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PAPER 1921

A JOINT SIMPLIFICATION AND COMPRESSION METHOD FOR VECTOR-BASED
IMAGE REPRESENTATIONS

Laurent Balmelli

Visual and Geometric Computing
IBM Research, T.J. Watson Center

ABSTRACT

In this paper, we propose a new compression algorithm for vector-
based image representations as used in Postscript or Macromedia
Flash. We present a joint optimization method combining geomet-
ric simplification techniques and quantization in a single frame-
work. Both optimization techniques are usually used indepen-
dently. We propose an optimal algorithm in the operational rate-
distortion sense to solve the problem. We show that our method
gives up to 10 times higher compression ratios for the same quality
compared to standard compression methods such as trellis coding.

1. INTRODUCTION

1.1. Motivation

Vector-based representations describe images using geometric prim-
itives, such as polygons and splines (Figures 1a-b). For example,
a polygon is used to render the wing of the fly shown in Figure
1a. Compared to their bitmap equivalents, vector-based represen-
tations are more compact and can be, for example, scaled without
loss of resolution. They are used by several graphic languages such
as Postscript and Macromedia Flash1. The latter takes advantage
of their compactness to deliver animations over the Internet (Fig-
ure 1a). Contour maps, as used in Cartograpy, can also be seen as
vector-based representations. In this context, maps are formed by
large sets of curves connecting terrain point at constant elevation.
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Fig. 1. (a) Image rendering using a vector-based representation.
(b) Interpolated set of knots.

A common way to compress a vector-based representation is
to quantize the coordinates of its primitives, for example using trel-
lis coding [1]. Hence, each knot kj forming the polygon in Figure
1a is quantized and the fly model is compressed by considering

1Postscript is a trademark from Adobe. Flash is a trademark from
Macromedia.

each primitive independently.

On the other hand, several simplification methods have been
developed in Cartography and Computer Graphics [2, 3]. For ex-
ample, these techniques are used to reduce the number of eleva-
tions for describing contour maps. Typically, contour maps are
large datasets and their efficient processing requires to lower the
amount of data. Given a polygon of n knots, a simplification al-
gorithm computes an approximation by discarding knots [3]. The
resulting polygon should represent the original one as faithfully as
possible. The optimal solution with respect to the l2 norm is given
using dynamic programming. However, computationally efficient
greedy approaches can be used in order to process large datasets.
We refer the interested reader to [4] for a comparison between op-
timal and greedy simplification techniques.

Quantization and simplification, as described above, are com-
plementary techniques and are usually applied independently. For
example, a vector-based representation can be simplified, then quan-
tized as a second step. Compression techniques, such as trellis
coding, do not exploit the geometric redundancy of encoded prim-
itives. For example, these methods do not reduce the number of
knots in oversampled regions. On the other hand, simplification
techniques do not allow the user to control the final bitrate of the
representation since only a target number of knots can be specified.

1.2. Contributions and plan

In this work, we propose to perform jointly simplification and
quantization. Our algorithm jointly selects a set of knots and a
set of quantizers for these knots in order to encode primitives for a
target number of bits. To the author’s knowledge, such joint opti-
mization framework has not been previously proposed. We study
the optimal solution to the problem, i.e. such that the compressed
representation has the lowest distortion for a given bitrate. In other
words, our approximations are optimal in the operational rate-
distortion sense. Our experimental results show that our method
gives up to 10 times higher compression ratios for the same quality
compared to standard compression methods such as trellis coding
[1].

The paper is organized as follows: In Section 2.2 we present an
optimal simplification algorithm. Then in Section 2.3, we explain
how to extend this algorithm in order to solve the joint optimiza-
tion problem. We analyze the complexity of our algorithm and
discuss extensions in Section 2.4. We give extensive experimental
results in Section 3 and conclude this paper in Section 4.                            1.



2. JOINT APPROACH TO SIMPLIFICATION AND
COMPRESSION

2.1. Framework

Our algorithm applies to any type of primitive constructed on a set
of knots kj 2 R2 . These knots are interpolated in order to be ren-
dered (Figures 1a-b). Languages such as Postscript or Flash use
splines of varying order as interpolants. Hence, knots can form
closed shapes as well as individual curves. Figure 1b shows a set
of knots interpolated both with linear and cubic splines. We denote
by f the resulting curve.

Consider a set of knots fkjg with j = 0 : : : n � 1 and call f
the curve interpolating the set (Figure 1b). Consider further a set
of quantizers fqkg with k = 0 : : :m� 1, each working at integer
bitrate bk. We call qk(kj) the knot resulting from the quantization
of kj with qk.

Let j be a sequence of l indices in 0 : : : n � 1 and i be a se-
quence of l indices in 0 : : :m�1. Then, f̂ = f(j; i) is the approx-
imation constructed on knots kj2j, where each knot is associated
with a quantizer qi2i. We denote by D(f̂) the distortion of f̂ ,
whereas R(f̂) measures the total bitrate. The distortion D(f̂) is
computed as the distance in l2 norm between the input curve f and
an approximation f̂ . The rate R(f̂) is obtained by summing the
number of bits used to quantize each knot forming f̂ .

Given a budget of C bits, the joint optimization problem to
solve is

min
j;i

D(f̂),

R(f̂) = C.
(1)

In other words, we want to select of set of l knots, given by indices
in j, and assign a quantizer to each knot. The assignment is given
by the quantizer indices in i. The approximation f̂ constructed on
the l quantized knots satisfies the bit budget C at minimal distor-
tion. To solve the problem, we proceed in two steps: First, we
present an optimal algorithm to select a set of knots in f in or-
der to generate an approximation f̂ (Section 2.2). The algorithm,
based on dynamic programming, is optimal in the sense that D(f̂)
is minimized for a target number of knots l. Second, we explain
how to include the quantizer assignments in our framework, i.e.
we give an algorithm to solve (1) (Section 2.3).

2.2. Simplification algorithm

Our simplification algorithm is based on dynamic programming
and uses a causal approach to select the knots. In our example, we
consider the input primitive to be an open curve formed by a set
of knots kj linked by a linear interpolant (Figure 1b). The same
algorithm can be applied to closed shapes. We discuss the choice
for the interpolant in Section 2.4. The algorithm returns all opti-
mal approximations f̂ of f using 2 to n knots.

We use a trellis approach to model the knot selection (Figures
2a and 3). Each step of the algorithm is represented by a col-
umn in the trellis. The nodes in each column represent the knot
indicated at the top. A link between two nodes corresponds to a
segment (pair of interpolated knots) in f̂ . Hence, a path in the trel-
lis (i.e. series of links) represents an approximation f̂ . Note that

only paths linking knots k0 and kn�1 cover the domain of f . We
call partial an approximation not connecting these nodes. Finally,
each row counts the number of knots in a path connecting a node
in the row.
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Fig. 2. (a) Trellis at step 4: The circles nodes represent the paths
to update. (b) Approximations corresponding to the paths entering
node (i).

The algorithm works as follows: At each step, knots kj with
increasing j are examined. Consider the trellis is Figure 2: At
step 1, only the configuration fk0g is formed. Then, at step 2, the
link between k0 and k1 is the partial approximation fk0; k1g. At
step 3, we have the approximations fk0; k2g, fk0; k1; k2g. Fol-
lowing the above examples, the new paths for each subsequent
steps are formed as follows: Each previous paths (represented by
nodes with incident links at preceding steps, see the circled nodes
in Figure 2a) are connected to a node in the current step column.
The node to connect is always one row below the one ending the
path to be updated, i.e. each step increases by one the number of
knots in each path. Hence at step 4, the approximations fk0; k3g,
fk0; k1; k3g, fk0; k2; k3g and fk0; k1; k2; k3g are created (Fig-
ures 2a.)
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Fig. 3. Trellis at step 5: The bold lines correspond to the retained
path at step 3 (Figure 2a.)

In order to avoid an exponential growth of knots configura-
tions, the algorithm compares at each step paths having the same
number of nodes entering the same node. In other words, it com-
pares partial approximations having the same number of knots,
covering the same domain. At each node, only the path incurring
minimal distortion is retained. For example, the node (i) in Figure
2a is reached by the approximations fk0; k1; k3g and fk0; k2; k3g.
The corresponding partial approximations are shown in Figure 2b.
In the figure, the errors incurred when discarding knots k1 and k2
are suggested using dotted lines. Following the above example,
the approximation fk0; k2; k3g incurs minimal distortion. Hence,
only the corresponding path is retained. At step 5 (Figure 3), all                2.



remaining paths from previous steps are now connected to a node
in k4’s column. The retained path from step 4 is represented using
bold lines in the figure. Note that at this step, three paths of length
3 and two paths of length 4 must be compared (see nodes (ii) and
(iii) in Figure 3, respectively.)

The algorithm is iterated until all paths connect knot kn�1,
i.e. the last knot in the curve (Figure 1b). We briefly review the
complexity of the algorithm in Section 2.4. It is shown in [4] that
the algorithm still explores all possible solutions and returns the
optimal approximations. Starting from any node in the last column
of the trellis (corresponding to the last step), an approximation f̂ is
found by backtracking its path until k0 is reached. The number of
knots in f̂ depends on the row from which the path is started. We
can choose to reconstruct any approximation having from 2 (i.e.
using one single segment) to n knots.

2.3. Joint approach

We explain now how quantization can be included in our frame-
work in order to perform joint simplification and compression. We
show how the trellis structure presented in Section 2.2 can be mod-
ified in order to find the solution to (1).

Assume that a set of m quantizers fq0; : : : ; qm�1g is avail-
able. Recall the causal approach used for selecting the knots, as
explained in Section 2.2. Then at each step, we can choose be-
tween m quantized versions of the knot to construct f̂ . Hence,
the number of nodes in each column of the trellis is multiplied by
the number of quantizers. In Figures 4a-b, we give an example
with two quantizers q0 and q1. The columns now contain twice the
nodes as they had in the trellises of Figure 2a and 3. Also, each
row now counts the number of bits in the approximation. In or-
der for each path entering a node to have the same rate, we need
to impose a constraint on the bitrates bk of the quantizers qk . Let
b0 = b denote the minimal rate, then all quantizer rates must be
multiples of b, i.e. bk = (k � 1)b, with k = 0 : : :m� 1. Hence,
each row corresponds to approximations having bitrates multiples
of b (Figures 4a-b).
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Fig. 4. Joint simplification and quantization: Trellis after (a) step
2 and (b) step 3. The bold lines at step 3 represent two remaining
approximations from step 2.

We explain now the modified algorithm: In the new trellis,
columns still represent knots kj . However, the quantizer used

for a knot is determined by the link entering its node (Figure 4a).
The only exception is k0’s column, since no links enter nodes in
this column. At step 1, configurations fq0(k0)g and fq1(k0)g are
formed. Then, at step 2 (Figure 4a), we have now four approxima-
tions: fq0(k0); q0(k1)g, fq0(k0); q1(k1)g, fq1(k0); q0(k1)g and
fq1(k0); q1(k1)g. The new algorithm compares paths having the
same rate entering the same node. However, only paths using the
same quantizer at the ending node can be compared. This addi-
tional condition is important, as explained in the following exam-
ple: In Figure 4a at node (i), we have two approximations of rate
3b, i.e. fq0(k0); q1(k1)g and fq1(k0); q0(k1)g. However, they
cannot be compared because one ends at knots q1(k1), whereas
the other ends at knot q0(k1). These knots have actually different
values after quantization, which prevents comparison.

One more step of the algorithm clarifies how partial approxi-
mations are compared. In Figure 4b at the node (ii), we have the
approximations:

(a) fq0(k0); q1(k1); q0(k2)g, (b) fq0(k0); q0(k1); q1(k2)g,
(c) fq1(k0); q0(k1); q0(k2)g, (d) fq1(k0); q1(k2)g.

Note that, even though only three links enter node (ii), the two
links entering node (i) (bold lines in Figures 4b) induce approxi-
mations (a) and (c) (above). These two approximations can now be
compared without ambiguity, since they have the same rate (4b),
same number of knots, and end at the same quantized knot. The al-
gorithm is again iterated until all paths connect a quantized version
of the last knot kn�1. An approximation of any rate is constructed
by backtracking the appropriate path. Each node stores the result
of a comparison, which allows for reconstructing paths without
ambiguity. For example, the results for the comparison at node (ii)
in Figure 4b allows for selecting the correct outgoing link (bold
lines) when backtracking through node (i).

2.4. Analysis

We give now an intuitive argument for the complexity of the sim-
plification algorithm. A detailed analysis can be found in [4]. At
each step, the number of nodes in the trellis’ columns grows lin-
earily. Moreover, all nodes in previous steps connect to exactly
one node in the current step column. Hence, the cost at each step
is quadratic and the price to compute all optimal approximations
with any number of knots is cubic. In practice, if only the ap-
proximation satisfying a target number of nodes is needed, then
the cost is quadratic. This analysis holds for our joint optimiza-
tion algorithm: The number of nodes in the trellis’ columns still
grows linearly, however with a factor proportional to the number
of quantizers. Hence, the joint optimization do not increase the
complexity.

This cost is acceptable for primitives having a small number of
knots (such as the ones used in Flash models). However, it might
be too expensive for large datasets such as contour maps. In this
case, greedy strategies such as [2] can be used to perform an initial
segmentation of the primitives. Then, our algorithm can be applied
to each segment in order to obtain piecewise-optimal approxima-
tions. In this case, the cost is linear with respect to the number of
knots in the primitives.

In our solution, we assume that a linear interpolant is used to
connect the knots. This provides a good approximation for the            3.



simplification error and is sufficient for most applications. How-
ever, higher degree interpolants can easily be handled in our trellis
structure. With higher degree spline interpolants, the comparison
between partial approximations is delayed by a number of steps
proportional to the support of the spline basis. Since spline bases
have local support, the complexity of the algorithm remain un-
changed.

3. EXPERIMENTAL RESULTS

Human-created vector models, such as the fly in Figure 1a, are usu-
ally composed of smooth primitives. On the other hand, datasets
in Cartography are likely to contain noise due to the acquisition
process. We show that our method is efficient in both cases. To
do so, we use a Markovian model (2) to generate 100 sequences of
500 knots each. The model allows us to control the “amount” of
high-frequencies in the representation. These sequences are inter-
polated using a linear spline for the experiments. Hence, we use
the recurrence equation

k0 = 0,
ki = �ki�1 +N (0; 1);

(2)

where N (0; 1) is a normal random variable with zero mean and
unit variance. The parameter � controls the correlation of the se-
quence fkjg. Typically, values for � close to 1 return smooth se-
quences, i.e. similar to human-created shapes. On the other hand,
values for � close to 0 return random sequences, i.e. noisy datasets.
Note that the smoothness of sequences decreases very rapidly as �
diminishes. Sequences constructed with � = 0:9 are already too
noisy to be generated by a human.
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Fig. 5. Signal-to-noise ratio of the rate-distortion curves obtained
with � = 1; 0:9; 0:8; 0:7. The bottom curves (half-sized) are ob-
tained using standard trellis coding.

We use a set of two quantizers q0 and q1 having bitrates 4 and
8 bits, respectively. We compare our results to a standard trellis
coding algorithm [1], i.e. no simplification is performed. Figure 5
shows the signal-to-noise ratio (SNR) of the rate-distortion (RD)
curves obtained with � = 1; 0:9; 0:8; 0:7. Figure 6 shows the SNR
of the RD curves obtained with � = 0; 0:2; 0:4. In both cases,
the RD curves are the average of the results obtained with our 100
sequences. In Figures 5 and 6, the top curves are obtained with
our algorithm, whereas the bottom curves are obtained using trel-
lis coding. Note that we observe few differences in performance
with the latter technique as � varies. For the curves obtained using
trellis coding, the minimal and maximal rates are 2000 and 4000

bits, respectively, since we use sequences of 500 knots and two
quantizers of 4 and 8 bits.
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Fig. 6. Signal-to-noise ratio of the rate-distortion curves obtained
with � = 0; 0:2; 0:4; 1. The bottom curves (half-sized) are ob-
tained using standard trellis coding.

4. CONCLUSION

As shown in Figure 5, our method is efficient for smoothly vary-
ing curves. At high rate, the flat shape of the RD curve obtained
with � = 1 shows that rate can be reduced by about 10% without
loss in quality. The RD curves show more than 1 dB improvement
compared to standard compression methods. In Figure 6 we can
see that, for sequences containing mostly high-frequencies, our
method shows less improvements. This result is expected how-
ever, since rapidly varying curves require more knots in order to be
accurately represented. Another advantage of our method is that
a wider range of possible target rates is available. Hence, higher
compression ratios can be achieved. For example in Figure 5, we
can see that the quality achieved by standard trellis coding at 2000
bits is obtained with our method at a rate of approximatively 200
bits for � = 1, i.e. we have a 10 times higher compression ratio.

In this work, we have shown that the performance of compres-
sion algorithms for vector-based representations can be improved
by combining simplification and quantization in a joint framework.
We give an efficient algorithm based on a trellis structure. Our
method returns the optimal approximations in the operational rate-
distortion sense.
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