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Constructing Hamiltonian Triangle Strips on Quadrilateral Meshes

Gabriel Taubin�

IBM T. J. Watson Research Center
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Figure 1: Every connected manifold quadrilateral mesh without boundary (A) can be represented as a single Hamiltonian generalized triangle
strip cycle by splitting each face along one of its diagonals, and connecting the resulting triangles along the original mesh edges. (B) An
arbitrary choice of face diagonals produces several cycles. (C) Cycles are then joined to form a single cycle by flipping diagonals.

ABSTRACT

Because of their improved numerical properties, quadrilateral
meshes have become a popular representation for finite elements
computations and computer animation. In this paper we address
the problem of optimally representing quadrilateral meshes as gen-
eralized triangle strips (with one swap bit per triangle). This is
important because 3D rendering hardware is optimized for render-
ing triangle meshes transmitted from the CPU to the GPU in the
form of triangle strips. We describe simple linear time and space
constructive algorithms, where each quadrilateral face is split along
one of its two diagonals and the resulting triangles are linked along
the original mesh edges. We show that with these algorithms ev-
ery connected manifold quadrilateral mesh without boundary can
be optimally represented as a single Hamiltonian generalized trian-
gle strip cycle in multiple ways, and we discuss simple strategies to
tailor the construction for transparent vertex caching.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—display algorithms I.3.5 [Computer Graphics]: Com-
putational Geometry and Object Modelling—surface, solid, and ob-
ject representations

Keywords: triangle strips, geometry compression, algorithms,
graphics.
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1 INTRODUCTION

Because of their simplicity, triangle meshes (T-meshes) are one of
the most widely used representations for 3D models in Computer
Graphics, and the basic geometric primitive in the 3D rendering
pipeline. Since in general a large number of triangles is required to
faithfully describe the geometry of a complex surface, a bottleneck
problem exists in the transmission of 3D models from the CPU to
the GPU (graphics processing unit)[8], and also across other com-
munication channels such as networks. This problem has moti-
vated the search for more efficient encoding schemes for triangle
meshes [20]. Instead of specifying each triangle by the coordinates
of its three vertices, triangles can be sequentially organized form-
ing triangle strips so that every pair of consecutive triangles share a
marching edge. In this way, only the first triangle of a triangle strip
requires the transmission of the coordinates of its three vertices, and
each subsequent triangle is specified by only one vector of vertex
coordinates.

Triangle strips (T-strips) are widely supported in graphics hard-
ware. In a sequential T-strip of length n, composed of n triangles
and specified by n + 2 vertices v0; : : : ; vn+1, the corners of the
i-th. triangle are the vertices vi, vi+1, and vi+2. In a generalized
T-strips one additional marching bit is transmitted for each triangle
of the strip other than the last one (i.e., for each marching edge).
This bit specifies whether the next triangle is attached to the left or
the right edge of the last triangle opposite to the last marching edge.
In the sequential triangle strips the marching bits alternate between
left and right, and are implicitly specified. From now on, when we
refer to a T-strip we will mean a generalized T-strip.

Quadrilateral meshes (Q-meshes) have become a popular rep-
resentation in modelling and animation [26], in part because of
Catmull-Clark Subdivision surfaces [5], and in finite element com-
putations because of their superior numerical properties. In this
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Figure 2: Not every Eulerian circuit corresponds to a Hamiltonian
triangulation. Edges that are opposite to each other on a face cannot
be contiguous in the Eulerian circuit.

paper we study the problem of optimally decomposing Q-meshes
into T-strips by splitting each of the quadrilateral faces of the mesh
along one of its two diagonals and connecting the resulting trian-
gles. Since each T-strip of length n is specified by n + 2 vertices,
the absolute minimum representation cost of one vertex per triangle
is achieved when the quadrilateral faces can be split so that all the
triangles can be connected forming a single T-strip, with the last
two vertices coinciding with the first two.

In this paper we show that this is always possible for connected
manifold Q-meshes without boundary, and describe an efficient al-
gorithm to do so. The resulting triangulation is called Hamiltonian
because it corresponds to the existence of a Hamiltonian cycle in its
dual graph.

Hardware support for T-strips requires a cache of size 2 in the
graphics processing unit (GPU). Modern GPU’s maintain a larger
vertex FIFO cache to potentially achieve even higher performance.
In the second part of the paper we discuss strategies to maximizing
vertex locality in the construction of the Hamiltonian triangle strip
to make better use of this cache.

1.1 Related Work

Although we are not aware of any previous solution to the problem
that we address in this paper, a number of related problems have
been studied. Whitney [25] proved that every planar triangulation
without separating triangles has a Hamiltonian cycle. Tutte [23]
extended this result to 4-connected planar graphs, and then other
authors generalized the result in various ways [17, 21]. Arkin, et.
al. [1] proved that every point set has a Hamiltonian triangulation,
and showed that the problem of testing whether a triangulation is
Hamiltonian or not is NP-complete. As a result, algorithms based
on heuristics must be used to decompose triangle meshes into tri-
angle strips. For example, Evans, et. al. [9] present algorithms
for constructing triangle strips from partially triangulated models.
Bose and Toussaint [4] studied the problem of constructing quad-
rangulations of point sets, and obtained an alternate method of com-
puting Hamiltonian path triangulations. The problem of generating
a quadrangulation of a set of points out of a triangulation has re-
ceived considerable attention both in the mesh generation and the
computational geometry literature. See for example, Ramaswami,
et.al. [15] and related references. King et.al. proposes an algo-
rithm to compress quadrilateral meshes [13] where the mesh faces
are implicitly connected forming a tree. Velho, et.al. [24] present
a refinement scheme that produces a hierarchy of triangle strip de-
compositions of a triangle mesh.

Figure 3: If the two triangles generated by splitting one quadrilat-
eral face belong to different cycles, flipping the diagonal joins the
two cycles into a single one.

2 GRAPHS AND MESHES

In this section we introduce some definitions, notation, and facts
to make the paper self-contained. We use this material in subse-
quent sections to formulate our main results more precisely. It can
be skipped during a first reading. Just remember that in the rest of
the paper, when we refer to a Q-mesh we always mean a connected
manifold quadrilateral mesh without boundary (see definitions be-
low).

2.1 Graphs

A graph G = (V; E) is composed of a set V of vertices and a set
E of edges. In addition, an incidence map e 7! I(e) = fv1; v2g
associates each edge with an unordered pair of vertices. The two
vertices are the ends of the edge. Every edge joins or connects its
ends and is incident to its ends. Two vertices connected by an edge
are adjacent or neighbors. Two vertices not connected by an edge
are independent. Two edges sharing exactly one end are adjacent.
An edge is a loop if its two ends are the same. Two edges are
parallel if they have the same ends. A graph is simple if it has
no loops and no parallel edges. All the graphs in this paper will
be simple. Since the incidence map is one-to-one, every edge of
a simple graph is identified with the pair of its ends, and we write
e = fv1; v2g.

A walk of length n in a graph G is an alternating sequence of
vertices and edges W = (v1; e1; : : : ; vi; ei; vi+1 : : : ; en; vn+1),
possibly with repetitions, such that each edge connects the two ver-
tices next to it in the sequence, i.e., I(ei) = fvi; vi+1g. The first
element of the sequence is the beginning, and the last one is the
end of the walk. The beginning and end of the walk are the ends
of the walk. A walk is closed if its two ends coincide, and open if
not. A trail is a walk in which all the edges are different. A trail is
Eulerian if it contains all the edges of the graph. A path is a walk
with distinct vertices. In particular, every path is a trail. A circuit
is a closed trail. A cycle is a circuit of length n with exactly n dif-
ferent vertices (a closed path). A Hamiltonian path (respectively
cycle) contains all the vertices of the graph. A graph containing a
Hamilton path or cycle is Hamiltonian. A graph is k-connected if
between any pair of distinct vertices there are k edge-disjoint paths.

2.2 Meshes

A polygon mesh (P-mesh) is defined by the position of the vertices
(geometry); by the association between each face and its sustaining
vertices (connectivity); and optional colors, normals and texture co-
ordinates (properties).

The connectivity of a P-mesh M is defined by the incidence re-
lationships existing among its V vertices, E edges, and F faces.

2
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BasicHamiltonianSplit (M = (V;E; F ))

# step 1
split each face along one of its diagonals
# step 2
for each face f 2 F

if split triangles belong to different cycles
flip diagonal of f

return

Figure 4: Algorithm to split the faces of a Q-mesh along face diag-
onals so that the resulting T-mesh is Hamiltonian. In the first step,
the face diagonals can be chosen in an arbitrary fashion.

A face with n corners is a sequence of n � 3 different vertices.
All the cyclical permutations of its corners are considered identical.
Every face joins or connects its corners and is incident to its corners.
An edge e is an un-ordered pair e = fv1; v2g of different vertices
that are consecutive in one or more faces of the mesh. The graph
of a mesh is the graph defined by the V mesh vertices as graph
vertices, and the E mesh edges as graph edges. The meshes con-
sidered in this paper have neither isolated vertices (not contained in
any face) nor multiple connected faces (faces with holes).

We classify the vertices of a P-mesh as boundary, regular, or
singular. A boundary mesh edge has exactly one, a regular mesh
edge has exactly two, and a singular mesh edge has three or more
incident faces. The dual graph of a P-mesh is the graph defined
by the mesh faces as graph vertices, and the regular mesh edges
as graph edges. In this paper a mesh with no singular edges is
manifold. It is manifold without boundary if in addition all its edges
are regular.

Two faces are connected if they are the ends of a path in the
dual graph. This equivalence relation defines a partition of the set
of faces into connected components. A mesh with only one con-
nected component is connected. An algorithm based on Tarjan’s
fast union-find data structure [18] can be used to generate the con-
nected components. From now on, all the meshes are connected
manifold without boundary.

3 HAMILTONIAN PATHS

With respect to the construction of Hamiltonian paths, the situation
for Q-meshes is quite different than for triangle meshes. Hakimi
et.al. [11] proved that every 4-connected planar triangulation on
V vertices contains not only one, but at least V= log2(V ) distinct
Hamiltonian cycles. The dual graph of a Q-mesh connected man-
ifold without boundary is 4-connected but not necessarily planar,
but we will see that nevertheless we have considerable freedom in
the construction of Hamiltonian triangulations.

The existence of a Hamiltonian cycle in the dual graph of the
mesh would certainly solve the problem we are addressing in this
paper. In this case each quadrilateral face can be split into two tri-
angles consecutive in the traversal order defined by the Hamiltonian
cycle. After the quadrilateral faces are split, the resulting triangles
are linked through an alternating sequence of new diagonal edges
and original mesh edges. The remaining original edges become the
boundary edges of the resulting Hamiltonian T-strip cycle.

Unfortunately, there exist non-Hamiltonian Q-meshes. This is
true even though determining the existence a Hamiltonian cycle in
the dual graph of a Q-mesh is linear-time solvable [6]. In this case
the alternative is to structure the faces of the Q-mesh as a tree with
long runs and few branching nodes. In the algorithm introduced
by King et.al. to compress the connectivity of Q-meshes [13], the

A B
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Figure 5: The algorithm of figure 4 applied to a 3� 3 torus (A). An
arbitrary choice of diagonals produces a triangulation with three
cycles (B). After one diagonal flip the number of cycles is two
(C). After an additional flip we obtain a triangulation with a single
Hamiltonian cycle (D). Remember that opposite boundary edges
and vertices are identified. In particular, the four corners of the
square correspond to the same mesh vertex.

quadrilateral faces are split along one diagonal while the dual graph
is tree-traversed in depth-first order. In this algorithm the two trian-
gles resulting from splitting a face are also consecutive in the tree
traversal order. The tree can be cut into generalized triangle strips,
but unfortunately, the number of branching nodes in the spanning
tree that links the faces in the dual graph, where the cuts have to
be made, could be arbitrarily large. This problem is shared by a
number of T-mesh connectivity encoding schemes [19, 22, 16]. As
a result, we follow a different approach.

4 BASIC ALGORITHM

Instead of a Hamiltonian cycle, our approach is based on the exis-
tence of an Eulerian circuit in the dual graph of the Q-mesh, which
is guaranteed for every connected graph in which all the vertices
have even order [10]. After the quadrilateral faces are split, the re-
sulting triangles are linked through the original mesh edges. The
new edges associated with the diagonal splits become the boundary
edges of the resulting Hamiltonian T-strip cycle.

Note however, that not every Eulerian circuit on the dual graph of
a Q-mesh defines a Hamiltonian triangulation, because edges that
are opposite to each other on a face cannot be contiguous in the
Eulerian circuit. Figure 2 illustrates this problem. We need a special
algorithm to construct the Eulerian circuit taking into account the
constraints imposed by the cyclical ordering of the edges around
each face: if two mesh edges are not adjacent in the graph of the
mesh, they cannot be contiguous in the Eulerian circuit.

The problem is to choose one out of the two diagonals of each
quadrilateral face so that the result of splitting the faces along the

3
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Figure 6: The algorithm of figure 4 applied to a more complex mesh
(A). A random choice of diagonals produces a triangulation with 73
cycles (B). After 30 diagonal flips the resulting triangulation still
has 43 cycles (C). After 42 additional flips we obtain a triangulation
with a single Hamiltonian cycle (D).

chosen diagonals defines a single Hamiltonian T-strip cycle. If the
diagonals are chosen at random, the graph defined by the triangles
as graph vertices and the original mesh edges as graph edges is com-
posed of a collection of disconnected cycles because each graph
vertex is connected to exactly two other graph vertices. If the num-
ber of cycles in this graph is one, the problem is solved. If the
number is larger than one, we only need to perform one additional
step during which some diagonals are flipped. This step is based on
the following observation illustrated in figure 3: if the two triangles
generated by splitting one quadrilateral face belong to different cy-
cles, splitting the same face along the other diagonal (flipping the
diagonal) joins the two cycles into a single one. Since the number
never increases, to construct a single cycle we just have to visit the
faces of the mesh in an arbitrary order, and flip the diagonal of each
face that joins different cycles. This simple algorithm is illustrated
in figure 4. Figures 5 and 6 show examples of this algorithm applied
to Q-meshes, with the state at an intermediate point where some di-
agonals have been flipped but not all. It is important to note that
flipping a diagonal that joins two triangles that belong to the same
cycle must be avoided, because doing so splits the cycle into two
disconnected cycles.

5 EFFICIENT IMPLEMENTATION

Figure 7 illustrates an efficient and more detailed implementation of
the algorithm of figure 4. This implementation uses two data struc-
tures. The first one is a boolean array B with one bit bf per face that
indicates along which of the two diagonals the face must be split.
If bf = 0 the face f = (v0; v1; v2; v3) is split along the (v0; v2)

diagonal, and along the (v1; v3) diagonal if bf = 1. This array
is filled by the calling function and modified here so that splitting

PartitionEdges (M = (V;E; F ); B)

pE = new Partition (E)

for each face f = (v0; v1; v2; v3) 2 F

if bf = 0

pE:join(e01; e12)
pE:join(e23; e30)

else if bf = 1

pE:join(e12; e23)
pE:join(e30; e01)

return pE

JoinCycles (M = (V;E; F ); B; pE; S)

for each face f = (v0; v1; v2; v3) 2 S

if bf = 0

if pE:find(e01) 6= pE:find(e23)
bf = 1

pE :join(e01; e23)
else if bf = 1

if pE:find(e01) 6= pE:find(e12)
bf = 0

pE :join(e01; e12)
return

EfficientHamiltonianSplit (M = (V;E; F ); B; S)

# initialize edge partition
pE = PartitionEdges (M;B)

# join cycles by flipping diagonals
JoinCycles (M;B; pE; S)

return

Figure 7: Efficient implementation of the algorithm illustrated in
figure 4. B is a boolean array with one face bit bf per face ini-
tialized by the calling function. The function PartitionEdges
initializes the partition of the set of edges into the cycles defined by
the array B. The function JoinCycles joins the multiple cycles
into a single one by flipping some face bits corresponding to faces
in the subset S of F . S = F ensures success, but other choices
will be discussed later. The mesh edge eij = M:getEdge(vi; vj)
connects vertices vi and vj .

the faces along the corresponding diagonals generates a Hamilto-
nian triangulation. The second data structure is a set partition class
based on Tarjan’s fast Union-Find algorithm [18]. This set partition
data structure efficiently implements the operations of membership
(find) and union (join) of disjoint sets. It is used here to maintain a
partition of the set of mesh edges into the cycles defined by the bits
in the boolean array. It is neither necessary to maintain the cycles
as linked lists, nor to explicitly split the faces into triangles. The
Q-mesh is actually not modified by this algorithm, which returns
just the boolean array. A subsequent traversal of the dual graph
of the Q-mesh along the Eulerian circuit defined by the bits, can
be used to create an explicit generalized T-strip representation. An
additional hash table is used to efficiently implement the function
eij = M:getEdge(vi; vj) that locates an edge from its ends. But
we consider this as part of the data structure used to represent the
mesh connectivity.

Note that only the diagonals of faces belonging to the subset S
of F , passed as an argument by the calling function as well, are
considering for flipping. This subset must be chosen carefully to
guarantee successful termination with a single cycle. A safe choice
is S = F . Strategies to choose S containing a small number of
faces will be discussed in the next section.

4
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Figure 8: Examples of 2-colorable Q-meshes.

6 DIAGONAL GRAPH STRUCTURE

The number of cycles produced by the algorithm described above,
and as a consequence the number of diagonal flips necessary to link
all the cycles into a single one, is in principle arbitrarily large. In
this section we analyze the structure of the graph defined by the
chosen diagonals in detail. This analysis will be used in the next
section to develop strategies to tailor the construction of the array B
and set S for applications to graphics cache optimization. In partic-
ular, we determine the minimum set of diagonals that, when consid-
ered for flipping during the second step of the algorithm, guarantee
successful termination with a single cycle. We even show that in the
most common cases there is actually no need to flip any diagonal.

The diagonal graph of a Q-mesh M is defined by the mesh ver-
tices as graph vertices, and the diagonals of the quadrilateral faces
as graph edges. If the Q-mesh has V vertices and F faces, then its
diagonal graph has V vertices and 2F edges. The edges selected
to split the faces by the algorithm described in the previous section
define a maximal spanning subgraph D of the diagonal graph with
V vertices and F edges.

6.1 Connected Components

We show here that D has at most two connected components. Later
on we will see that we need different strategies to choose B and
S for the two cases of one or two components. If we cut the Q-
mesh through the chosen diagonals we obtain a single generalized
triangle strip cycle. This T-mesh is topologically equivalent to a
cylinder. Its boundary is a graph composed of two cycles. Let us
call these cycles left boundary and right boundary. The Q-mesh
vertices corresponding to left boundary T-mesh vertices and the di-
agonals that join pairs of these vertices form a subgraph of D that
we denote DL. This graph is clearly connected, because it can be
obtained by clustering (identifying) vertices of a cycle, which is
connected. A similar construction for the right boundary yields the
connected subgraph DR of D. Since D is the union ofDL and DR,
it follows that D has at most two connected components. But these
two graphs may not be disjoint, in which case D has one connected
component (is connected).

6.2 2-Coloring

A 2-coloring of a graph is an assignment of one of two different col-
ors (we will use red and black) to each vertex so that no edge has
both ends of the same color. A graph is 2-colorable if such assign-
ment exists. A mesh is 2-colorable if its graph is 2-colorable. Some
examples of 2-colorable Q-meshes are shown in figure 8. Note that
a mesh with a face with odd number of corners is not 2-colorable.
In fact, a fundamental result in graph coloring is that a graph is
2-colorable if and only if it has no cycles of odd length [10].

Is2ColorableGraph (G = (V;E))

T = SpanningTree (G)

choose r 2 V as the root of T
# depth-first traversal
for i 2 V

if depth
T
(i) is even

ci = red
else

ci = blue
for e = (i; j) 2 E

if ci = cj

return false
return true

Figure 9: Algorithm to determine if a connected graph is 2-
colorable or not.

We show now that D has two components if and only if the Q-
mesh is 2-colorable. It is a lot easier to determine 2-colorability
than to count connected components. For the necessity, since D

has two connected components, paint red all the vertices of DL and
black all the vertices of DR. In this case the mesh is 2-colorable
because every mesh edge, being a marching edges of the T-strip,
joins a vertex of DL (red) and a vertex of DR (black). For the
sufficiency, let’s assume that the Q-mesh is 2-colorable and D is
connected. Pick any edge of the mesh. Since D is connected, there
is a path in D with the ends of the chosen edge as beginning and
end. It follows that there is a path in the graph of the Q-mesh of even
length with the same beginning and end (details left to the reader).
If we add the original edge to this path we construct a cycle of odd
length, which contradicts the 2-colorability.

Note that 2-colorability is independent of topological type. For
example, verify that D has one connected component for the 3� 3

torus of figure 5 and that the mesh is not 2-colorable (has a cycle of
length 3). Do the same experiment with a 4� 4 torus to verify that
D has two connected components and that the mesh is 2-colorable.

It is important to point out that 2-colorable meshes are in
widespread use in computer graphics, visualization, modelling and
animation: it is not difficult to verify that Catmull-Clark meshes
(even the non-manifold ones) and isosurfaces based on deformed
cuberille Q-meshes (boundary mesh of set of voxels, regularized or
not) are 2-colorable. It is also true that all planar Q-meshes (without
handles) are 2-colorable (a proof is sketched in section 6.3). And a
simple tree-traversal algorithm illustrated in figure 9, during which
newly visited vertices are painted with alternating colors, can be
used to determine if a connected graph is 2-colorable or not [10].

6.3 Spanning Forests

The Euler characteristic of a manifold mesh without border with
V (non-singular) vertices, E edges, and F faces s the number
V � E + F , which is a topological invariant. When a mesh is
orientable, the Euler characteristic is also equal to 2 � 2G, where
G is the genus, or number of handles, of the mesh. A Q-mesh with
V vertices, E edges, and F faces, has Euler characteristic V � F

because E = 2F (each quadrilateral face is covered by four half-
edges, and each edge is shared by two faces). A mesh of genus zero
(with no handles) is planar.

Since D is composed of C (1 or 2) connected components, a
spanning forest constructed in D with a maximal number of edges
will contain C trees. Since the forest spans the diagonal graph, it
contains V � C edges, and so, the number of faces not split by a
diagonal edge in the forest is S = F�(V�C) = C+F�V , which

5
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DiagonalSpanningForest (M = (V; E;F ))

B = new BooleanArray (F )

S = new Set ()

# build spanning forest in diagonal graph
pV = new Partition (V )

for f = (v0; v1; v2; v3) 2 F

if pV :find(v0) = pV :find(v2)
bf = 0

pV :join(v0; v2)
else if pV :find(v1) = pV :find(v3)

bf = 1

pV :join(v1; v3)
else

# collect cycle-producing faces in stack
S:include (f)

# assign temporary random value
return (B; S)

Figure 10: Algorithm to construct a spanning forest in the diagonal
graph of a Q-mesh M with maximal number of edges, but such that
at most one diagonal of each face is included in the forest. The faces
without a diagonal in the forest are collected in a subset S � F for
subsequent processing. Inserting a diagonal of one of these faces in
the forest creates a cycle.

is typically a small number compared with the total number faces.
In the orientable case this number is equal to 2G+(C�2), i.e., 2G
if the Q-mesh is 2-colorable, and 2G�1 if not. For example, for any
planar Q-mesh (G = 0) the graph D is a forest composed of exactly
two trees, and there is no need to flip diagonals. In particular, this
proves that any planar Q-mesh is 2-colorable, and equivalently, any
non-2-colorable Q-mesh is non-planar.

In the non-planar 2-colorable case we can avoid flipping diago-
nals as well. We first construct a spanning forest with a maximal
number of edges in the diagonal graph, and collect the faces whose
diagonals create cycles if inserted in the forest. Figure 10 illustrates
an algorithm to do so, where the non-split faces are collected in the
set S. Then we paint red all the vertices of one of the trees, and
black all the vertices of the other tree. Finally, we construct D by
inserting all the diagonals of the faces in S that join black vertices
in the forest. At this point there is no need to run the algorithm of
figure 7 because the set of diagonals already define a Hamiltonian
cycle. The result of splitting the faces through this set of diagonals
is a single cycle because cutting through the red tree produces a
boundary cycle with as many vertices and edges as edges in the tree,
and every triangle has either one or two vertices on this boundary.
This cycle is one of the boundaries of the resulting T-strip. This
is closely related to the Topological Surgery scheme for P-mesh
connectivity compression [19], particularly as implemented in the
MPEG-4 standard [14]. Figure 11 illustrates the relation between
a tree of edges and the boundary cycle it produces for a general
P-mesh.

In the non-2-colorable case D is connected and the spanning for-
est is composed of a single tree. Again, cutting the Q-mesh through
the diagonals belonging to the spanning tree produces a new mesh
with a single boundary cycle. This mesh is composed of the remain-
ing quadrilateral faces collected in the set S, and a number of gen-
eralized T-strips, each starting and ending at an edge shared with a
quadrilateral. There are 2S T-strips counting T-strips of length zero
corresponding to edges shared by two quadrilateral faces. Each of
these T-strips may start and end in different quadrilaterals, or in the
same quadrilateral. In the later case, the two edges that connect the
T-strip to the quadrilateral may be opposite or adjacent. If opposite,

Figure 11: Cutting through a tree creates a boundary cycle.

neither one of the two diagonals splits the mesh into disconnected
parts. If adjacent, the diagonal that leaves the two edges on oppo-
sites sides is the only choice that keeps the mesh connected. The
simplest strategy here is to revert to running the algorithm of figure
7 as a post-processing step. That is, we choose the diagonals of the
faces collected in S at random, partition the edges of the mesh into
connected components corresponding to the generated cycles, and
sequentially, flip the diagonals that join different cycles. But here
we only need to consider flipping the diagonals of the faces that
belong to the set S.

7 TRANSPARENT VERTEX CACHING

Support for T-strips requires a cache of size 2 in the graphics pro-
cessing unit (GPU). Since processing a cached vertex is much faster
than an uncached one, more modern GPU’s maintain a larger vertex
FIFO cache. To make good use of this cache these indexed T-strips
must be constructed maximizing vertex locality. In this section we
discuss strategies to optimize the use of this cache in our construc-
tion.

The triangle ordering is called rendering sequence by Bogom-
jakov and Gotsman [3], who describe methods to construct uni-
versal rendering sequences for T-meshes that preserve locality at
all scales. Hoppe [12] introduced the transparent vertex caching
problem, and presented algorithms to optimize the decomposition
of T-meshes into T-strips for a particular cache size. Several years
earlier, Deering [8] presented a hardware-oriented geometry com-
pression scheme based on an actively managed (non-FIFO) cache
of size 16. Chow [7] presented methods to decompose T-meshes
into Deering’s generalized triangle meshes, and so did Bar-Yehuda
and Gotsman [2], who also showed that a cache of size O(

p
n) is

necessary to minimize cache misses to zero.
A good rendering sequence minimizes the average cache miss

ratio (acmr). This number, which measures the average number of
cache misses per triangle, has a minimum value of about 0:5 (one
cache miss per vertex) and a maximum of 3:0, which corresponds
to the case when each T-strip is composed of a single triangle. In
our case, since we can link all the triangles into a single T-strip, the
actual maximum is slightly above 1:0.

7.1 Greedy Approach

As in the method proposed by Bogomjakov and Gotsman [3] for
T-meshes, our scheme produces a rendering sequence independent
of the cache size. Rather than an optimization-based procedure,
we experimented with simple greedy schemes based on different
face traversal algorithms and strategies to choose diagonals as the
faces are visited. We implemented the traversal of faces in spiraling
fashion, as used in most P-mesh connectivity encoding algorithms,
and in random order, i.e., in the order the faces appear in the input
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Figure 12: Maximizing vertex locality requires trees with large
numbers of leafs and branching nodes.

file. When a face is visited during the traversal, one of its two di-
agonals is chosen. To maximize locality, we follow strategies that
build spanning forests with lots of leaf nodes. This is illustrated
in figure 12. A large number of leaf nodes implies a large number
of branching nodes. The three most successful strategies were: 1)
choosing the diagonal that locally maximizes the vertex valence of
the spanning forest constructed so far, 2) always choosing the diag-
onal across the traversal (in the spiraling traversal), and 3) randomly
choosing one of the two diagonals as a function of a random face
bit produced by a pseudo-random number generator. In the later
case, each run produces a different result, but the results of differ-
ent runs are very consistent. On the other hand, we have verified
experimentally that a strategy that minimizes the number of leafs
and branching nodes in the spanning forest produces much worse
rendering sequence, often with acmr � 1.

7.2 Results

Figure 13 shows some of the models used in our experiments. The
table in figure 14 shows the sizes and genus of these meshes, as well
as the one shown in figure 1, and the acmr we obtain for different
cache sizes. The cube was obtained by recursive Catmull-Clark
connectivity subdividision from a regular cube with six faces, and
subsequent low-pass filtering. The bunny is not the original Stan-
ford bunny, but a resampled version with quadrilateral faces and
filled boundaries. The shape and spine meshes are isosurfaces. The
skull and the head originally came from 3D scanned data and both
had lots of boundaries. To remove the boundaries we generated
the boundary surface of the solid resulting from extruding the mesh
along the normal direction by a fixed amount such as average edge
length. The resulting mesh is composed of two parallel copies of
the original mesh connected along the corresponding boundaries by
cycles of quadrilateral faces.

Roughly speaking, we obtain average acmr of about 0:70 for
cache size 16, 0:64 for cache size 32, and 0:60 for cache size 64,
with very small deviation from these values, and very much inde-
pendently of mesh size and regularity of the mesh. This perfor-
mance values are comparable to those reported by Bogomjakov and
Gotsman [3], whose algorithm for T-meshes is based on a complex
combinatorial optimization procedure. Our results are also com-
parable with those produced by the greedy algorithm for T-meshes
presented by Hoppe [12], which is tuned for a specific cache size.

It would be interesting to establish a theoretical acmr lower
bound, and to see how much room is there for improvements us-
ing an additional combinatorial optimization step. However, given
the good and consistent performance of the very simple strategies
presented here, and the low computational cost, we do not see much
practical need for further optimization.

Figure 13: Some Q-meshes used in our experiments.

mesh acmr
name connectivity cache size

V F G 16 32 64
toothQ 2,633 2,631 0 0.698 0.638 0.592
angelMouthQ 4,030 4,028 0 0.671 0.623 0.587
cube6146 6,146 6,144 0 0.685 0.619 0.583
shape51Q 6,912 6,938 14 0.714 0.641 0.602
g49plateQ 10,016 10,112 14 0.708 0.645 0.608
bunnyQ 20,758 20,756 0 0.673 0.614 0.579
skullQ 26,436 26,456 11 0.706 0.642 0.601
spine4Q 46,254 46,286 17 0.714 0.651 0.607
headscanQ 191,890 191,934 23 0.722 0.660 0.616
average 0.699 0.637 0.598

Figure 14: Results corresponding to the meshes shown in figure 13.

8 IMPLEMENTATION AND COMPLEXITY

We implemented all the algorithms described in previous sections
in Java and integrated them into our interactive mesh processing
tool. The different steps of the algorithm can be run independently
of each other, or all together by pressing a single button. The user
can interactively set all the parameters and options. A screen shot
of this application is illustrated in figure 15. Because of this tight
integration, and the additional operations performed for visualiza-
tion purposes, it is difficult to measure running times with preci-
sion. Note that Hoppe [12] reports running times of up to 4 hours
on meshes of about 100; 000 vertices for his optimization-based al-
gorithm. Our greedy algorithms run at interactive rates for meshes
of this size and larger. In fact, running times for our algorithms are
comparable with rendering times.

In terms of complexity, Tarjan’s union-find algorithm [18] (used
to maintain set partitions), and hash table access (used to repre-
sent mesh edges), correspond to steps with super-linear complexity.
However, its is well known that the union-find algorithm requires
linear storage and has linear complexity for practical purposes, and
hash table access has expected linear complexity. The rest of the
steps have linear space and time complexity.

9 SUBDIVISION

Catmull-Clark Subdivision [5] is the method of choice to refine Q-
meshes. Here each quadrilateral face is subdivided into four smaller
quadrilateral faces. Suppose that we have chosen diagonals in the
coarse mesh so that the resulting linked triangles form a Hamilto-
nian T-strip. The diagonal chosen to split each coarse face splits
two of the corresponding fine faces as well. If the two parallel di-
agonals are chosen for the other two fine faces, when we link the
resulting fine triangles trough the mesh edges we obtain two paral-
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Figure 15: Java implementation of algorithms as part of interactive
mesh processing tool.

lel cycles, and only one diagonal flip is sufficient to link them. For
example, any of the fine faces not split by the coarse face diagonal
is an acceptable choice here. Note that, although very simple, this
procedure reduces the locality of the rendering sequence quite sig-
nificantly. Consider two triangles that share a diagonal, and belong
to the two original cycles. The distance along the joined Hamilto-
nian T-strip from one to the other may be up to one half the number
of triangles in the strip. A better strategy is to first choose the diag-
onals of the two fine faces not split by the original coarse diagonal
orthogonal to the other diagonals, and then run the algorithm of fig-
ure 7 to join all these cycles into a single one. Figure 16 illustrates
the concepts discussed in this section.

10 CONCLUSIONS AND FUTURE WORK

In this paper we presented very simple algorithms to represent any
connected manifold quadrilateral mesh without boundary as a sin-
gle Hamiltonian generalized triangle strip cycle in many different
ways, by splitting each face along one of its two diagonals. We
analyzed the structure of the graph of diagonals so produced, and
developed practical strategies to choose a rendering sequence that
makes good use of a graphics processing unit’s FIFO vertex cache.
There is potential for further optimization for cache utilization, and
it will be interesting to investigate how much more can be gained
by such a procedure. The algorithms presented in this paper do not
extend in a straightforward manner to meshes with boundary and
non-manifold meshes. It would be interesting to find ways to extend
these ideas to this larger family of meshes. Converting T-meshes to
Q-meshes is important for numerical simulations, but difficult to do.
Very often the result of these procedures is a TQ-mesh, i.e., a mesh
composed of a majority of quadrilateral faces, and a few triangular
faces. We plan to extend our ideas to these meshes as well.

A B C D

Figure 16: Construction of Hamiltonian T-strip cycles on subdivi-
sion meshes. (A) Choosing all the diagonals of the coarse quadri-
lateral faces parallel to the diagonal chosen for the corresponding
coarse face produces two parallel cycles with little vertex locality.
(B) Flipping all the marching edges of these two cycles produces
a large number of small cycles. (C) Some of these diagonals must
be flipped back to link all these cycles into a single one. (D) The
resulting Hamiltonian T-strip.
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