 25. Results of balanced-group testing of GDX vs. GD at various values of ¥y
are plotted in Figures 3 and 4. In each trial, the total surplus obtained by each
group is tallied. The two groups have equal theoretical surplus, so a winner can be
declared for each experiment by seeing which group obtained more surplus, and the
margin of victory is the magnitude of surplus difference. These experiments show
a clear advantage of GDX, which increases monotonically with . As 5y approaches
1, the advantage becomes huge, with GDX winning over 85% of the trials. GDX
dominated GD in average surplus difference as well.

Figure 4 plots the average difference in surplus of GDX and GD groups as a
function of the GDX discount parameter v. With = set to zero, the two groups
performed equally statistically. When + approached 1.0, the GDX group scored on
average 38 points higher, with a standard deviation of 1.6. For comparison, note
that the available surplus divided among all 44 traders was 1500.0.

In the remainder of this section, we examine a different market configuration,
with 10 buyers and 10 sellers, and 10 limit prices per agent, as described previously
in Section 5. Figures 5 and 6 show the results of balanced-group testing of GDX vs.
GD in this market. As anticipated, results are still favorable for GDX, although not
as lopsided as in Figures 3 and 4. Note that in both percentage of winning trials
and in average score difference, GDX and GD are statistically equal (as expected)
for v = 0, and the performance of GDX generally improves as vy increases. With
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Fig. 3. The number of wins by the GDX group in 1000 trials against the GD group as a function
of the GDX discount factor v. The standard deviation for each observation is about 30. Each
agent has a single unit; half the units are tradeable at equilibrium.

the optimal choice of 7, the GDX group won 58% of the trials with a standard
deviation of 3%. It is interesting to note a drop in GDX performance at v = 0.99.
This is possibly due to a breakdown in forecast accuracy for timescales on the
order of 1/~.

As another comparison, we examined whether GDX fared better or worse than
GD when tested against an independent third strategy (ZIP). Table 1 outlines the
performance of both GD and GDX (with v = 0.9) groups against groups of ZIP
traders. While both GD and GDX outperform ZIP, there is a clear statistically
significant improvement in performance by using GDX instead of GD.

Groups Wins [Surplus Difference
GDX vs. ZIP|870-129 +102.8
GD vs, ZIP (813-181 +87.1

Table 1. The win record and average surplus difference when groups of GD and GDX (v =
0.9) traders compete against groups of ZIP traders. The theoretical population surplus for the

experiment is 2612.0,

Y
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Fig. 5. The number of wins by the GDX group over the GD group in 1000 trials when traders
had ten items to exchange. The standard deviation for each data point is about 30.

7 Related Work i

The standard CDA model has been studied extensively in experiments with human
traders [13, 14], with computerized traders [11,7, 6, 4}, as well as with a mixture of
the two groups [5]. CDAs divide price computation among many agents and are
hence desirable in distributed environments. CDAs are not tattonement mecha-
nisms, that is trade can occur out of equilibrium, but trade executes immediately.

Initial work on dynamic-programming based bidding algorithms [2, 9] focused
on agents learning to participate in sequences of single-round single-good auctions.
Our formalism is more general in that we do not fix a schedule for good to be
exchanged nor do we limit the number of times a good can be exchanged.

Hu and Wellman [10] take a different. approach by having traders model each
other’s strategies. Their strategy myopically speculates on other traders’ behavior
in the next single-round auction. They find that introspection improves perfor-
mance, but that modeling more than one level of introspection has no benefit.
Furthermore, their results are semsitive to assumptions about competitors. The
approach could be useful for forecasting market conditions, but because it pro-
vides no probability estimates, it is difficult to adapt it to use the GDX algorithm.



GDX vs. GD: Avg. score difference
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Fig. 4. The average difference in surplus of GDX and GD groups as a function of the GDX
discount factor v in 1000 balanced-group trials. Each agent has a single unit; half the units are
tradeable at equilibrium. The standard deviation of each observation is about 1.6 and 1500.0
surplus was available to divide among all 44 traders.

Finally, we studied the change in performance of a single trader that deviated
from the strategy used by an otherwise homogeneous population. Table 2 sum-
marizes the results. A lone GDX trader with v = 0.9 increased both its surplus
and its efficiency by almost 1% by deviating from GD. These improvements are
significant given the already high level of efficiency of over 0.995 in homogeneous
groups of GD traders. When a trader used the GD strategy among a population
of GDX traders, the results were analogous; the deviant trader performed about
1% worse than its peers.

Agents A {Surplus)[A (Efficiency)
1-GDX in Many-GD| 40.92 +0.007
1-GD in Many-GDX| -1.33 -0.010
Table 2. The change in single-agent surplus and efficiency when a trader deviates from the
population strategy. We use a value of v = 0.9 for the GDX traders. The average theoretical
surplus per agent is 130.6 and the efficiency in an auction with only GD traders is 0.995.
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Fig. 6. The average difference in surplus over 1000 trials of GDX and GD groups when agents
had ten units to trade. The standard deviation for each data point is about 3.0. The theoretical
total population surplus is 2612.0.

8 Discussion

We have developed a principled way for a trading agent in general continuous-
clearing auctions to behave strategically during the course of a trading period
0 as to maximize long-term cumulative reward. Ultimately the most principled
theoretical solution would be to calculate a Bayes-Nash equilibrium strategy; how-
ever, such calculations are intractable except in the most trivial marketplaces. Our
methodology utilizes the formalism of dynamic programming, which is known to
provide a powerful technique for computing optimal policies in single-agent station-
ary Markov Decision Problems. One might not have expected DP to be applicable
to auctions, since they are in general history-dependent, partially observable, and
involve multiple non-stationary agents. However, our agent-centric state descrip-
tion can in fact be used as the basis for an approximate DP calculation, provided
that the agent’s bidding has negligible market impact, and that a sufficiently ac-
curate “belief function” can be found to forecast trade probabilities. It appears
that, in at least some marketplaces, the DP calculation is of sufficient quality to



clearly outperform the corresponding short-term greedy strategy using the same
belief function.

Empirically, we find excellent results in model CDAs using the belief function
as specified by Gjerstad and Dickhaut, combined with simple constant forecasting
of future beliefs. The resulting GDX strategy outperforms the basic GD and ZIP
strategies under a wide variety of market rules, distributions of limit prices, and
types of opponent strategies. We suggest that GDX may outperform any previ-
ously published bidding strategy for this class of CDAs. While GDX does require
more computational overhead than GD, the additional computation can eagily
be done on demand for each new bidding opportunity. Since there is a potential
combinatorial explosion in extending GDX to trading bundles of distinct goods,
it will be important to examine techniques such as pruning, stochastic search and
function approximation for keeping the state-space search tractable in those types
of markets.

Our current dynamic programming framework is general and flexible. It can
handle, with little or no modification, holding costs, sunk costs, dividends, in-
terest rates, expected market trends, as well as the complexities in bidding on
and evaluating goods with multiple attributes, and bundles of goods that exhibit
complementarities and partial substitutability, as originally recognized in [2,9].
Furthermore, it is applicable to many environments given the widespread use of
continuous-clearing auctions.

There are several open interesting issues in extending our DP methodology to
more complex and realistic markets. The most obvious issue is whether standard
time-series forecasting techniques can be applied to develop sufficiently accurate
time-varying estimates of trade probability f(p,t). Such estimates could also incor-
porate the opponent modeling concepts advocated in Hu and Wellman’s work [10].
Another approach might utilize evidence of market illiquidity to adopt a pessimistic
view of future trades.

The discount factor v already accounts for some pessimism for future trade. In
our experiments, we notice that performance frequently drops precipitously when
~ exceeds 0.99. In these scenarios, traders often wait through the entire auction
for a better deal. It might be valuable for a trader to tune its discount factor based
upon the auction length or other features.
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