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Effects of Boundary Conditions and Anisotropy on Elastically Bent Silicon

S.K. Kaldor and I.C. Noyan

Abstract

In four-point bending, the rollers that are used for load application impose additional

constraints on the specimen that affect the anticlastic specimen curvature and cause the specimen

displacement and stress profiles to deviate from the pure beam bending case.  In this study, x-ray

microdiffraction is used to map both the principal and anticlastic curvatures of elastically bent,

rectangular (100)-type Si strips possessing width:thickness ratios of 40:1.  We quantify the

amount of roller constraint and show that the region over which the anticlastic specimen

curvature is affected away from the roller is approximately five times the roller diameter.

Consequently, for bending tests used to determine Poisson’s ratio, if a region on the sample that

is free from roller effects is not chosen, measurement errors as high as 46% can occur.

Furthermore, we show that, due to the anisotropy of single crystal Si, this roller-constraining

effect depends on crystallographic orientation and is more pronounced when the principal

bending axis lies along the <100> direction as compared with the <110> direction.

Introduction

Flexural techniques, such as four-point loading, are frequently employed for accurately

loading brittle materials in a variety of mechanical tests.1-3  Depending on the sample geometry

and dimensions, either the elementary beam solution or a plate solution is typically used to

describe the displacement and stress profiles of a sample loaded in this configuration.4,5  These

solutions, however, do not consider the constraints imposed by the bending jig rollers used for

load application. If the rollers affect either the longitudinal or transverse curvatures, errors in the
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displacements or stresses predicted by an analytical solution can occur.  In this paper, we

compare the measured curvatures of specimens loaded in four-point bending with beam solution

predictions.

 Formulation

The four-point loading geometry under investigation is depicted in Figure 1 along with

the Si specimen dimensions used in this study.  The elementary beam solution assumes that the

problem is one of cylindrical bending along the length direction and neglects the transverse

effects that occur along the width direction.  When a specimen is loaded in four-point bending,

the upper half, or the portion of the sample lying above the neutral axis, experiences tension

while the bottom half undergoes compression, and the resulting bending strain profile through

the sample thickness is linear [Fig. 1(c)].  In addition to the bending strain induced along the

principal bending direction (x), Poisson coupling dictates that transverse strains (y and z

directions) will occur according to Eq. (1).

yy zz xy xxε ε ν ε= = − (1)

The compressive and tensile strains that occur along the transverse direction over the upper and

lower half of the specimen, respectively, result in a saddle shaped deformation surface [Fig. 2].

The sample is bent to an anticlastic, rather than a cylindrical, surface where the transverse

curvature along the width direction (1/Ry) is related to the principal curvature along the length

direction (1/Rx), where Rx and Ry are the radii of curvature along the principal and transverse

directions, respectively.6  Rearranging Eq. (1),
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/xy yy xxν ε ε= − (2)

and relating the maximum principal and transverse strains at the top surface to specimen

curvature yields,

/(2 )xx xt Rε = − (3)

/(2 )yy yt Rε = − (4)

Substituting Eqs. (3) and (4) into Eq. (2),

/xy x yR Rν = − (5)

Since Poisson’s ratio is constant for a given material, for a given principal curvature, the

specimen will be bent to a constant radius of curvature along the transverse direction.  Thus, Eq.

(5) provides the basis for an experimental determination of Poisson’s ratio.6,7  However, Eq. (5)

assumes pure bending and does not consider the effect of the bending jig rollers on anticlastic

bending.  The inner rollers, which apply an upward force on the sample, should constrain

anticlastic bending, at least partially.  If this occurs, Eq. (5) will not hold, and the ratio of the

transverse to the principal curvature will be less than the value of Poisson’s ratio.

  In single crystal Si, which is anisotropic, Poisson’s ratio varies with sample orientation.

For a cubic crystal, if a strain is applied along direction l (e.g., bending along x direction in

Figure 1), the magnitude of the transverse strain that develops along orthogonal direction m will

be determined by Poisson’s ratio, νlm.  In general, for the cubic case8:
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where sij are the elastic compliances referred to the <100> crystallographic axes, and li and mi are

direction cosines for l and m with respect to the <100> crystal axes.  Table 1 lists values for

Poisson’s ratios for a Si bending sample with two different in-plane orientations.  In this paper

we use the notation Si<hkl><uvw> where <hkl> designates the crystallographic direction normal to

the specimen surface (z direction), and <uvw> designates the direction parallel to the principal

bending axis (y direction); the direction parallel to the transverse bending axis is uniquely

defined by the cross product of these two vectors.

Table 1  Poisson's Ratio for Si strip of varied orientation (see
Fig. 1)

Crystal Directions Orientation Poisson's Ratio
x y z νxy

<100> <010> <001> Si<001><100> 0.279
<110> <1-10> <001> Si<001><110> 0.064

Table 1 illustrates that Poisson’s ratio for the Si<001><100> case is more than four times as large as

the value predicted for the Si<001><110> case.  Since for a given principal curvature, the amount of

anticlastic bending is proportional to Poisson’s ratio, we expect a Si<001><110> sample to bend

much less in the transverse direction than an equivalent Si<001><100> sample.  Consequently, we

expect the “roller effect” to be more pronounced for the Si<001><100> case than for the Si<001><110>

case.  In this article, we examine this effect.

Experimental

Rectangular (100) type Si single crystal specimens, 76.2 mm x 24 mm x 0.6 mm, were

loaded to known displacements, v(c1), using a four-point bending jig [Fig. 1].  The bending jig,

which contained two fixed rollers at x=0,a and two movable inner rollers at x=c1,c2,9 was

mounted on a diffractometer with focusing capillary optics and a motorized sample positioning

stage at the X20A beamline of the National Synchrotron Light Source at Brookhaven National
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Laboratory.10  Monochromatic 8.5 KeV x-rays (wavelength = 1.459 �) were focused to a ~10

µm diameter spot on the Si sample, and the Si 004 Bragg diffraction peak was recorded using a

scintillation detector.  The bending jig and Si specimen assembly were step scanned in both the x

and y directions, and a rocking curve scan was performed at each increment in order to

determine the amount of specimen tilt required to satisfy the Bragg condition at each position

[Fig. 3].  The tilt over the specimen surface was mapped, and both the principal and transverse

specimen curvatures were obtained from this data.

Figures 4(a,b) are plots of the angle required to satisfy the Bragg diffraction condition

versus position along half of the specimen length for Si<001><110>  and Si<001><100> samples,

respectively.  The angular x-ray measurements provide the specimen tilt in degrees directly, and

thus these plots represent the arctangent of the first derivative of the out-of-plane displacement

with respect to position along the principal bending direction, ( )1tan /v x− ∂ ∂ ; the sample

curvature is the second derivative of the displacement with respect to position,

( )( )1tan / /v x x−∂ ∂ ∂ ∂ . These plots show that the curvature along the principal direction is

constant (linear curves) and independent of position along the sample width, i.e. all curves

overlap, and the entire sample is bent uniformly along the principal direction.  The Si<001><110>

sample was bent to v(c1) ≈ 0.65mm or Rx ≈ 840mm, and the Si<001><100> sample was bent to v(c1)

≈ 0.34mm or Rx ≈ 1600mm.

Figures 5(a,b), which correspond to Si<001><110> and Si<001><100> samples, respectively, are

plots of the specimen tilt necessary to satisfy the Bragg condition versus position along the

sample width.  Since the displacement variation along the width direction is due to transverse

bending, these curves are a measure of the amount of anticlastic bending.   Near the center of the

length (a/2), i.e. away from the rollers, the specimen tilt changes linearly across the sample
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width, and the curvature is opposite in sign to that seen in Figures 4(a,b).  Upon moving away

from the center toward the inner roller, we observe a decreasing slope indicating a reduction in

anticlastic bending.11  Although the anticlastic curvature is significantly reduced at the roller, it is

finite indicating that the sample bends off the roller thus resulting in a non-uniformly distributed

load across the sample width.  From Eq. (5), for a given material loaded to Rx, the transverse, or

anticlastic, curvature should be constant along the sample length.  We observe that the 6.35mm

diameter, hardened steel rollers, however, limit the amount of anticlastic bending, at distances

away from the roller boundary that are approximately five times the roller diameter.

This roller effect is also clearly seen in a plot of the ratio of the transverse to principal

curvatures [Fig. 6(a,b)].  At the roller (c2), the ratio of curvatures is a minimum at approximately

0.04 and 0.15 for the Si<001><110> and Si<001><100> cases respectively since the rollers limit the

degree of cross sectional distortion.  By reducing the amount of anticlastic bending, the rollers

effectively increase the specimen’s flexural rigidity.  The reduction in strain along the transverse

direction must be accompanied by the generation of additional constraint stresses.  For the

Si<001><110> case, the change in Poisson’s ratio due to the roller effect is ~ 33% whereas for the

Si<001><100> case, it is ~ 46%.  Since Poisson’s ratio determines the degree of anticlastic bending,

both the stiffening effect and the magnitude of the constraint stresses will be greater for the

Si<001><100> case than the Si<001><110> case.

At the length center (a/2), for both the Si<001><110> and Si<001><100> samples, this ratio

attains the correct value of Poisson’s ratio, 0.06 and 0.279 respectively, within experimental

error.12  This observation of unhindered anticlastic bending at the sample center illustrates two

points.  First, a minimum distance between the inner rollers is required in order to create a region

along the sample length that is free of additional constraints imposed by the roller.  This distance,
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whose dependence on sample dimensions is under investigation,13 should be considered during

bending jig design.  Secondly, unhindered anticlastic bending implies beam, rather than plate,

behavior for the sample under investigation (b:t = 40).  Until now, we have tacitly assumed that

the Si strips under investigation behave as beams; this requires some justification.  The width-to-

thickness ratio, which is typically referred to, is not a sufficient criterion for differentiating

between a beam and a plate in this case.14  Rather, a parameter proposed by Searle6 involving the

specimen width, thickness, and longitudinal bending radius, which we term the Searle parameter

(β), should be used to determine whether plane strain (plate or wide beam) or plane stress (beam)

conditions are valid:15,16

2

x

b
R t

β = (7)

An extension of this work by Ashwell17 showed that for β <5, anticlastic curvature is unhindered,

and the sample behaves as a beam, whereas, for β > 60, anticlastic curvature is neutralized over

the majority of the sample width, and the sample behaves as a plate with increased stiffness.  For

the samples tested in this study (β = 1.2 and β = 0.6), we can attribute reductions in the degree of

anticlastic bending solely to the roller effect.

For comparative purposes, we checked the ASTM Standard Test Methods for Strength of

Glass by Flexure (Determination of Modulus of Rupture), which describes two tests (A and B).18

In standard C158-95, Test Method A calls for samples that are approximately 250 mm in length

and a spacing between the loading edges of 100 mm.  While the large spacing between the inner

loads will eliminate boundary effects at the specimen center, such large dimensions may not be

attainable with single crystal semiconductor specimens that are cut from wafers of fixed

diameters (100-300 mm).  In Test Method B, two suggestions (2 <  b:t < 10 and b > 9.5 mm) for
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rectangular specimens will, for most realistic cases, ensure a beam geometry.  However, the

recommended spacing between the inner rollers of 19 mm in this test case is not large enough to

create a region on a 24 mm wide sample free from boundary (roller) effects.  Furthermore, in

these test methods, the maximum applied bending radius is not specified.  Even when ASTM

sample guidelines are followed, both the maximum bending radius and the Searle parameter

should be reported.

Conclusions

We have quantified the effect of rollers on the principal and anticlastic curvatures of Si

samples elastically loaded in four-point bending.  The reduction in anticlastic bending caused by

the rollers may lead to errors in experiments that employ this technique to apply a constant stress

to a sample.  Furthermore, for bending tests aimed at determining Poisson’s ratio, a region on the

beam sample that is free from roller effects must be chosen to ensure that Eq. (5) holds.  The

presence of some transverse bending at the rollers indicates that, for a beam sample, the roller is

not in contact with the specimen over its entire width.  Planar analytical solutions tacitly ignore

this point, but, in three-dimensional finite element models, this boundary condition should be

modified to account for a non-uniformly distributed load across the sample width.  It should be

noted that the roller effect will be present in three-point bending as well.  Due to the central

location of the roller in this test, this effect will be a maximum at the sample center, or the region

of maximum stress that is typically chosen for measurements.
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Figure 1. (a) Si specimen geometry and dimensions, (b) 2-D schematic of bent sample

(displacement applied at c1 and c2 rollers), and (c) bending strain variation, εxx, with sample

thickness, z.

Figure 2. (a) The rectangular specimen is bent with a radius of curvature, Rx, along the principal

bending direction, x.  Poisson coupling causes the sample to bend along the transverse (y)

direction with a radius of curvature, Ry, equal to Rx/ν thus resulting in an anticlastic, or saddle-

shaped, surface. (b) The anticlastic-bending strain variation, εyy, with specimen thickness, z.

Figure  3.  Schematic of the x-ray diffraction measurement.  Given the correct Bragg angle (θ)

between the sample surface and incident x-ray beam, x-rays will diffract from the Si (001)

planes, i.e. those planes normal to the Si surface in a (100)-type crystal.   For the unbent, flat

single crystal in (a), the specimen tilt, ψ, necessary to satisfy the Bragg diffraction angle, θ, is

independent of sample position.  For the sample bent to a constant principal radius in (b), ψ

necessary to satisfy θ will change with position along both the principal and transverse

directions.  The sample rotation required to satisfy the Bragg diffraction in (b) gives the

specimen curvature.

Figure 4.  The sample tilt required to satisfy the Bragg condition for (004) diffraction from a Si

(001) crystal as a function of position along the sample length at several distinct positions along

the sample’s width.  The straight, overlapping lines indicate that the principal curvature is

constant between the two inner rollers and does not vary with position along the sample width.

In (a) the principal bending axis is parallel to the <110> direction (Si<001><110>) whereas in (b) it

is parallel to the <100> (Si<001><100>) direction.

Figure 5.  The sample tilt required to satisfy the Bragg condition for (004) diffraction from a Si

(001) crystal as a function of position along the sample width at several distinct positions along
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the sample’s length.  Unlike the principal curvature, these curves, whose slopes are a measure of

anticlastic bending, vary with position along the sample length.  In (a) the principal bending axis

is parallel to the <110> direction (Si<001><110>) whereas in (b) it is parallel to the <100> direction

(Si<001><100>).

Figure 6. Variation of the ratio of transverse to principal curvatures with position along the

sample length for (a) a Si<001><110> sample and (b) a Si<001><100> sample.  The presence of rollers

in this four-point loading configuration affects anticlastic bending.
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