
RC22296 (W0201-041) January 4, 2002
Computer Science

IBM Research Report

A Study of Memory Behavior of Java Workloads

Yefim Shuf*, Mauricio J. Serrano+, Manish Gupta*, Jaswinder Pal Singhw

*IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

+Intel Microprocessor Research Labs

mauricio.j.serrano@intel.com

wPrinceton University

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Chapter 1

A STUDY OF MEMORY BEHAVIOR OF

JAVA WORKLOADS

Ye�m Shuf�

IBM T. J. Watson Research Center

ye�m@us.ibm.com

Mauricio J. Serranoy

Intel Microprocessor Research Labs

mauricio.j.serrano@intel.com

Manish Gupta

IBM T. J. Watson Research Center

mgupta@us.ibm.com

Jaswinder Pal Singh

Princeton University

jps@cs.princeton.edu

Abstract This paper studies the memory behavior of important Java workloads
used in benchmarking Java Virtual Machines (JVMs), based on in-
strumentation of both application and library code in a state-of-the-
art JVM, and provides structured information about these workloads
to help guide systems' design. We begin by characterizing the inher-
ent memory behavior of the benchmarks, such as information on the
breakup of heap accesses among di�erent categories and on the hotness
of references to �elds and methods. We then provide detailed informa-
tion about misses in the data TLB and caches, including the distribution
of misses over di�erent kinds of accesses and over di�erent methods. In

�Also aÆliated with Princeton University; yshuf@cs.princeton.edu
yWork done at IBM T. J. Watson Research Center

1

2

the process, we make interesting discoveries about TLB behavior and
limitations of data prefetching schemes discussed in the literature in
dealing with pointer-intensive Java codes. Throughout this paper, we
develop a set of recommendations to computer architects and compiler
writers on how to optimize computer systems and system software to
run Java programs more eÆciently. This paper also makes the �rst
attempt to compare the characteristics of SPECjvm98 to those of a
server-oriented benchmark, pBOB, and explain why the current set of
SPECjvm98 benchmarks may not be adequate for a comprehensive and
objective evaluation of JVMs and just-in-time (JIT) compilers.

We discover that the fraction of accesses to array elements is quite sig-
ni�cant and demonstrate that the number of \hot spots" in the bench-
marks is small. We also show that even a fairly large L2 data cache is
not e�ective for many Java benchmarks. We observe that instructions
used to prefetch data into the L2 data cache are often squashed because
of high TLB miss rates and because the TLB does not usually have the
translation information needed to prefetch the data into the L2 data
cache. We also �nd that co-allocation of frequently used method tables
can reduce the number of TLB misses and lower the cost of accessing
type information block entries in virtual method calls and runtime type
checking.

Keywords: Java, Workload characterization, Memory systems, SPECjvm98.

1. Introduction

The Java Programming Language [13] is gaining popularity as a lan-
guage of choice for developing applications on a variety of platforms,
ranging from servers to embedded systems. At the same time, the grow-
ing disparity between processor and memory speeds makes it important
to study and optimize the memory behavior of programs. The goal
of this paper is to understand the memory behavior of important Java
workloads used in benchmarking JVMs and JIT compilers and to pro-
vide computer architects and the implementors of JVM components with
structured information about the Java workloads (at di�erent levels of
detail), which may be useful in formulating their designs.
We �rst study high-level characteristics of these Java workloads, which

are independent of the hardware con�guration. We then obtain, based
on simulation, a series of increasingly detailed data on the behavior
of these programs with respect to the data TLB and caches. We also
correlate observed memory behavior and performance problems, such
as TLB and L2 cache misses, with the sources of the behavior. Our
analysis provides important insights into understanding the key sources
of performance loss in Java programs. Throughout the paper, we develop
a set of recommendations to computer architects and JVM developers on

A Study of Memory Behavior of Java Workloads 3

techniques to run Java programs more eÆciently, and comment on some
of the performance improvement techniques discussed in the literature.

2. Experimental Setup

In this section, we describe our experimental setup. We describe the
JVM, including the run-time compiler, that was used to run the pro-
grams. We describe our methodology for collecting traces and running
simulations. Finally, we describe the benchmarks targeted in this study.

A JVM with a Run-Time Compiler. We have performed
our experiments under a state-of-the-art JVM, the Jalape~no JVM [1]
[7], supported by the Quicksilver quasi-static compilation system [31].
Quicksilver performs the compilation of Java bytecodes into quasi-static
images (which contain persistent forms of executable machine code and
auxiliary information such as exception tables and garbage collection
maps) in a separate, ahead of time run. During the actual execution of
an application, it tries to reuse existing quasi-static images after perform-
ing validation checks and adapting them to the new execution context,
to reduce the cost of run-time compilation. Since relatively low compi-
lation overhead is incurred at run-time, our data reect more closely the
intrinsic characteristics of running applications.

Instrumentation and trace generation. In order to generate the
trace of heap references, we have extended the run-time optimizing com-
piler to instrument code. (Since the Jalape~no JVM is itself written in
Java, the JVM runtime code is also optimized and instrumented by the
same compiler [2].) The instrumentation is performed after the machine-
independent optimizations and immediately before register allocation.1

All load and store instructions referencing object �elds, arrays, and vir-
tual method tables (all of which reside on a heap) are instrumented.
References to the stack frames (which tend to have good locality) are not
instrumented. The instrumentation is done during the write phase of
the Quicksilver compiler [31]. In the write phase, a program is compiled
as it runs. During compilation, the compiler performs the instrumenta-
tion steps and generates instrumented quasi-static images.
The data is collected in the read phase [31], which corresponds to a

\production run" of the program. On each heap reference, a call is made

1Both the original and the instrumented versions of benchmarks have the same patterns of
accesses to their heap-allocated data.

4

to the trace generator with the relevant information about a memory
reference.

Trace processing and simulation. We process the collected
traces o�-line. During this step, we perform the simulation of the data
TLB and L1 data cache for a Power PC 604e-like [16] con�guration
(which is similar to the con�guration of other modern processors in the
market). In addition, we simulate a fairly large (but simple and fast) L2
data cache. The parameters of the simulated memory subsystem are as
follows:
� data TLB: 128-entry, 2-way set associative LRU, 4k pages.
� L1 data cache: 32KB, 4-way set associative LRU, 32-byte lines.
� L2 data cache: 4MB, direct-mapped, 32-byte lines.
This choice of parameters allowed us to verify the representativeness

of collected traces and validate our simulation results with help of per-
formance monitor counters on a system with a Power PC 604e processor.
We use virtual addresses in the simulation and assume that the oper-

ating system will employ one of the standard page mapping techniques
to reduce the number of conicts between pages. We used a heap size of
1 GB, which leads to relatively few garbage collections while executing
these applications, and is consistent with the choice of large heap sizes in
production environments. Hence, our measurements largely reect the
inherent memory behavior of these benchmarks with suÆcient memory.

Benchmarks. We used the industry standard SPECjvm98 [33]
benchmarks and the portable business object benchmark (pBOB) [5]
to conduct the study. We chose to run the SPECjvm98 benchmarks
with the largest data set size (set to 100 [33]), because we found that
both size 1 and size 10 are not adequate for collecting meaningful data
about the behavior of these applications. We ran each benchmark with
the largest data size and simulated 2GB worth of compressed traces
(for each benchmark) generated from the point where the benchmark
starts the timing. This portion of the trace is representative of the
studied workloads and excludes the overhead associated with initializing
the JVM and the benchmark harness, and the initial run of a garbage
collector. SPECjvm98 benchmarks run for 20-85 seconds on a 166MHz
PowerPC system. We simulate 20-50% of actual program execution
(depending on the benchmark) and do capture programs' behavior in
the steady state.

A Study of Memory Behavior of Java Workloads 5

3. Inherent Heap Access Behavior

In this section, we present the data on the characterization of heap
accesses in terms of their distribution among di�erent kinds of accesses
and the \hotness" (i.e. the frequency) of various kinds of references.

3.1 Classi�cation of heap accesses

We classify all heap accesses into three basic kinds: accesses to method
table entries (which hold the starting address of virtual methods), object
�elds, or array elements. Fig. 1 shows that a majority of the accesses
are to object �elds. A surprising result is that for several benchmarks in
the SPECjvm98 suite, the fraction of accesses to array elements is quite
signi�cant (more than 40% for 209 db and 228 jack). The smallest
fraction of accesses are to the method tables, which are due to virtual
method calls in the code. It is important to note that we have instru-
mented the optimized code, where the optimizing compiler has already
inlined virtual methods. The compiler currently inlines virtual methods
when it can identify a single target of the virtual call based on final

declarations in Java code or a simple, local type analysis [2], and where
inlining is considered to be bene�cial for performance. Interestingly,
only 213 javac has a substantial number of virtual method calls that
could not be resolved at compile time. Most of the virtual methods
have been resolved and inlined at compile time for the simpler bench-
marks. Hence, the SPECjvm98 benchmark suite contains relatively few
applications that are both suÆciently complex and written in a true
object-oriented style, using polymorphism. In particular, 201 compress
(which seems to be a port of a C benchmark from SPEC95) and 209 db
(which has not been derived from an actual application) contain very few
virtual method calls, and may therefore be questionable as benchmarks
for an object-oriented language. Therefore, we believe that more
truly object-oriented benchmarks should be added to the next version
of SPECjvm to make the suite more useful for evaluating the ability of
JVMs and architectures to eÆciently handle object-oriented features.
Interestingly, the characteristics of pBOB are about the average of the

characteristics of SPECjvm98 applications. In addition, although pBOB
models a database-like workload, it is more object-oriented than 209 db.
It has relatively fewer array accesses and many more virtual method
calls. Furthermore, pBOB seems to be a more balanced benchmark than
209 db in terms of the variety of operations performed on the database
records. Most of the time in 209 db is spent in a sorting routine which
sorts an array of references to records (i.e. objects).

6

_201_com
press

_209_db

_228_jack

_213_javac

_202_jess

_227_m
trt

pB
O

B
0

20

40

60

80

100

%
 o

f
he

ap
 a

cc
es

se
s

Figure 1: Accesses to VMT entries, object
fields, and array elements as % of

heap accesses

VMT entries
Object fields
Array elements

_201_com
press

_209_db

_228_jack

_213_javac

_202_jess

_227_m
trt

pB
O

B

0

20

40

60

80

100

%
 o

f
ob

je
ct

 f
ie

ld
 a

cc
es

se
s

Figure 2: Characteristics of object field
accesses

Primitive type
Reference to an object
Reference to an array of references
Reference to an array of primitive types

3.2 Classi�cation of accesses to object �elds

We classify all accesses to object �elds (which is one of the three
regions in Fig. 1) into four basic kinds: (i) accesses to �elds containing
an entity of a primitive type (i.e. short, int, boolean, etc.), (ii) a reference
to an object, (iii) a reference to an array of primitive types, or (iv) a
reference to an array of references (Fig. 2). The applications that access
object �elds of primitive types more often are likely to have a better data
TLB, data cache, and virtual memory behavior than other applications
that access data through one or more references (i.e. pointer chasing).
About 30% to 65% of the �eld accesses are to �elds containing ref-

erences. These measurements suggest that 209 db, in which 65% of
�elds accesses are to reference �elds, is likely to put considerable strain
on the memory subsystem (we shall investigate this prediction further
in Section 4). Surprisingly, except for two programs (213 javac and
228 jack), we observe more references to �elds containing references to
arrays than to �elds containing references to objects. For most programs
(other than 201 compress and 213 javac), most of the references to ar-

A Study of Memory Behavior of Java Workloads 7

rays are to arrays of references rather than arrays of primitives. This
suggests that arrays are used to keep track of large quantities of data
and that the data is encapsulated into objects.
Some systems implications of these observations are as follows. First,

since pointer chasing is a real issue with these Java benchmarks2, the
compiler writer should consider object inlining as an important opti-
mization that could have a positive impact on the memory performance
of these benchmarks. Object inlining in the context of C++ has been
studied in [12]. Second, because many accesses are to arrays, and pos-
sibly more predictable, prefetching may also be bene�cial. We consider
the opportunities for prefetching elsewhere in this paper and in our tech-
nical report [32]. On the hardware side, a load instruction does not
know whether the data loaded from memory contains a reference (a
pointer) or some value. If such a functionality were available (e.g. if
load instructions could be tagged appropriately), the hardware could,
for example, give a higher priority to load instructions retrieving refer-
ences as opposed to load instructions retrieving values.

3.3 Hotness of �elds and virtual methods

In this section, we verify the traditional hypothesis that small sections
(so called hot-spots) of a program are typically responsible for most of
the execution time and performance problems. This has implications for
the e�ectiveness of run-time compilation strategies employed by compil-
ers like the Sun Hotspot compiler [14] and the IBM Jalape~no adaptive
optimization system [2].
We calculated the frequency of accesses to object �elds and sorted the

frequencies in descending order. We then set an importance threshold
to a small value (0.1%) and discarded all the �elds whose contribution
to the total number of �eld references was smaller than the importance
threshold. We then calculated the number of �elds that remained stand-
ing and computed their cumulative contribution to �eld accesses (Fig.
3). We obtained similar information (with the same threshold) for the
references to virtual method tables (Fig. 4).
For some of the benchmarks (201 compress and 209 db), very few

�elds are responsible for a large fraction of �eld references, and very few

2Java, unlike C++, does not have nested objects. A \has-a" relationship between a container
object and a contained object is implemented as a reference to the contained object. As a
result, Java programs have high overhead associated with dereferencing pointers.

8

0 50 100 150

Number of fields

94

96

98

100

%
 o

f
fi

el
d

re
fe

re
nc

es

Figure 3: A few fields are responsible for a
large fraction of field references (most

frequently referenced fields, i.e. Hot Fields)

_201_compress
_209_db
_228_jack
_213_javac
_202_jess
_227_mtrt
pBOB

0 20 40 60 80

Number of virtual methods

94

96

98

100

%
 o

f
V

M
T

 r
ef

er
en

ce
s

Figure 4: A few virtual methods are responsible
for a large fraction of virtual method calls

(i.e. Hot Virtual Methods)

0 10 20 30

Number of methods

50

60

70

80

90

100

%
 o

f
D

-T
L

B
 m

is
se

s

Figure 5: A few methods are responsible for a
large fraction of D-TLB misses

0 10 20 30

Number of methods

50

60

70

80

90

100

%
 o

f
D

-L
2

ca
ch

e
m

is
se

s

Figure 6: A few methods are responsible for a large
fraction of D-L2 cache misses

methods account for a large fraction of all references to method table
entries.3

On the other hand, the number of important (hot) �elds and methods
in pBOB and 213 javac is substantially larger. The smaller the number
of hot methods and �elds, the narrower the scope of optimizations is

3A �eld is associated with a class in which it is declared and is counted as one �eld for all
instances of that class and its subclasses.

A Study of Memory Behavior of Java Workloads 9

and the easier it is to do certain optimizations, especially those that are
applied during run-time compilation. For example, if pro�ling is used
to �nd contemporaneously accessed �elds to guide �eld reordering, then
only a small number of hot �elds need to be monitored.
The number of hot �elds and methods is likely to be a good indicator

of how complex or rich a program is. Fig. 3 and Fig. 4 demonstrate
a signi�cant disparity in the inherent complexity of the benchmarks.
When evaluating the performance of a JVM, perhaps the more complex
benchmarks should get a higher weight than the kernels, so that the
JVMs that perform better on these benchmarks get a higher score.

4. Memory System Interactions

In this section we discuss the simulation results on cache and TLB
behavior of the benchmarks. We will compare some of the collected
data with the data gathered by other researchers,4 and point out some
of the surprising results. We shall also discuss the implications of the
obtained results and suggest opportunities for optimizations. Note that
the reported miss rates are only for heap accesses. Most of the misses
during program execution are due to heap accesses since stack frames
are usually small (� 16K) and stack accesses tend to have good locality.
We also found that both I-cache and I-TLB had little impact on the
performance of the benchmarks under consideration (with miss rates
well below 0.1% for most of the benchmarks)5.

4.1 Data TLB

Fig. 7 shows the percentage of references that result in misses in
data TLB. It comes as no surprise that 201 compress has a good TLB
behavior. Its simple structure and little pointer chasing make it TLB
friendly. At the same time, 209 db really pushes the memory subsystem
to the limit and thrashes the TLB. Its high TLB miss rate seems to be
due to a shell sort algorithm that ignores the principles of locality.
Overall, the TLB miss rate of other Java programs in this suite is about
2%, which is much higher than 0.1% reported for SPEC95 benchmarks
and desktop workloads (written in C and C++) [19].

4We have tried to be careful in making the comparisons as objective as possible, by choosing
those results in the literature that apply to a memory subsystem with parameters closely
resembling those used by us. However, we note that due to architectural di�erences, and
inevitably, due to some di�erences in the parameters of the memory subsystem, these com-
parisons should be taken as rough indicators of trends, rather than being taken literally.
5Instruction cache miss rates for 228 jack and 213 javac where slightly higher: 0.5% and
0.7%, respectively.

10

Cvetanovic and Bhandarkar [11] observe that commercial workloads
tend to have high TLB misses, but point out that a number of SPECfp
applications do have a similar behavior. Although they report the per-
centage of time spent in the PAL (Privileged Architecture Library) code
that performs other functions besides handling of TLB misses (9%-17%),
they do not mention the actual TLB miss rates.6 For most technical
workloads, the percentage of time spent in the PAL code is below 1%,
but ranges from 5% to 13% for some.

4.2 L1 data cache

Fig. 8 shows the percentage of references that result in misses in
the L1 data cache. Again, 209 db has an unusually high miss rate
that is likely to be due to pointer chasing.7 The higher miss rate of
227 mtrt can be explained by a large number of accesses to data through
references and by low data locality. Overall, the L1 data cache miss rate
of these benchmarks is around 4%, which is higher than 1% for SPEC95
benchmarks and desktop workloads (written in C and C++) [19].

4.3 L2 data cache

Fig. 9 shows the percentage of references that result in misses in
the L2 data cache (note that these references also result in misses in
the L1 data cache). These misses cost more than a hundred cycles
on many processors, and are becoming increasingly costlier with the
growing disparity between processor and memory speeds. It seems that
201 compress has a very small working set. Again, a large working set
of 209 db and its poor locality result in a very high miss rate. The miss
rate of other benchmarks is around 1.5%. This is a fairly high miss rate
for the cache size we are simulating.
From the data presented in Fig. 8 and Fig. 10 of [11], we estimate

the miss rate to the L2 cache for commercial applications (TPC-A and
disk-to-disk sort) at around 5% and for technical/scienti�c applications
at less than 0.2%.
The L2 cache miss rates of Java workloads are very close to the miss

rates of commercial applications reported in [22] (2.7% for TPC-A and
1.2% for TPC-C) and [4] (2.7% for TPC-B).

6Because our metrics and memory subsystem are di�erent from those used by Cvetanovic
and Bhandarkar, it is not meaningful to compare our data to the data reported in [11].
7 209 db spends most of the time sorting a very large array pointing to records further
pointing to vectors and then arrays.

A Study of Memory Behavior of Java Workloads 11

_201_com
press

_209_db

_228_jack

_213_javac

_202_jess

_227_m
trt

pB
O

B

0

5

10

%
 o

f
re

fe
re

nc
es

 t
ha

t
ar

e
m

is
se

s
in

 D
-T

L
B

Figure 7: D-TLB misses

D-TLB

_201_com
press

_209_db

_228_jack

_213_javac

_202_jess

_227_m
trt

pB
O

B

0

5

10

15

20

%
 o

f
re

fe
re

nc
es

 t
ha

t
ar

e
m

is
se

s
in

 D
-L

1
ca

ch
e

Figure 8: D-L1 cache misses

D-L1 cache

_201_com
press

_209_db

_228_jack

_213_javac

_202_jess

_227_m
trt

pB
O

B

0

1

2

3

4

%
 o

f
re

fe
re

nc
es

 t
ha

t
ar

e
m

is
se

s
in

 D
-L

2
ca

ch
e

(a
s

w
el

l a
s

in
 D

-L
1

ca
ch

e)

Figure 9: D-L2 cache misses

D-L2 cache

_201_com
press

_209_db

_228_jack

_213_javac

_202_jess

_227_m
trt

pB
O

B

0

20

40

60

%
 o

f
D

-L
1

ca
ch

e
m

is
se

s
th

at
 a

re
m

is
se

s
in

 D
-L

2
ca

ch
e

Figure 10: Effectiveness of D-L2 cache

D-L2 cache

4.4 The e�ectiveness of the L2 data cache

Fig. 10 shows how e�ective the L2 data cache is for reducing the
number of times a request has to go all the way to memory. This graph
plots the percentage of L1 data cache misses that miss in the L2 data
cache. As we show in section 4.8 and Fig. 11 and 13, the number
of compulsory/cold misses is small and should not bias the analysis of
e�ectiveness of the L2 cache signi�cantly. It turns out that for some
benchmarks (like 227 mtrt), the L2 data cache is very e�ective and
�lters out most (90%) of the data L1 misses. However, for others (like
213 javac and 228 jack), it is not. For example, in 228 jack, over 60%

12

of references that miss in the L1 data cache also result in misses in the
L2 data cache. This is important in designing cost e�ective (and low-
power) systems for running Java workloads. Namely, even the complete
absence of an L2 cache may not have a huge impact on the performance
of a system whose major workload does not bene�t from an L2 cache.
Fig. 10 also tells us that a large L2 data cache is not going to solve all
the performance problems motivating us to evaluate opportunities for
prefetching data into the L2 cache later in this paper and in [32].
Overall, the e�ectiveness of the L2 cache for Java workloads seems to

be worse than its e�ectiveness for commercial workloads written in C.
For example, for TPC-B [4], 19% of accesses that reach the L2 cache lead
to a miss. Similarly, for TPC-C [17], 12% of accesses that miss in the L1
cache, go all the way to memory. The L2 cache is shown to be somewhat
e�ective [4] in capturing the footprint of TPC-D workload (with 13%-
31% of local miss rates depending on a query). At the same time, the
L2 cache is fairly ine�ective [4] for the web index search workload (the
Altavista search engine) where more than 40% of accesses that reach the
o�-chip cache result in a miss.

4.5 Methods causing data TLB and L2 data
cache misses

In this section, we test the hypothesis that very few methods of a
program are responsible for most of the performance problems. In this
context, the performance problems we focus on are misses in the data
TLB and L2 data cache.
We have sorted the list of methods according to their contribution

to the total TLB and L2 cache miss rates and then discarded all those
whose contribution is smaller than an importance threshold which is set
to a small number (0.1%). The number of methods that cause most of
the performance problems and their contribution to the total miss rate
can be seen in Fig. 5 and Fig. 6.
It seems that in most benchmarks, the number of methods causing

a lot of TLB and L2 misses is fairly small. However, the di�erence
between 209 db and 213 javac is quite pronounced. These graphs show
once again the inherent complexity of 213 javac and the simplicity of
209 db. The L2 cache miss rate of 201 compress is very low, and
it appears that many methods in 201 compress contribute to a large
fraction of all misses.

A Study of Memory Behavior of Java Workloads 13

4.6 The relative complexity of the benchmarks

Interestingly, the seven benchmarks we are evaluating in this paper
can be grouped into three clusters (based on the number of hot �elds
and virtual methods and on the number of methods that cause most
of the performance problems). These clusters can be seen in Fig. 3-
6. 201 compress and 209 db are really simple kernels. 213 javac and
pBOB are truly complex programs. Finally, the remaining three are the
benchmarks of medium complexity.

4.7 Reducing the number of L2 data cache
misses may NOT be easy

We have also observed that many instructions that incur a L2 data
cache miss also cause a data TLB miss. This fact is important but has
been ignored probably due to low TLB miss rates of other benchmarks
(e.g. benchmarks with regular memory access patterns and small data
sets). An important implication is that non-blocking data prefetch in-
structions that are aimed at bringing in the data from memory will be
squashed by processor hardware if the TLB does not contain appropriate
translation information.8 Hence, such a prefetching request will be of
no use to an executing program.
A possible solution to this problem is not to discard a prefetching

request on a TLB miss but to prefetch the translation information from
a page table if it is not available in the TLB and then use it to prefetch
the data [23, 10]. Obviously, such TLB prefetching can only work for the
data residing on pages that can be accessed and are available in memory.

4.8 Classi�cation of data related misses

We classify the cause of a miss to TLB and L2 cache that occurs on an
access to heap-allocated data into the following categories: accesses to
frequently referenced object �elds and method table entries (i.e. those
that are above the importance threshold, as depicted in Fig. 3 and
Fig. 4); accesses to infrequently referenced object �elds and method
table entries; and accesses to array elements (for which the frequency
of accesses to individual elements is less meaningful). Finally, an access
can be categorized as a load or a store.

8For example, data cache block touch (DCBT) and data cache block touch for store

(DCBTST) instructions in the PowerPC 604e [16] are treated as no-ops when there is a
TLB translation miss.

14

_201_com
press

_209_db

_228_jack

_213_javac

_202_jess

_227_m
trt

pB
O

B
0

20

40

60

80

100

%
 o

f
D

-T
L

B
 m

is
se

s

Figure 11: The distribution of D-TLB misses

Infreq. ref VMT fields and object fields
Freq. ref object fields - Load
Freq. ref object fields - Store
Freq. ref VMT fields - Load
Freq. ref VMT fields - Store
Array elements - Load
Array elements - Store

_201_com
press

_209_db

_228_jack

_213_javac

_202_jess

_227_m
trt

pB
O

B

0

20

40

60

80

100

%
 o

f
D

-L
2

ca
ch

e
m

is
se

s

Figure 13: The distribution of D-L2 cache misses

Infreq. ref VMT fields and object fields
Freq. ref object fields - Load
Freq. ref object fields - Store
Freq. ref VMT fields - Load
Freq. ref VMT fields - Store
Array elements - Load
Array elements - Store

_201_com
press

_209_db
_228_jack
_213_javac
_202_jess
_227_m

trt

pB
O

B

0

20

40

60

80

100

%
 o

f
D

-T
L

B
 m

is
se

s

Figure 12: The types of misses in methods
causing the most D-TLB misses

Load
Store

_201_com
press

_209_db
_228_jack
_213_javac
_202_jess
_227_m

trt

pB
O

B

0

20

40

60

80

100

%
 o

f
D

-L
2

ca
ch

e
m

is
se

s

Figure 14: The types of misses in methods
causing the most D-L2 cache misses

Load
Store

Sources of data TLB misses. As we expected, very few TLB
misses are due to accesses to infrequently referenced object �elds and
method table entries (Fig. 11). The miss rates associated with accesses
to object �elds are larger than those associated with accesses to arrays.

A Study of Memory Behavior of Java Workloads 15

This is probably due to better page locality of accesses to array elements
as opposed to objects. Co-allocation of objects that are referenced at
about the same time on the same page, done at allocation time [8] as
well as at garbage collection time [9], can be useful. 201 compress has
quite a few misses on accesses to infrequently referenced object �elds
and method table entries. This is probably because most of its working
set consists of large arrays. 209 db seems to be accessing very few �elds
most of the time, and those accesses cause a lot of misses.
To our surprise, an unusually large fraction of TLB misses were due to

accesses to method tables. The benchmarks, whose hot virtual methods
reside in a fairly large number of classes, appear to su�er from this
problem the most. This is probably due to the fact that the method
tables are created only when a class is loaded. Because classes are loaded
on demand, they end up far away from each other in the heap space and
get placed on di�erent pages, each of which has a separate entry in the
translation table. A TLB miss would make a virtual method call even
more expensive than it already is. A solution to this problem is to co-
allocate hot method tables to ensure that they occupy a small number
of pages to achieve higher utilization of TLB entries. Co-allocation of
hot method tables can be done at GC time by combining the techniques
reported in [9] and [30].
Interestingly, most of the misses to object �elds and arrays are due to

loads. There are no signi�cant stores to the method tables, because once
they are installed, they do not have to be modi�ed. It is also interesting
that most of the misses in the data TLB are due to loads. 201 compress
is an exception, probably because it has to access elements of two large
arrays sequentially about the same number of times while compressing
and then uncompressing the content of one array into another.
Fig. 12 shows the types of misses in methods that contribute to the

total TLB miss rate above a threshold (i.e. those that constitute Fig.
5). From this graph, we can see that most of the TLB misses happen
on a load. The costs of servicing TLB misses that happen on a load or
a store are comparable.

Sources of L2 data cache misses. Again, most of the L2 data
cache misses are due to accesses to frequently referenced object �elds
and arrays (Fig. 13). The miss rates for object �eld accesses are larger
than those for array accesses. 201 compress serves as an exception {
it has quite a few misses on accesses to infrequently referenced object
�elds and method table entries. Almost all of the remaining misses
in 201 compress are due to array accesses. This is probably because

16

most of its working set consists of large arrays, and all hot objects �t
comfortably in the L2 data cache.
Interestingly, there were virtually no L2 cache misses due to accesses

to the method table entries, even though TLB misses due to the same
type of accesses were high. This is probably because the number of hot
method table entries is small and all of them �t (and can co-reside with
the rest of the working set) in the L2 data cache. Hence, �eld reordering
within the method tables need not be necessary. However, it may become
important for classes with a large number of virtual methods.
Fig. 14 shows the types of misses in methods that cause the largest

numbers of misses (i.e. those that constitute Fig. 6). From this graph,
we can see that for the majority of the benchmarks, most of the L2 cache
misses happen on a store. This is a good sign because load misses in a
cache are much harder to tolerate and hide. For some benchmarks (e.g.
pBOB), load and store misses contribute about the same to the total
miss rate. For others (e.g. 209 db), most of the misses in L2 happen
on a load.

4.9 Assessment of opportunities for prefetching
into data TLB and the L2 data cache

In this section, we determine the strategy for prefetching page table
entries into the data TLB (assuming such a mechanism is available to us)
and for prefetching data into the L2 data cache. Note that an instruction
that causes a miss may not always do so. For example, if an instruction
is executed a hundred times and causes a miss every time it is executed,
then its own miss ratio is 100% [25]. On the other hand, if an instruction
that is executed a hundred times causes a miss 10 times and 90 times it
enjoys a hit, then its miss ratio is 10%. Prefetching all instances of the
�rst kind of instruction is a good bet. The prefetch request is going to be
useful and will bring in the data that otherwise would not be available
when it is needed. Issuing prefetches for the second kind of instruction
is more diÆcult because it is hard to know when such an instruction is
going to experience a hit anyway, leading to a wasteful prefetch.
Compiler-based prefetching techniques for array-based and pointer-

based applications have been studied in [24] and [21], respectively. The
predictability of misses in the L1 data cache has been studied in [25].
In contrast, this work investigates the opportunity for prefetching into
the data TLB and the L2 data cache. A complete set of graphs can be
found in [32].

A Study of Memory Behavior of Java Workloads 17

Opportunities for prefetching page table entries into data TLB.

Fig. 15-18 show how frequently di�erent dynamic instances of instruc-
tions that contribute the most to data TLB misses9 actually cause a miss.
The histograms (marked (1)) show that the relevant loads fall under dif-
ferent categories in terms of their tendency to lead to a miss. However,
the contribution of loads that almost always cause a miss is fairly high
in most benchmarks { this can be seen by the steep slope, closer to the
right hand side, of the line (marked (3)) showing the cumulative contri-
butions of these instructions to the total TLB miss rate. This implies
that once the important instructions which require prefetching are iden-
ti�ed, relatively straightforward prefetching techniques could be used, as
very few prefetch operations would be wasted (on account of instructions
that lead to a hit).
Comparing the plots for loads and stores for each program, both the

number of relevant loads and their contributions to the overall TLB miss
rate are much higher. (In each plot, the horizontal dotted line shows the
percentage contribution of loads (or stores) to the total number of TLB
misses). The spectrum of miss causing store instructions, in terms of
their miss rate distributions, is much narrower.

Opportunities for prefetching program data into L2 data cache.

Fig. 19-22 show how frequently di�erent dynamic instances of instruc-
tions that contribute the most to L2 data cache misses10 actually cause
a miss. Most instances of the store instructions cause a miss, making it
easier to prefetch stores without wasting prefetches on stores that hit in
the L2 cache. While a similar behavior was observed for stores causing
TLB misses, the narrow distribution is much more pronounced for L2
cache misses. Furthermore, unlike the case with TLB misses, the store
instructions account for a higher percentage of L2 misses than loads
(with a few exceptions { most notably, 209 db and 213 javac).
In contrast, the important load instructions show a wider distribu-

tion with respect to L2 cache misses over di�erent instances. For some
benchmarks (e.g. 227 mtrt), loads that miss less than 80% of the time

9We only consider methods whose contribution to the total D-TLB miss rate is greater than
1%. In those methods, we select those instructions whose individual contribution to the miss
rate is greater than 0.25%. Often, there are relatively few instructions in the program that
meet this criterion (the actual number is shown in each plot).
10As with the plots for TLB misses, we only consider methods whose contribution to the
total L2 data cache miss rate is greater than 1%, and instructions whose contribution to the
miss rate is greater than 0.25%. The number of instructions that meet this criterion is shown
in each plot.

18

0
20

40
60

80
10

0

%
 o

f
ti

m
es

 a
 L

O
A

D
 in

st
ru

ct
io

n
ca

us
es

 a
 m

is
s

in
 D

-T
L

B

02040608010
0

1) % of such LOAD instructions
2) cumulative % of such LOAD instructions

3) Cumulative miss rate in D-TLB (%) Fi
gu

re
 1

5:
 F

re
qu

en
cy

 w
ith

 w
hi

ch
 L

O
A

D
s

ca
us

in
g

m
os

t o
f

th
e

m
is

se
s

in
 D

-T
L

B
 le

ad
 to

 a
 m

is
s

_2
28

_j
ac

k

of

 L
O

A
D

 in
st

r.
: 3

9
(1

)
(2

)
(3

)

0
20

40
60

80
10

0

%
 o

f
ti

m
es

 a
 S

T
O

R
E

 in
st

ru
ct

io
n

ca
us

es
 a

 m
is

s
in

 D
-T

L
B

02040608010
0

1) % of such STORE instructions
2) cumulative % of such STORE instructions

3) Cumulative miss rate in D-TLB (%)
Fi

gu
re

 1
6:

 F
re

qu
en

cy
 w

ith
 w

hi
ch

 S
T

O
R

E
Ss

 c
au

si
ng

m
os

t o
f

th
e

m
is

se
s

in
 D

-T
L

B
 le

ad
 to

 a
 m

is
s

_2
28

_j
ac

k

of

 S
T

O
R

E
 in

st
r.

: 6
(1

)
(2

)
(3

)

0
20

40
60

80
10

0

%
 o

f
ti

m
es

 a
 L

O
A

D
 in

st
ru

ct
io

n
ca

us
es

 a
 m

is
s

in
 D

-T
L

B

02040608010
0

1) % of such LOAD instructions
2) cumulative % of such LOAD instructions

3) Cumulative miss rate in D-TLB (%) Fi
gu

re
 1

7:
 F

re
qu

en
cy

 w
ith

 w
hi

ch
 L

O
A

D
s

ca
us

in
g

m
os

t o
f

th
e

m
is

se
s

in
 D

-T
L

B
 le

ad
 to

 a
 m

is
s

_2
02

_j
es

s

of

 L
O

A
D

 in
st

r.
: 4

1
(1

)
(2

)
(3

)

0
20

40
60

80
10

0

%
 o

f
ti

m
es

 a
 S

T
O

R
E

 in
st

ru
ct

io
n

ca
us

es
 a

 m
is

s
in

 D
-T

L
B

02040608010
0

1) % of such STORE instructions
2) cumulative % of such STORE instructions

3) Cumulative miss rate in D-TLB (%)

Fi
gu

re
 1

8:
 F

re
qu

en
cy

 w
ith

 w
hi

ch
 S

T
O

R
E

Ss
 c

au
si

ng
m

os
t o

f
th

e
m

is
se

s
in

 D
-T

L
B

 le
ad

 to
 a

 m
is

s
_2

02
_j

es
s#
of

 S
T

O
R

E
 in

st
r.

: 1
(1

)
(2

)
(3

)

0
20

40
60

80
10

0

%
 o

f
ti

m
es

 a
 L

O
A

D
 in

st
ru

ct
io

n
ca

us
es

 a
 m

is
s

in
 D

-L
2

ca
ch

e

02040608010
0

1) % of such LOAD instructions
2) cumulative % of such LOAD instructions
3) Cumulative miss rate in D-L2 cache (%) F

ig
ur

e
19

: F
re

qu
en

cy
 w

it
h

w
hi

ch
 L

O
A

D
s

ca
us

in
g

m
os

t o
f

th
e

m
is

se
s

in
 D

-L
2

ca
ch

e
le

ad
 to

 a
 m

is
s

_2
28

_j
ac

k

of

 L
O

A
D

 in
st

r.
: 7

(1
)

(2
)

(3
)

0
20

40
60

80
10

0

%
 o

f
ti

m
es

 a
 S

T
O

R
E

 in
st

ru
ct

io
n

ca
us

es
 a

 m
is

s
in

 D
-L

2
ca

ch
e

02040608010
0

1) % of such STORE instructions
2) cumulative % of such STORE instructions
3) Cumulative miss rate in D-L2 cache (%)

F
ig

ur
e

20
: F

re
qu

en
cy

 w
it

h
w

hi
ch

 S
T

O
R

E
S

s
ca

us
in

g
m

os
t o

f
th

e
m

is
se

s
in

 D
-L

2
ca

ch
e

le
ad

 to
 a

 m
is

s
_2

28
_j

ac
k

of

 S
T

O
R

E
 in

st
r.

: 1
5

(1
)

(2
)

(3
)

0
20

40
60

80
10

0

%
 o

f
ti

m
es

 a
 L

O
A

D
 in

st
ru

ct
io

n
ca

us
es

 a
 m

is
s

in
 D

-L
2

ca
ch

e

02040608010
0

1) % of such LOAD instructions
2) cumulative % of such LOAD instructions
3) Cumulative miss rate in D-L2 cache (%) F

ig
ur

e
21

: F
re

qu
en

cy
 w

it
h

w
hi

ch
 L

O
A

D
s

ca
us

in
g

m
os

t o
f

th
e

m
is

se
s

in
 D

-L
2

ca
ch

e
le

ad
 to

 a
 m

is
s

_2
27

_m
tr

t

of

 L
O

A
D

 in
st

r.
: 3

0
(1

)
(2

)
(3

)

0
20

40
60

80
10

0

%
 o

f
ti

m
es

 a
 S

T
O

R
E

 in
st

ru
ct

io
n

ca
us

es
 a

 m
is

s
in

 D
-L

2
ca

ch
e

02040608010
0

1) % of such STORE instructions
2) cumulative % of such STORE instructions
3) Cumulative miss rate in D-L2 cache (%)

F
ig

ur
e

22
: F

re
qu

en
cy

 w
it

h
w

hi
ch

 S
T

O
R

E
S

s
ca

us
in

g
m

os
t o

f
th

e
m

is
se

s
in

 D
-L

2
ca

ch
e

le
ad

 to
 a

 m
is

s
_2

27
_m

tr
t

of

 S
T

O
R

E
 in

st
r.

: 2
4

(1
)

(2
)

(3
)

A Study of Memory Behavior of Java Workloads 19

account for most of the misses. Issuing useful prefetches for loads in
these programs is likely to be more diÆcult.

5. Related Work

Kim and Hsu [18] have investigated the memory system behavior of
Java programs executed with a JIT. They study the lifetime characteris-
tics of objects in Java programs, the temporal locality, and the impact of
cache associativity on cache miss rate. They also study the performance
impact of garbage collection under di�erent heap sizes, and the e�ect of
a heap size on the cache and the VM performance of applications.
Li et al. [20] use a complete system simulation to study SPECjvm98

benchmarks. Their study focuses on the OS activity during the execu-
tion of these benchmarks with a JIT compiler and without it (i.e. under
interpretation). They �nd that most of the kernel activity is due to TLB
miss handling and attribute many of those TLB misses to JIT compila-
tion. In our work, we obtain results for a larger data size (recommended
as the default size) and a more sophisticated run-time compilation strat-
egy with a smaller cost. Hence, our work ends up reecting more closely
the user-level activity of Java applications.
Radhakrishnan et al. [26, 27, 29] study a wide variety of issues (at the

bytecode and microarchitectural levels) associated with eÆcient execu-
tion of Java programs with an interpreter and a JIT compiler. Much
of their detailed data is presented for SPECjvm98 programs with very
small data sets (size 1, rather than the default size of 100). As a result,
most of the activities they register are due to JIT compilation, which
we believe is not representative of typical Java workloads. We use the
default data set size (-s100) to study the behavior of longer-running
applications.
Hsieh et al. [15] have studied cache and branch performance issues in

the context of Java. The goal of their work was to compare the per-
formance of the original C/C++ programs from SPEC95 and SPEC92
benchmarks with the performance of equivalent Java versions executed
with an interpreter and compiled with their static compiler.
Bowers and Kaeli [6] study the SPECjvm98 benchmarks under a JVM

with an interpreter and measure the relative frequencies of executed
bytecode instructions (to determine what bytecodes need to be optimized
�rst) and the distribution of the stack depths at di�erent points in time
(to estimate the number of processor registers needed to hold the content
of stack elements).
Romer et al. [28] analyze several interpreters (including one for Java)

from the software and hardware perspectives. They study the instruction

20

mix, performance bottlenecks, and the cache behavior of interpreters
executing a set of common benchmarks.
Barisone et al. [3] analyze SPECjvm98 benchmarks executed with an

interpreter, a JIT compiler, and the HotSpot compiler. They compare
the bytecode and the native execution pro�le of these benchmarks as well
as the overall behavior of a memory subsystem and a branch prediction
mechanism under these three execution environments on a system with
an UltraSparc-I processor.

6. Conclusions

We now summarize the main results from our study. A surprising
result of our study is that for several benchmarks in the SPECjvm98
suite, the fraction of accesses to method tables is very small, while the
fraction of accesses to array elements is quite signi�cant. Those bench-
marks are likely to be less object-oriented than others. Therefore, we
believe that more truly object-oriented benchmarks (e.g. pBOB) should
be added to the next version of SPECjvm to make it more useful. We
have observed that some of the benchmarks have similar characteristics
and can be clustered and de�ned as kernel benchmarks, benchmarks of
medium complexity, and truly complex benchmarks. Only a few of the
studied benchmarks (213 javac and pBOB) fall in the last category.

Inherent Program Behavior. For the benchmarks studied, we
can make the following observations about their behavior. The number
of hot �elds is very small in a few (kernel) benchmarks, and is substan-
tially larger in two (more complex) benchmarks, although even in those
two benchmarks, the number of hot �elds is still small relative to the
total number of �elds. So are the number of hot virtual methods and
the number of hot methods responsible for a large fraction of the data
TLB and L2 data cache misses. However, because the number of hot
spots is fairly small, even for complex benchmarks, relatively expensive
algorithms can still be used to perform various run-time optimizations
if the hot spots are identi�ed e�ectively.

TLB Performance. Most of the misses in the data TLB are due
to accesses to frequently referenced object �elds. Overall, the data
TLB performance is poor. A purely software approach to mitigate this
problem would be to employ an intelligent object co-allocation scheme.
On the hardware side, one could make data TLB larger, or add some
support for large pages (e.g. 4M pages) to widen the TLB's coverage.
Another possibility could be to add a special instruction that would
prefetch a page table entry corresponding to a virtual address into an

A Study of Memory Behavior of Java Workloads 21

L2 cache or some bu�er from which it can be serviced on a TLB miss.
We observed that loads typically account for most of TLB misses. We
also found that di�erent dynamic instances of instructions that make the
largest contribution to data TLB misses rarely result in data TLB hits
upon their execution. Hence, if prefetching of page table entries were
supported by hardware, relatively simple prefetching strategies could
prove to be e�ective.

Virtual Method Tables A noticeable fraction of data TLB misses
are due to accesses to virtual method tables, even though the number of
important (hot) virtual method tables is quite small. This observation
indicates the importance of co-allocation of virtual method tables (and
other class data) for di�erent classes to reduce the cost of accessing the
TIB (type information block) entries in virtual method calls and runtime
type checking (such as instanceof, checkcast, checkstore). Inter-
estingly, we have not observed many L2 data cache misses on references
to entries in virtual method tables. At least for these benchmarks, hot
virtual method tables can �t comfortably in an L2 cache of a reasonable
size.

Cache Performance. Many data references miss in L1 data cache.
One possible approach to mitigate this problem is to use prefetching.
Given a 32 kB L1 data cache, even a fairly large L2 data cache is not

very e�ective for half of the benchmarks, and a system with a smaller or
no L2 cache may not be signi�cantly slower than a system with a large
L2 cache. This observation should be important for the designers of cost
conscious and low-power systems.
Most of the misses in the L2 data cache are due to accesses to fre-

quently referenced object �elds. Overall, most of the instructions caus-
ing L2 data cache misses are stores, which is interesting because store
misses are easier to tolerate compared to load misses.
The variation in the behavior of di�erent instances of important loads

that contribute the most to L2 misses indicates that in some programs,
relatively sophisticated strategies would be needed to avoid wasting
prefetch operations on load instances that result in a hit.

Relationship between Cache and TLB Misses. We have
observed that many loads and stores that miss in the L2 data cache
also miss in the data TLB. As a result, a cache line prefetch instruction
that one could issue for such a load or store miss would be squashed by
hardware. Therefore, we believe that when doing prefetching into the
L2 cache, the hardware should provide an option where the appropriate
page table entry is prefetched if it is not available in the TLB.

22

Comparison with other Workloads. Overall, the TLB and cache
behavior of Java programs seems to be worse than that of technical
benchmarks and is comparable to the behavior of commercial bench-
marks. Therefore, enterprise servers whose memory subsystems are
tuned for commercial workloads should be able to handle the demands
of Java workloads well. At the same time, pointer chasing and large
working sets of some Java programs can make an L2 cache somewhat
ine�ective. Consequently, cost sensitive and power conscious devices
may often be able to perform just as well without an expensive and
power-hungry L2 cache.

References

[1] B. Alpern, A. Cocchi, D. Lieber, M. Mergen, and V. Sarkar. Jalape~no
- a compiler-supported Java virtual machine for servers. In Work-
shop on Compiler Support for Software System (WCSSS 99), May
1999.

[2] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney. Adaptive
optimization in the Jalape~no JVM. In Proc. of OOPSLA 2000, Oct.
2000.

[3] A. Barisone, F. Belliotti, R. Berta, and A. Gloria. Ultrasparc in-
struction level characterization of Java virtual machine workload.
In 2nd Annual Workshop on Workload Characterization (WWC) for
Computer System Design, pages 1{24. Kluwer Academic Publishers,
1999.

[4] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory sys-
tem characterization of commercial workloads. In Proc. of ISCA-25,
pages 3 { 14, 1998.

[5] S. J. Baylor, M. Devarakonda, S. Fink, E. Gluzberg, M. Kalantar,
P. Muttineni, E. Barsness, R. Arora, R. Dimpsey, and S. J. Munroe.
Java server benchmarks. IBM Systems Journal, 39(1):57{81, 2000.

[6] K. R. Bowers and D. Kaeli. Characterizing the SPEC JVM98 bench-
marks on the Java virtual machine. Technical report, Northeastern
University, Dept. of ECE, Computer Architecture Group, 1998.

[7] M. G. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar,
M. J. Serrano, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The
Jalape~no dynamic optimizing compiler for Java. In Proc. of ACM
SIGPLAN 1999 Java Grande Conference, June 1999.

[8] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious struc-
ture layout. In Proc. of PLDI 1999, pages 1 { 12, May 1999.

[9] T. M. Chilimbi and J. R. Larus. Using generational garbage collec-
tion to implement cache-conscious data placement. In Proc. of the

A Study of Memory Behavior of Java Workloads 23

1998 International Symposium on Memory Management (ISMM),
Oct. 1998.

[10] D. Culler, J. P. Singh, and A. Gupta. "Parallel Computer Archi-
tecture: A Hardware/Software Approach". Morgan Kaufmann Pub-
lishers, 1998.

[11] Z. Cvetanovic and D. Bhandarkar. Characterization of Alpha AXP
performance using TP and SPEC workloads. In Proc. of ISCA-21,
pages 60{70, Apr. 1994.

[12] J. Dolby and A. Chien. An automatic object inlining optimization
and its evaluation. In Proc. of PLDI 2000, pages 345 { 357, June
2000.

[13] J. Gosling, B. Joy, and G. Steele. The Java(TM) Language Speci�-
cation. Addison-Wesley, 1996.

[14] The Java Hotspot Performance Engine Architecture.
http://java.sun.com/products/hotspot/

whitepaper.html.

[15] C.-H. Hsieh, M. T. Conte, J. C. G. T. L. Jonson, and W. W. Hwu.
A study of the cache and branch performance issues with running
Java on current hardware platforms. In Proc. of IEEE COMPCON,
pages 211{216, 1997.

[16] IBM Corp. PowerPC 604e RISC Microprocessor User's Manual,
Mar. 1998. G522-0330-00.

[17] K. Keeton, D. Patterson, Y. He, R. Raphael, and W. Baker. Perfor-
mance characterization of a Quad Pentium Pro SMP using OLTP
workloads. In Proc. of ISCA-25, pages 15{26, 1998.

[18] J.-S. Kim and Y. Hsu. Memory system behavior of Java programs:
Methodology and analysis. In Proc. of SIGMETRICS 2000, pages
264 { 274, June 2000.

[19] D. Lee, P. Crowley, J.-L. Baer, T. Anderson, and B. Bershad. Ex-
ecution characteristics of desktop applications on Windows NT. In
Proc. of ISCA-25, pages 27{38, 1998.

[20] T. Li, L. John, V. Narayanan, A. Sivasubramaniam, J. Sabari-
nathan, and A. Murthy. Using complete system simulation to char-
acterize SPECjvm98 benchmarks. In Proc. of ICS 2000, May 2000.

[21] C.-K. Luk and T. Mowry. Compiler-based prefetching for recursive
data structures. In Proc. of ASPLOS-VII, pages 222{233, Oct. 1996.

[22] A. Maynard, C. Donnelly, and B. Olszewski. Contrasting character-
istics and cache performance of technical and multi-user commercial
workloads. In Proc. of ASPLOS VI, Oct. 1994.

[23] T. Mowry. Tolerating latency through software-controlled data
prefetching. PhD thesis, Stanford University, Mar. 1994.

24

[24] T. Mowry, M. Lam, and A. Gupta. Design and evaluation of a
compiler algorithm for prefetching. In Proc. of ASPLOS-V, pages
62{73, Oct. 1992.

[25] T. Mowry and C.-K. Luk. Predicting data cache misses in non-
numeric applications through correlation pro�ling. In Proc. of
Micro-30, Dec. 1997.

[26] R. Radhakrishnan, J. Rubio, L. John, and N. Vijaykrishnan. Ex-
ecution characteristics of just-in-time compilers. Technical Report
TR-990717-01, Department of Electrical and Computer Engineering,
University of Texas at Austin, 1999.

[27] R. Radhakrishnan, N. Vijaykrishnan, L. K. John, and A. Sivasub-
ramaniam. Architectural issues in Java runtime systems. In Proc.
of HPCA-6, pages 387{398, Jan. 2000.

[28] T. Romer, D. Lee, G. Voelker, A. Wolman, W. Wong, J. Baer,
B. Bershad, and H. Levy. The structure and performance of inter-
preters. In Proc. of ASPLOS VII, pages 150{159, Oct. 1996.

[29] J. R. R.Radhakrishnan and L. John. Characterization of Java ap-
plications at bytecode and Ultra-SPARC machine code levels. In
Proc. of IEEE ICCD, pages 281{284, Oct. 1999.

[30] W. Schmidt, R. Roediger, C. Mestad, B. Mendelson, I. Shavit-
Lottem, and V. Bortnikov-Sitnitsky. Pro�le-directed restructuring
of operating system code. IBM Systems Journal, 37(2):270, 1998.

[31] M. Serrano, R. Bordawekar, S. Midki�, and M. Gupta. Quicksilver:
A quasi-static compiler for Java. In Proc. of OOPSLA 2000, Oct.
2000.

[32] Y. Shuf, M. J. Serrano, M. Gupta, and J. P. Singh. Character-
izing memory behavior of Java workloads: A structured view and
opportunities for optimizations. Technical report, IBM T.J. Watson
Research Center, Yorktown Heights, NY, 2000.

[33] Standard Performance Evaluation Council. SPEC JVM98 Bench-
marks, 1998. http://www.spec.org/osg/jvm98/.

