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An Approach for Managing Service Dependencies with XML
and the Resource Description Framework

Christian Ensel� Alexander Kellery

Abstract

We describe a novel approach for applying XML, XPath and RDF to the problem of describing, query-
ing and computing the dependencies among services in a distributed computing system. This becomes
increasingly important in today’s networked environments where applications and services rely on both
local and outsourced sub–services. However, service dependencies are not made explicit in today’s sys-
tems, thus making the task of problem determination particularly difficult.

A key contribution of the paper is a web–based architecture for retrieving and handling dependency
information from various managed resources. Its core component is a dependency query facility allowing
the application of queries and filters to dependency models; its output is a consolidated dependency graph
that can then be used by fault management applications to perform additional problem determination tasks
or event correlation. The definition of an XML based notation for specifying dependencies facilitates
information sharing between the components involved in the process.
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1 Introduction

The identification and tracking of dependencies between the components of distributed systems is becoming
increasingly important for integrated fault management. Applications and services rely on a variety of
supporting services that might be outsourced to a service provider; moreover, emerging dynamic e-business
architectures [18] allow the composition of web–based e–business applications at runtime: The concept of
Web Services[20, 27] consists in the dynamic advertisement, discovery and access of business functionality
among multiple cooperating partners. Consequently, failures occurring in one service affect other services
being offered to a customer, i.e., services havedependencieson other services.

For our discussion, we call services that depend on other servicesdependents, while services on which
other services depend are termedantecedents. It is important to note that a service often plays both roles
(e.g., a name service is required by many applications and services but is dependent on the proper function-
ing of other services, such as operating system and network infrastructure), thus leading to adependency
hierarchy that can be modeled as a directed graph. Figure 1 depicts a simplified application dependency
graph for various components of an e–business system that we have used for designing, implementing
and testing our approach. It represents an experimental Internet storefront application that involves a Web
Server for serving the static content of the site, a Web Application Server for hosting the business logic
(implemented as storefront servlets), and a back–end database system that stores the dynamic content of the
application (such as product descriptions, user and manufacturer data, carts, payment information etc.).

Both service providers and customers require management tools that allow navigation through the de-
pendency hierarchy, in order to analyse and track down the root cause of a service failure. In addition,
service providers are interested in tools to determinein advancethe impact of a service outage on other
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Figure 1: Simplified application dependency graph of an e–business system

services and users for scheduling server maintenance intervals (e.g., deploying backup systems when a
production server has to be brought down for performing a software upgrade).

However, the main problem today lies in the fact that dependencies between services and applications
are not made explicit, thus making root cause and impact analysis particularly difficult [10]. Solving this
problem requires the determination and computation of dependencies between services and applications
across different systems and domains, i.e., establishing a ‘global’ service dependency model and enabling
system administrators to navigate through the resulting directed graph from the top to the bottom and in
reverse order.

What is needed is a dynamic model reflecting the dependency relationships between different services;
in addition, a management system should be capable of providing various mechanisms to select parts of
a dependency model according to user–defined criteria. The latter capabilities are similar to the CMISE
scoping and filtering mechanism of the OSI/TMN management framework. The difference is that scoping
and filtering assumes a tree–like representation of management information while dependencies form more
complex, directed graphs, as mentioned above.

The solution described in this paper is based on XML,XML Path Language (XPath)[31] and theRe-
source Description Framework (RDF)[24], an emerging specification of the W3 Consortium. It provides
a uniform interface to query service and dependency information across the systems of a distributed en-
vironment and can be used by various fault and topology management applications, and event correlation
systems.

The paper is structured as follows: Section 2 states the requirements for determining application and
service dependencies, presents related work and gives an overview of the proposed architecture and its com-
ponents. Section 3 introduces the core technologies that we have used for designing our solution, namely
XML, RDF and the XPath language. Further, it analyses how these can be used to represent and process
dependency information and gives a concrete example that applies our methodology to an e–business sce-
nario. The proof–of–concept prototype implementation is described in section 4. Section 5 concludes the
paper and presents issues for further research.

2 Service and Application Dependencies

From a conceptual perspective, dependency graphs provide a straightforward means to identify possible
root causes of an observed problem: If the dependency graph for a system is known, navigating the graph
from an impaired service towards its antecedents—being either co-located on the same host or on different
systems—will reveal which entities might have failed. Traversing the graph towards its root yields the
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dependents of a service, i.e., the components that might fail if this service experiences an outage. However,
there are a couple of roadblocks on the way towards appropriate dependency models:

1. The number of dependencies between many involved systems can be computed, but may become
very large. From an engineering viewpoint, it is often undesirable—and sometimes impossible—to
store a complete,instantiateddependency model at a single place. Traditional mechanisms used
in network management platforms such as keeping an instantiated network map in a single platform
therefore cannot be applied to dependencies due to the sheer number and the dynamics of the involved
dependencies: Dependency instances exist between multiple objects (a single web application server
typically supports about 5 applications, 10 Enterprise JavaBeans, hundreds of servlets) and tend to
have a fairly short lifetime (sometimes confined to a single request or unit of work). These two
facts make it prohibitive to follow a ‘network–management–style’ approach for the deployment of
application, service and middleware dependency models. Instead, we propose to distribute the storage
and computation of dependencies across the systems involved in the management process. Section
2.1 describes our architecture that is designed to meet these requirements.

2. As mentioned in the introduction, the acquisition of a service dependency model, even confined to
a single host system, is a challenge on its own as today’s systems do not provide appropriate man-
agement instrumentation. Although a complete discussion of mechanisms for generating dependency
models is beyond the scope of this paper, section 2.2.2 gives a brief overview of some promising
approaches aiming at establishing such ‘local’ dependency graphs.

3. Further, facilities for combining local dependency graphs, stored on every system, into a uniform
dependency model are required. In addition, these facilities need to provide an API allowing man-
agement applications to issue queries against the dependency model. These queries will allow the
retrieval of the direct antecedents of a specific service, or recursively determine the whole set of
their sub–nodes, etc. The list of nodes received by the management application enables it to perform
specific problem determination routines to check whether these services are operational. Section 3
describes our approach of coping with this problem.

4. As a subproblem of the previous issue, it should be kept in mind that dependency models are directed
graphs. While, e.g., the OSI scoping and filtering capabilities (having a similar functionality to what
we are striving for) are designed to operate on tree–like data structures, dependency analysis faces
the problem that a very similar set of operations has to be provided for directed graphs. This raises
the question which notation and which data format allows the efficient representation of graphs so
that fine–grained query mechanisms can be applied to graphs. Section 3.3.3 describes our solution to
this problem.

5. Finally, the notion of dependencies is very coarse and needs to be refined in order to be useful.
Examples for this are thestrengthof a dependency (indicating the likelihood that a component is
affected if its antecedent fails), thecriticality (how important this dependency is w.r.t. the goals and
policies of an enterprise), thedegree of formalization(i.e., how difficult it is to obtain the dependency)
and many more. While it is outside the scope of this paper to establish a taxonomy for dependencies,
there is a need to add attributes to dependencies that allow their qualification and, accordingly, a need
to reflect these attributes in the dependency representation. This is addressed by section 3.3.3.

2.1 An Architecture for Service Dependencies

Our distributed three–tier architecture, depicted in figure 2, addresses the issue of dealing with potentially
very dynamic dependency relationships among a very large number of components. It follows a ‘divide and
conquer’ approach, which is usually the way of choice for dealing with scalability problems in distributed
systems.

We assume that the managed resources (depicted in the right part of the figure) are able to provide XML
descriptions of their system inventory and their various dependencies. The details on how this information
can be acquired and what the descriptions look like are described in sections 2.2.2 and 3.3.2, resp. 3.3.3.
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Figure 2: Architecture of our Dependency System

In the center of the figure is the core component of our architecture: TheDependency Query Facility,
triggered by queries of the management system using JavaRemote Method Invocation (RMI), processes
them and sends the results back to the manager. Its main tasks are as follows:

� Interacting with the management system. The management system issues queries to the API of the
Dependency Query Facility. The API exposes a flexible ‘drill–down’ method that, upon receiving the
identifier of a service, returns:

– either descriptions of itsdirect antecedents, i.e., the first level below the node representing the
service, or

– thewhole subgraphbelow the node representing the service,
– anarbitrary subsetof the dependency graph (levelsm to n below a given node).

A ‘drill–up’ method with the same facilities, targeting the dependents of the service, is also present.
These two methods are equivalent to the aforementioned scoping capabilities. In addition, methods
for gathering and filtering information for classes and properties of managed objects are present.

� Obtaining the dependency information from the managed resources (by issuing queries over http) and
applying filtering rules (as specified by the manager) to it. If a managed resource does not support
http, a web server at another managed system may act as a proxy for this resource.

� Combining the information into a data structure that is sent back to the manager as XML document
according to the format specified in 3.3.2 and 3.3.3.

Details of our implementation are given in section 4. It should be noted that due to its fully distributed
nature, the architecture aims at keeping the load on every involved system as low as possible. It completely
decouples the management system from the managed resources and encapsulates the time consumingfilter
and join operations in the dependency query facility, which can be replicated on various systems. Every
replica will then act independently and be registered with the management system as responsible for a spe-
cific part of the overall distributed system. We are therefore able to achieve a maximum level of parallelism
for query operations, since the selection of an instance of the dependency query facility can be done flexibly
by the management system.

Another important advantage of our architecture is that the (very large and highly dynamic) overall
dependency model is not stored at a specific place but computed on demand in a stepwise manner. The
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different parts of the model are stored at the managed resources. The management system therefore always
receives the most recent information and is free to store it according to elaborate caching policies.

2.2 State of the Art in Dependency Management

Although the area of dependency management has recently received a lot of attention in the context of
new complex outsourced applications, it should be noted there has been a considerable amount of work in
the area of tracking and gathering dependency information in the past. We will first describe prior art in
modeling and representing dependency information in section 2.2.1, and then provide an overview of the
most common approaches to collect dependency information from managed resources in section 2.2.2.

2.2.1 Creating Dependency Models

Early work on identifying dependencies between services and components of distributed systems has been
carried out especially within the scope of event correlation (see e.g., [11] and [17]) because an event cor-
relator needs to have an understanding of the structure of a distributed system to aggregate and consoli-
date multiple events stemming from various resources into meaningful problem determination information.
However, since the event correlator has been regarded as the sole consumer of dependency data, the descrip-
tion of service dependencies was often in a proprietary format and thus could not be exchanged between
different entities of the fault management process. As motivated in section 1, it is unlikely that different
parties involved in the fault management process of outsourced applications use the same toolset for track-
ing dependencies; therefore it is of fundamental importance to specify dependency information in an open
format so that this data can be shared among multiple parties.

In the service management area, [25] presents an approach based on service templates for referencing
the subcomponents of which a service is composed. Information provided by the service template is then
used as a basis for dynamic service provisioning. In the area of systems management, [26] describes a
practical solution to the problem of upgrading dynamic libraries in large-scale shared program repositories
without breaking the applications and network services that rely on them. The approach is based on global
analysis of library dependencies and is used to perform impact analysis, i.e., to determine in advance, which
programs are likely to be affected by a library upgrade when they attempt to load a specific dynamic library.

Work on identifying and tracking dependencies has also been undertaken in component-based software
engineering, where one of the challenging problems is to track components and their interrelationships
throughout the various stages of the software lifecycle. Existing work in this area makes clear that detailed
dependency information, in particular at the runtime stage, is only available in a platform-dependent way,
i.e., by taking advantage of the specific features the underlying middleware or operating system have to of-
fer. [21] describes a tool for browsing the dependencies between applications and their underlying libraries
on Windows-based systems, while [12] describes how Jini service proxies may be used to track the depen-
dencies between services of a Jini federation at runtime. However, it should be noted that the potential to
generalize these concepts in a way that they can be applied to arbitrary distributed environments is limited.

2.2.2 Acquiring Dependency Information from Managed Resources

The question where the dependency information on the managed resources comes from is another crucial
issue, although this is not fully within the scope of this paper. For the sake of completeness, we will briefly
mention some of the more common approaches:

� The most straightforward way is to provide appropriate instrumentation within the applications and
services themselves; the problem is that none of today’s applications is able to provide this kind of
information at an acceptable granularity.

� Another approach consists in instrumenting the communication protocol stack and/or some shared
libraries of the host system to intercept the communication between different parties in order to infer
potential dependencies. The resulting information could be either provided by a specific ‘dependency
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agent’ or given out as flat files. [28] describes a CORBA-based approach for message reflection based
on portable interceptors to gather information regarding the messages exchanged between the objects
of a distributed application.

� [15] describes an approach that makes use of information stored in system configuration repositories
for generating appropriate service dependency information.

� A commonly used technique in system and protocol design, which has only recently been applied
to service and application management [2] is the active perturbation of components within a system
(i.e., injecting faults in a controlled manner and observing the behavior of the components) while run-
ning synthetic transactions against it. This technique can be used to obtain the required dependency
information; however, great care has to be taken if it is used on production systems.

� Other approaches come from the area of Artificial Intelligence. [7] uses Neural Networks to interpret
low-level information like the activity of pairs of services over time. This allows to derive dependen-
cies even in heterogeneous environments.

� The OSIGeneral Relationship Model (GRM)[14] defines a powerful generic model for defining
relationships between managed objects and provides a mechanism for qualifying these relationships
by means of attributes. In addition, the GRM specifies extensible operations that can be invoked on
the managed relationships. While its functionality is needed in any distributed system, the GRM is
tightly coupled with the OSI Structure of Management Information and CMISE and, thus, has not
been used outside of TMN environments. The work described in [6] is a precursor to the GRM and
addresses similar issues; the architecture and implementation of a GRM based management system
is the subject of [23].

� Finally, aCIM Object Manager (CIMOM), as proposed by the Distributed Management Task Force
(DMTF) could be used to expose the necessary information. The CIM Core Model [3] provides an
association classCIM Dependency, from which many subclasses are derived.

Every one of the aforementioned approaches for generating dependency models has its specific advantages
and drawbacks. Given the fact that dependencies cross system and organizational boundaries, it is likely
that a combination of some of these approaches is needed to yield the most comprehensive amount of
dependency information.

3 Applying XML Technologies to Dependencies

A key issue in successfully providing information about services and their dependencies to management
applications is the introduction of a common description format to represent the dependencies in a uniform
way. This does not aim at defining a new information model for service management, but rather at find-
ing a representation format optimized for our purposes and, additionally, embracing available management
information exposed by, e.g., CIM (Common Information Model) [3] object managers and repositories.
Furthermore, the representation must be easily understood by management applications and able to abstract
from the heterogeneity of the described systems, viz. the various ways to obtain their dependency infor-
mation (as described in 2.2.2). In addition, it should be possible to extend the dependency information
determined at the resources without requiring changes to other parts of the infrastructure; e.g., it should be
possible to add information that maps business processes onto system resources by means of a different tool
than the one used to create the descriptions of system resource dependencies.

In order to meet these goals, our approach is based on several key features of XML, viz. the Resource
Description Framework (RDF). These will be briefly explained in the following subsections; we also anal-
yse how they help to fulfill the requirements.
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3.1 XML Parsers

Our main motivation for using XML is the fact that it provides flexible and extensible mechanisms to define
a notation for the description of dependency information; in addition, it is easy to generate and can be
parsed with powerful parsers that are freely available.

There are basically two techniques for parsing XML documents. The first one is used byDOM parsers
(DOM: Document Object Model); they generate an object model (Java objects instantiated from pre–defined
DOM classes) with hierarchically linked objects reflecting the exact structure of the document. These
structures can then be traversed to select the required information. The second (more lightweight) method
areSAX parsers (SAX: Simple API for XML); they sequentially read the document, calling certain user
defined functions whenever a new start–tag or end–tag is encountered. DOM parsers are more powerful,
but their drawback is that they consume more resources than SAX parsers, especially for large documents.
However, the main disadvantage of DOM parsers (at least in their original form that is still used in many
applications), namely the need to keep the whole document in memory, has been significantly reduced
by parsers of the latest generation, which provide lazy node evaluation and other optimization features.
Common XPath implementations (see below) are usually based on such DOM parsers.

3.2 XPath: Querying XML Documents

The aforementioned parsers provide the basic means to access information in the document. However, for
many purposes a more powerful way to retrieve information is needed. XPath [31] provides an extensive
query language to extract parts of an XML document. Each query describes a ‘path’ through the virtual tree
structure of the XML document that is generated by a DOM parser. Each step on the path consists of:

� an axis—the ‘search direction’, e.g., towards thechild or ancestor nodes,
� a node test—the name of the nodes (i.e., the tag–name) to be chosen, and
� one or more predicates that apply filters to the result. The predicate itself may consist of further

XPath–expressions.

The simple XPath query/descendant::ds:Service[@rdf:about= ID ] selects a certain element
description from an XML document: The axisdescendant directs the search to anyplace in the document
below the current node (in this case the root node). After ‘:: ’ follows the name of the desired node
(ds:Service ) and a filter predicate (in square brackets), which specifies the selection of nodes with an
attributerdf:about that has a certain value (ID ).

The use of current XPath implementations also brings the use of the more resource–consuming DOM
parsers with it. In our work, this problem is addressed by introducing the following convention which helps
to keep the size of the files containing the dependency descriptions within acceptable limits: Every managed
object is described in a separate file on the web–server. In order to be able to locate the file, its filename is
derived from the name of the managed object.

3.3 Dependency Representation based on the Resource Description Framework

Basically, there are three aspects of dependency modeling:

� knowledge about managed objects,
� the overall dependency structure between them and
� information about each of the dependencies.

Current management information models are designed with a focus on pure managed object represen-
tation. Thus, they easily cover the first of the three points above. Modern approaches like CIM (but also
already the OSI GRM) provide additional capabilities for representing information about individual depen-
dencies (third point of the above list), e.g., by means of association classes.

However, our investigation of CIM and its XML mapping [4, 5] has led us to the conclusion that navigat-
ing dependency graphs in such a model is not supported adequately, although this is an important require-
ment of management applications based on dependency models, like event correlation mentioned earlier.
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The main reason is that the representation of dependencies as individually instantiated associations does
not provide an overall graph-like structure, but only references to related objects on a per-association basis.
Searching for a managed object’s dependents or antecedents can only be carried out by enumerating all the
references in every association. In addition, information on these associations may even be stored at places
remote from the CIM objects for which the association is relevant. In terms of the three aspects above, this
means that the second requirement can not be met in CIM environments. The report [9] draws a similar
conclusion for GRM based modeling.

The following subsections describe how our work applies the concepts and means of the Resource
Description Framework to address all three aspects of dependency modeling.

3.3.1 RDF Principles

RDF is actually not part of XML, but comes from an independent working group (also within the W3C) and
specifies a common representation format for resource description in the form of directed graphs. However,
RDF documents are valid XML documents.

The purpose of RDF is to provide a means for defining additional semantics for XML tags in a formal
way. Originally focused on document enrichment, it now allows the description of any resource by defining
RDF properties and provides an extensible type system. Note that, according to RDF terminology, any-
thing that has (or can be represented by) anUniversal Resource Identifier (URI)is regarded as a resource.
It is then called anRDF resource, which can be described by one or moreRDF descriptions, each listing
properties (attributes) of the resource. The value of each RDF property can either be aLiteral (a string) or
a pointer to another resource. One or more descriptions form an RDF graph. The described resources plus
theLiterals are the nodes of the graph. Edges are formed by the RDF properties. The type of resource
an RDF property can be applied to is called its ‘domain’; the types it may point to are called its ‘range’.

An interesting question deals with the relationship of RDF and the emerging XML Schema standard
[29, 30], as XML Schema could also be used to describe the XML syntax of RDF. However, the semantic
mapping of dependency graphs onto RDF can be done more easily than using XML Schema, which is
used to define a syntax for the tree-like structures of XML nodes. The reason for RDF’s suitability lies in
its inherent graph structure and its orientation towards the meta-data layer, rather than the data layer, like
XML. The consequences are, e.g., that the order of entries in a document becomes significant in XML,
while this is irrelevant from the knowledge description perspective taken by RDF.

Thus, the main purpose of using RDF in our project stems from the fact that RDF provides a very
convenient and efficient way for representing directed graphs as an XML document. The fact that RDF
provides a mechanism for allowing one node to reference other nodes (that can be either part of the same
or a different XML document, perhaps located on another host) circumvents a typical problem of simpler
XML mappings, where nodes with multiple antecedents would be described at multiple places, thus leading
to redundancy.

3.3.2 RDF based Managed Object Representation

Every described resource (here, managed object) can be embedded into a type system, thus, enabling the
RDF parser to check whether the attributes, methods, etc. are used correctly. This allows a clean object
description, without the need to use tags on a meta level (e.g.,<ds:Service> instead of<ms:Class

classname="ds:Service"> ; see [5] for detailed discussions). Furthermore—and this makes it superior
to purely XML based solutions—it does not lead to the otherwise extremely complex mechanisms for
manually checking the syntactical correctness of inherited elements because this is provided by the RDF
parsers in a ready–to–use way (but, in contrast, not definable in XML DTDs or XML Schema).

The code extract in figure 3 defines the RDF classGenericNode that will be used as the superclass of
any node in any dependency graph. Derived from this is the subclassService , which is the type of any
service description. The last element demonstrates the definition of attributes as RDF properties.

In RDF terminology, such meta information is called anRDF schema. It is referenced by all RDF doc-
uments actually describing the services via XML namespaces. For our purposes, an appropriate schema is
stored at web servers reachable by all involved systems. Its URLs are contained in the namespace definition
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<rdfs:Class rdf:ID="GenericNode" >
</rdfs:Class>
<rdfs:Property rdf:ID="NodeDescription">

<rdfs:range rdf:resource="rdfs:Literal"/>
<rdfs:domain rdf:resource="#GenericNode"/>

</rdfs:Property>

<rdfs:Class rdf:ID="Service">
<rdfs:subClassOf rdf:resource="#GenericNode"/>

</rdfs:Class>

<rdfs:Property rdf:ID="ServiceIdentifier">
<rdfs:range rdf:resource="rdfs:Literal"/>
<rdfs:domain rdf:resource="#Service"/>

</rdfs:Property>

Figure 3: RDF schema extract for nodes of the dependency graph

of each RDF document. As these do not change frequently, simple caching mechanisms can reduce the
traffic to a minimum.

The naming problem is solved by introducing a new namespace for each class. This automatically binds
each RDF element of the class (attributes, methods, etc.) to the same namespaces, which reflects common
principles of object oriented languages.

While this shows that RDF is suitable for describing managed objects, one should also recognize that it
explicitly allows a hybrid approach of RDF and pure XML in the same document. An RDF parser would
only look at those parts of the document that are embraced by theRDF–tag, while the other parts are read
by an ordinary XML parser.

3.3.3 RDF based Dependency Representation

In finding an appropriate representation of dependencies, the emphasis has to lie on choosing a structure that
allows ease of navigation through the overall dependency graph. While RDF graphs are (by construction)
well suited for this purpose, one still has to avoid the problem that a straightforward mapping of the service
dependency graph onto an RDF graph would introduce: In a direct mapping, managed objects would be
reflected by RDF resources, dependencies by RDF properties. However, RDF does not allow the addition
of attributes to properties. This would therefore preclude the presence of attributes for instantiated depen-
dencies. Note that although RDF allows the definition of properties for properties, this does not solve the
problem. These would be analogous to CIM qualifiers for associations, but not to the required association
attributes.

Managed
Object X

Dependency
Association

Managed
Object Y

Managed
Object X

Managed
Object Y

Dependency
Graph

RDF-Graph

- Resources

- Properties

Figure 4: Mapping a dependency to RDF

The solution to the problem that RDF properties may not have further attributes is as follows: Depen-
dencies are mapped to a second type of RDF resources, rather than to RDF properties. As shown in figure
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4, the properties are only used to bind the matching managed object resources with the associations, thus
spanning a bipartite graph. This maintains the advantage of simple dependency graph traversal and permits
not only every object to have a well–defined set of attributes (like caption, identifier etc.), but also the anno-
tation of dependencies (e.g., with the attributes explained in item 5 of section 2). This meets the requirement
that a dependency needs to be annotated with attributes providing information about the dependency itself.
It is therefore possible to target the dependency attributes for queries by asking, e.g., for all services in the
distributed system on which other services depend with a ‘high’ dependency strength.

<rdfs:Class rdf:ID="DependencyAssociation" >
</rdfs:Class>
<rdfs:Property rdf:ID="dependency">

<rdfs:range rdf:resource="#DependencyAssociation"/>
<rdfs:domain rdf:resource="#GenericNode"/>

</rdfs:Property>

<rdfs:Property rdf:ID="antecedent">
<rdfs:range rdf:resource="#GenericNode"/>
<rdfs:domain rdf:resource="#DependencyAssociation"/>

</rdfs:Property>

<rdfs:Property rdf:ID="DependencyStrength">
<rdfs:range rdf:resource="rdfs:Literal"/>
<rdfs:domain rdf:resource="#DependencyAssociation"/>

</rdfs:Property>

Figure 5: RDF schema extract for the edges in the graph

The code fragment in figure 5 shows the basic RDF schema for generic dependencies, which we called
DependencyAssociation (to stay close to CIM terminology), together with the properties needed for the
binding to and from the managed object description, as explained above. The lower part of the code further
shows an example of an association attribute.

Object Y
Object X

ServiceDependency

label
generated
strength
criticality
…

dependency

antecedent

caption
identifier
description
version
release
startCommand
stopCommand
…

caption
identifier
description
version
release
startCommand
stopCommand
…

Service
Service

Figure 6: Elements of a dependency description in RDF

Figure 6 gives a graphical representation of the RDF schema we use for representing dependencies. It
also shows further attributes we defined for objects and dependencies.

3.4 Discussion

It is fair to say that RDF is ideally suited for the representation of information about managed objectsand
their dependencies. For the developer of a management tool, RDF allows a significantly simpler way to
perform document validation, while keeping all the benefits of a hierarchical type system, like in object
oriented languages.

An additional aspect worth mentioning is the ability to easily retrieve required information from RDF
documents. While XPath is the means of choice for the purely XML based approach, no special query mech-
anism (beyond parsing) exists that is fully ‘aware’ of RDF concepts. The obstacle that RDF puts up against
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a straightforward use of XPath—although its representation finally is nothing but an XML document—is
that it allows various (full and abbreviated) syntaxes for the same RDF concepts. Our solution consists in
restricting the use of RDF to only one syntax (the abbreviated). This brings no disadvantages when the
documents are processed by RDF parsers, but allows the use of XPath in a way that is as simple as it would
be for pure XML documents.

Extending CIM to address dependency management is possible from a conceptual point of view by
subclassing fromCIM Dependencyand adding appropriate properties, such as the ones depicted in figure 6
(strength, criticality, etc.). However, existing CIM implementations take a “CIMOM-centric” view where a
CIM Object Manager (CIMOM), playing essentially the same role as a web server in our approach, resides
on every managed system and surfaces the dependencies within its scope, i.e., the scope of asingleCIMOM.
Associations (and therefore dependencies) spanning several CIMOMs are not supported yet, thus making a
CIM based implementation of a “dependency-centric” management system difficult.

In addition, not every dependency relationship is suitable for being described by properties: A typ-
ical example is the use of (a subclass of)CIM Dependencyfor modeling start/stop/failover dependency
relationships. This would allow the specifiation of relationships indicating, e.g., “Application X must be
running/terminated before Application Y can be started/stopped” or “Application X acts as a failover (i.e.,
backup) for Application Y”. However, the issue one faces when trying to add properties to a subclass of
CIM Dependencyis that start/stop/failover relationships are in fact different dependencytypes. Typing in
CIM, however, is done by subclassing and not by means of enumerated properties. Adopting the latter
would be contradictory to the CIM modeling philosophy. For a detailed discussion of this subject, the
reader is referred to [19].

3.5 Example: RDF Representation of Services and Dependencies

We will now present by means of an example how the approach described above can be applied to our
e–business scenario of section 1. Figure 8 depicts an example of an RDF/XML document that specifically
represents the dependency ofStorefront Servlets onIBM WebSphere 3.5 on the one side, and
onDB2 UDB 5.2 on the other. These dependencies are marked as dashed arrows in figure 7.

Database
DB2 UDB 5.2

E-business Application
Storefront Servlets

Web Server
IBM HTTP Server 1.3.6

Web Application Server
IBM WebSphere 3.5

OS
AIX 4.3.3

OS
WinNT 4

IP
Service

wslab8.watson.ibm.com rslab2.watson.ibm.co m

Figure 7: Sample RDF dependency graph

By definition, the header of every document starts with the XML tag (line 1 of the document in figure
8), followed by links to our dependency schema (line 2) as well as the RDF syntax and schema definitions
(lines 3 and 4). The body of the document contains the service definition start and end tags (line 5, resp.
29), its attributes (lines 6 to 12) and two dependencies (lines 13 to 20, resp. 21 to 28). The document closes
with the RDF end tag (line 30). Note that all pointers to descriptions of antecedents are URIs, thus making
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1 <?xml version="1.0" encoding="UTF-8"?>
2 <rdf:RDF xmlns:ds="http://wslab4.watson.ibm.com/DependencySchema#"
3 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

5 <ds:Service>
6 <ds:name>E-business Application</ds:name>
7 <ds:caption>Storefront Servlets</ds:caption>
8 <ds:identifier>my.catalogServlets</ds:identifier>
9 <ds:description>business logic of catalog app.</ds:description>
10 <ds:version>3</ds:version>
11 <ds:release>1</ds:release>
12 <ds:processName></ds:processName>

13 <ds:dependency>
14 <ds:ServiceDependency>
15 <ds:antecedent rdf:resource=
16 "http://rslab2.watson.ibm.com/xmlrepository/db2.xml"/>
17 <ds:generated>automatic</ds:generated>
18 <ds:label>ebusinessApp DependsOn database</ds:label>
19 </ds:ServiceDependency>
20 </ds:dependency>

21 <ds:dependency>
22 <ds:ServiceDependency>
23 <ds:antecedent rdf:resource=
24 "http://wslab8.watson.ibm.com/xmlrepository/websph35.xml"/>
25 <ds:generated>automatic</ds:generated>
26 <ds:label>ebusinessApp DependsOn webApplServer</ds:label>
27 </ds:ServiceDependency>
28 </ds:dependency>

29 </ds:Service>
30 </rdf:RDF>

Figure 8: Sample document with RDF/XML dependency description

their location (local or remote) completely transparent to the dependency query facility. The stringds: in
the expression is the namespace–prefix we use for the dependency schema.

4 Proof-of-Concept Implementation

4.1 Components of the Prototype

The prototype implementation of our service dependency architecture (as explained in section 2.1) is com-
posed of two main parts. One part is responsible for the description of the managed resources’ dependencies
in RDF/XML documents that are stored at management web servers close to those resources. This part of
the prototype—together with the web servers—form the third tier of the aforementioned architecture. As
acquisition of dependencies is not the goal of this paper and an overview of the matter has been presented in
section 2.2.2, the following explanations will focus on the second part of the prototype, which implements
the architecture’s middle tier.

The implementation has to deal with two main interfaces. Towards the lower layer it has to handle the
access to the web servers. This access is realized in a rather simple way by theResourceProxies (see
figure 9) viahttp . As all dependencies are described according to the same RDF/XML schema (intro-
duced in the previous section), the whole complexity of the dependency acquisition becomes completely
transparent and need not be considered in the upper layers. In order to keep the number of http queries low
if a service description is requested many times, the proxies also implement caching functionality. Their ad-
ditional capability of being able to evaluate XPath expressions on the retrieved documents will be explained
further down.
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Figure 9: Components and information flows

The main component of the architecture is the so calledDepInformationProvider . It realizes
the interface towards the management application and responds to their queries for element descriptions
and performs drill–ups or drill–downs through the dependency graph. For each query it constructs a re-
sult document (with the help of further classes, as will be explained in section 4.2 along with examples of
XPath–queries). Depending on the query type, it extracts the required parts of dependency information from
the web servers with the help of theDepQueryResolver that manages the above mentionedResour-
ceProxies . Once the right element descriptions are found, they are merged into the result document by
appending them one by one under a new RDF/XML document header.

4.2 Implementation of XPath Queries

The key part of theDepInformationProvider ’s implementation is the ablity to extract the ‘right’
information from the obtained managed object descriptions.

As mentioned in section 3, one of the motivations for the use of XML is the power of its XPath language.
It will be demonstrated in the following sections by means of two sample queries: The first retrieves all the
immediate antecedents of a given service (used, e.g., in root cause analysis) while the second query asks for
all immediate dependents of a node (useful for impact analysis).

4.2.1 Drill–down for immediate Antecedents

The most basic operation is graph traversal, one step at a time, along the edges of a dependency graph. In
the case of service dependencies this yields all (sub-)services the dependent service is based on. The result
is constructed in two phases:

1. getting the dependency information of Service X, and
2. obtaining the description of all antecedents (i.e., the nodes the dependencies point to).

The first query has to be applied to the dependency description of Service X that comes from the web
server on X’s system. The actual evaluation of the XPath expression may be carried out in two places: If
the web server is capable of resolving XPath expressions as part of the URL (and its host has enough free
resources) this can be used to relieve the Dependency Query Facility. In other cases, theResourceProxy
will retrieve and parse the whole document and apply the XPath query to it.

To be able to find the web server of Service X, the name of the system hosting the service has to be part
of the query to the dependency query facility. In our prototype, the hostname of the service is by definition
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part of the (hierarchically structured) service name. The full URL is resolved by a class in the prototype
calledElementURIResolver , which uses an element-to-URI mapping, obtained from a configuration
file, or, alternatively, simply applies a default path. The appropriate XPath query is as follows:

/descendant::[(self::ds: NodeType )]/child::ds:dependency/*[(

self::ds: DependencyType )]/child::ds:antecedent/@rdf:resource

The result is a list of resource identifiers, namely the IDs of the antecedents taken from the
rdf:resource attribute. There is no need for the ID of Service X to appear in the expression, because
each RDF/XML file on the web servers only contains the description of one service. If this requirement is
not met, e.g., if a different convention for the dependency description is used, an additional XPath predicate
that searches for the service ID needs to be specified.

The example also shows a problem of using XPath, which is not aware of certain RDF features: The
above query assumes that both the exact type of the resource (the node) as well as the type of the dependency
(the association) have to be known before the query is executed. It would not return the required antecedent
if, e.g., the type of the association was replaced by a supertype (i.e.,DependencyAssociation instead
of ServiceDependency ). We solve this issue by making a little extension to the XPath expression in the
ResourceProxy part of the prototype that finally applies the XPath to the document. This enables the
statement of the types (the classes of the dependency and service objects) to be as generic as possible and
as specific as needed. In other words, the XPath expression must be able to match a given class to any
of its subclasses. This is implemented by replacing class names in the XPath queries with an or’ed list of
all known subclasses, thus enhancing the XPath expression to match any of them. The list of subclasses
is obtained from theRDFSubClassResolver , which reads the class hierarchy from the same RDF
schema that all dependency documents refer to in their namespace statement. Thus, the correctness of the
expanded XPath–query is always guaranteed. As mentioned before, the stringds: in the expression is the
namespace–prefix we use for our “dependency schema”.

In the second phase, the descriptions of all IDs from the first step (of Service Y,Z,...) are obtained from
their web server by a simple XPath expression, which is almost identical to the example at the end of section
3.2. The only difference lies in the specification of the node type, which must be expanded in the same way
as above.

4.2.2 Drill–up for immediate Dependents

The main difference of graph traversal in the opposite (upward) direction is that the IDs of the dependents
are not kept in a single description document. This lies in the nature of dependencies, since only the
dependents know on which antecedents they depend, while the antecedents are unaware of their dependents.
Consequently, the required IDs of the dependents are distributed over a possibly large domain.

To avoid the need to query all possible web servers, a search domain has to be specified for the drill–up.
Then—in analogy to phase one of the example above—the following XPath expression is applied to each
document obtained from the web servers in a selected search domain:

/descendant::*[(self::ds: NodeType )][descendant::ds:antecedent[

rdf:resource= ID ]]/@rdf:about

In natural language, the query could be expressed as: “Get all elements of typeNodeType that have a
dependency on the element with the specifiedID ”! The expression is much more complex than the previous
example, because it contains a predicate (within the second pair of square brackets), which again is an
XPath expression. This sub–expression makes sure that the outer expression only matches those elements
that have a sub–description calledds:antecedent and an attributerdf:resource with the value of the
required ID—or, in other words, “that depend onID ”.

Each query to the various web pages results in either zero or exactly one ID. In the second step, the
descriptions of the retrieved elements are merged into one document and returned to the management ap-
plication.

This example further shows that although XPath expressions always process ‘downwards’ in the XML
document tree, there is no need to insert ‘upwards–’ pointers in the documents (e.g., for drill–ups) since
they can easily be circumvented as demonstrated above.
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5 Conclusions and Outlook

We have presented a novel approach for managing service dependencies with XML, XPath and RDF. The
need for applying these general–purpose technologies to the area of service and application management
stems from the fact that, despite related work in the area of event correlation, no previous work has dealt
with describing dependency information in a uniform way so that it does not only meet all the requirements
stated in this paper, but enables management systems in general to make use of it. This is necessary
in contemporary e–business environments where the outsourcing of services results in a vast amount of
dependencies among services that are also highly dynamic.

We have combined several XML related base technologies and are therefore able to represent depen-
dency graphs in a way such that they can not only be parsed by common off the shelf XML parsers, but
be also queried with the powerful XPath facility. This allows us to implement an efficient mechanism for
querying a potentially very high number of managed objects in parallel for their attributes and dependen-
cies. Our prototype implementation has shown that queries for (recursive) drill–up or drill–down operations
are surprisingly compact and relatively easy to write. The problems we experienced during our work are
mainly related to XML and, especially, RDF parsers, which were partly still in early stages of development.

In our current work, we are investigating the integration of our approach with a CIM Object Manager
that generates the dependency instances and qualifies them with attributes. In the area of multi-role rela-
tionships, we are studying whether it is more efficient to define a single dependency relationship whose
attributes indicate its various roles vs. creating separate instances for every type of relationship.

A candidate for future work is the investigation of recent developments on native RDF query languages
such as RQL, presented in [16]. However, a precondition is that those new languages become popular in
the way XML did. If this is the case, developers of management tools operating on RDF/XML dependency
graphs will benefit from the same support of the open source community they already enjoy now for RDF,
XML and XPath.
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