
RC22314 (W0201-105) January 23, 2002
Computer Science

IBM Research Report

In Question-Answering, Hit-List Size Matters

John M. Prager
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

In Question Answering, Hit-List Size Matters
John M. Prager

IBM T.J. Watson Research Ctr.
P.O. Box 704, Yorktown Heights NY 10598

jprager@us.ibm.com

 Abstract
We look at the effect of hitlist size in a Question-
Answering system. When the goal is to find a single an-
swer to a fact-seeking question, it becomes readily
apparent that looking at too many documents can be a
source of more noise than useful information; looking
at too few documents can miss the desired answer.

We develop a probabilistic model of the Answer-
Selection component that extracts candidate answers
from passages returned by the search engine. We show
with this model: how we can predict performance as a
function of hitlist size after making observations of the
system’s operation using a single such size; that an op-
timum hitlist size exists; how the performance depends
on a parameter we call the discrimination ratio, and the
benefit to be derived from improving this ratio by more
training. We show that the performance curves gener-
ated by our model agree very well with empirical re-
sults.

1. Introduction
The field of Question-Answering (QA) falls squarely in
the intersection of Information Retrieval (IR) and Natu-
ral Language Processing (NLP). Most papers in the
field deal with issues in linguistics, ontologies or AI
(see e.g. Moldovan et al, 2000; Srihari and Li, 2000;
Hovy et al. 2001; Prager et al. 2001b; Chaudri & Fikes,
1999), but relatively few with IR; this may appear sur-
prising since every QA system uses a search engine (at
least, those that participate in TREC [TREC8, TREC9,
TREC10]). NLP is so computationally expensive it is
inconceivable (currently) to perform linguistic analysis
on an entire large corpus at run time. The TREC cor-
pus, for example, consists of about a million docu-
ments, or 3GB of data (see [Voorhees and Tice, 2000]).
The “typical” QA system is built around a pipeline
which consists of a question-analysis component to mas-
sage the question into a query suitable for search, a
search engine to return documents or passages for fur-
ther consideration, and an Answer Selection component
to extract and rank candidate answers from these pas-
sages (see Figure 1). There is increasing interest in
inserting loops around this pipeline to return to earlier
stages for revised processing (such as query expansion)

(such as query expansion) if some decision criterion
fails to be met, but this doesn’t change the basic
architecture (see e.g. [Harabagiu et al., 2000]).

Question

Figure 1. Generic Question-Answering pipeline.

The Answer Selection component (AS) takes the pas-
sage hit-list returned by the search engine and looks in
the text for answers (typically named entities) that are
called for by the question. The analysis performed here
can range from very little to question-word density
measurements to predicate-argument structure analysis
to logical inference. In all cases it is true that the more
passages the AS sees the more opportunity it has to find
the right answer. By the same token, though, the more
passages it sees the more noise there is to obscure the
right answers. This is exactly the precision-recall
tradeoff that permeates IR.

However, there is a significant difference in how this
tradeoff manifests, due to the different goals of IR and
QA. To put it simply, QA systems are presented with a
natural-language question (currently almost always
seeking facts) and are considered to succeed if they find
a single correct answer to the question. On the other
hand, IR systems are presented an information need in
the form of a query, and they attempt to find as many
documents as possible that are relevant to this need.
There is no concept of an exact answer, or “enough” of
an answer, in this articulation of IR. Because of this, it
is difficult to come up with a single satisfactory meas-
ure of performance for IR systems. Often, a precision-
recall curve is drawn, allowing a late binding readout of
the system’s performance characteristics based on the
user’s particular precision or recall needs. At other
times, average precision is computed over a range of
recall values. In none of these measures, though, is
there the notion of the “optimal” number of documents

Question
Analysis

Search
Engine

Answer
SelectionAnswer

Hit-List

Query

Desired
Answer-Type

Question

1

For submission to CIKM’02, McLean, VA.

documents to return. This is because in this definition
of the IR task there is no subsequent analysis of the
returned documents for which a cost-benefit analysis of
providing extra documents can be performed.

With QA, though, there is a clear measure of success:
the right answer is found from analysis of the output of
the search engine. It is reasonable to hypothesize that
there is an optimum number of documents or passages
for the Answer-Selection module to examine. Such a
number may well vary considerably from system to
system, or within a system, from corpus to corpus or
question-set to question-set.

The system of Predictive Annotation [Prager et al.
2000] indexes semantic categories as well as words,
and includes in the bag-of-words queries the semantic
category called for by the question (e.g. PERSON,
COUNTRY etc.). This guarantees that the returned
passages will contain candidate answers of the right
type, so that the hit-list can be relatively small (e.g. 10-
20 passages). Systems that delay search for the candi-
dates of the right answer type until after the search en-
gine returns must look at a much larger number of pas-
sages. Indeed, for the benefit of TREC participants
who do not have their own search engine, NIST makes
available the top 1,000 documents returned by a stan-
dard search engine.

We have previously examined the issue of hit-list size
in QA from the point of view of how much incremental
gain there is in looking at extra documents, but without
paying any regard to the associated cost [Anon.,
2001a]. In our post-TREC9 analysis, we examined, for
a given hit-list size N, for how many of the 693 ques-
tions was there at least one document known to contain
a correct answer in the hit-list. This determined an up-
per bound to the system’s performance. We let N range
from 1 to 50. We did this experiment using both our
own search engine and the document sets provided by
AT&T. We reproduce here in Figure 2 the resulting
graphs.

We observe that, for both search engines, the number of
questions with an answer document in the hit-list rises
very quickly with hit-list size at first, and then levels
off. There is a knee in the curves at about 8 documents,
after which there is relatively little increase in answer-
able questions with hit-list size. These observations
suggest that the payoff from increasing hit-list size may
start going negative from this point onwards, due to
encountering more noise than new answers, but such an
assertion can not be proven from this data alone.

1 8 15 22 29 36 43 50

Size of Hit-list (Docs)

0

100

200

300

400

500

600

Q
ue

st
io

ns
 w

ith
 H

it

SET-R

SET-A

Number of Questions with
Answer Document in Hit-list

Figure 2. Comparison of number of questions with a “cor-
rect” document in the hit list against hit-list depth, for our
search engine (SET-R) and AT&T’s (SET-A).

We hypothesize that we can develop a reasonably accu-
rate model of the Answer Selection process; this proc-
ess takes as input the hit-lists produced by the search
engine and produces in turn an output that can be
evaluated. This system performance measure is accord-
ingly a function of the hit-lists; all other parameters
being fixed, the measure is a function of the hit-list size.
We further hypothesize that the system performance is
a concave function, guaranteeing the existence of an
optimum hit-list size.

This paper is in 5 sections. In Section 2 we describe the
experimental method we are adopting and the data-sets
we study. In Section 3 we develop a probabilistic
model of performance as a function of hit-list size. We
use observations of actual experimental conditions to
determine numerical parameters of the model. In Sec-
tion 4 we use the model to generate predictions and
compare them with experimental results, and in Section
5 we conclude and discuss future directions this work
may take.

2. Experimental Method and Data
We will present in the next Section a theoretical model
of hit-list performance, determine parameters empiri-
cally and use the model to predict optimal hit-list size.
We will then compare this prediction with the actual
performance of our system on the TREC QA task. In
this Section we describe our experimental method and
the data we use.

We have available the set of questions for each of
TRECs 8, 9 and 10, the answer pattern sets and our
system’s performance figures. We are not stressing
here the effectiveness of our QA system, for which a
demonstration of training on TREC8 and TREC9, say,
and testing on TREC10 would be appropriate. Rather,
we are presenting the effectiveness of our model of how
hit-list size affects performance. To do this, we deter-

2

For submission to CIKM’02, McLean, VA.

determine some parameters of our system by
observation and measurement, and then compare how
the model configured with these parameters predicts
performance of the same system and data-set as a
function of hit-list size. We should also make clear that
this is not the same as testing on training data: the
training is in effect the development of the theoretical
model, which is done without seeing the data. The
developed model is a mapping of a small set of
observed parameters to a complete predicted per-
formance curve. The testing consists of inputting to the
model these few observations and comparison of the
predicted performance curves with those observed
experimentally.

For the TREC9 set we only considered the first 500
questions (that is, we omitted the subset which were
paraphrases of earlier questions). For all sets we omit-
ted the questions that had no answer.

We perform the same exercise for all three of the TREC
question sets. These sets are not equivalent tests of our
system: the TREC8 questions were created by the
community from the TREC corpus, while TREC9 and
TREC10 questions were derived from actual query
logs. Those logs were from different systems, and have
different distributions of question types (especially
definitional questions: 5% for TREC9 vs. 26% for
TREC10) and as a whole appear to mirror actual user
questions to different degrees (Ellen Voorhees, personal
communication). The system parameters mentioned
above appear not to be intrinsic to the system alone but
to be a function of both the system and the characteris-
tics of the problem set it is presented with. Thus we
will derive different parameters from observation of
running each of the question sets, which will in turn
lead to different predictions of performance as a func-
tion of hit-list size.

We employ two different implementations of answer
selection, both derivatives of that reported in [Anon. et
al., 2000]. The first retains the scoring algorithm via
linear regression, and so will be denoted LR. The sec-
ond uses an entirely different scoring algorithm, via a
decision tree, and is denoted DT. Combined with the
three different question sets we have in all six experi-
mental conditions; these will be denoted LR8, LR9,
LR10, DT8, DT9 and DT10.

The runs reported in this paper were all performed with
the same version of our system. The runs were made
shortly after TREC10. Because (1) the questions proc-
essed were (for TRECs 9 and 10) a proper subset of the
total, (2) the system was not exactly the same one that
participated in TREC, and (3) for these runs our system
produced an “exact answer”, rather than the more lib-

more liberal 50 bytes allowed up to now in TREC, the
results reported here do not correspond to our official
TREC results. Training of the system was performed
on TREC9 data, so the performance there will be seen
to be greater than on the TREC8 and 10 questions. We
suspect that the decision tree was over-trained – this is
exhibited by the greater differential between DT9 and
DT8/10 than between LR9 and LR8/10.

3. The Model
In order to determine the optimum hit-list size (if it
exists), we need to develop a probabilistic model of the
process by which the passages returned by the search
engine are examined and selected. For our purposes,
we assume that there is a single answer (of the sought
type) in the returned passage and so we can reduce the
Answer Selection (AS) process to that of passage selec-
tion.

We will suppose that the search engine returns a hit list
of candidate answer passages (which may be anything
from a single term to a sentence or even a paragraph).
Any number of these passages may contain a correct
answer. We will define the AS process to be one which
outputs the passage that it considers to be the most
likely to be correct, based on criteria internal to it. We
approximate its operation by saying that it categorizes
the passages as correct or incorrect, and chooses one of
the former set at random.

Since we will be modelling probabilities with mathe-
matical functions, we will use a functional notation in
developing this model1. Let HN be the event that the
hit-list size is N. Let X be the event that AS picks out a
correct passage, and Y the event that it exists in the hit-
list. Then we will use P(N) to denote the probability
Pr(X|Y & HN), and Q(N) to denote Pr(Y| HN). Let Zk be
event that the kth passage actually is correct; we will
use R(k) to denote Pr(Zk). Then the probability that at
least one passage in the hit-list is correct is2

 ∏
=

−−=
N

k

kRNQ
1

))(1(1)((1)

Let S(N) denote Pr(X| HN). Then the probability that a
correct passage is identified by AS is computed by3

)()()(NQNPNS = (2)
We call the value S(N) the first-place score (FPS), to
distinguish it from the mean reciprocal rank (MRR),

1 We used the Maple V product from Waterloo to perform the
simulations.
2 This assumes independence of the Zi
3 Assuming independence of X and there being at least one
correct passage in the hitlist.

3

For submission to CIKM’02, McLean, VA.

described below, up until 2001 used in TREC QA
evaluation. In TRECs 8-10, QA systems submitted
their top 5 answers for evaluation by MRR. Since it has
been generally found to be true that QA systems get
most of their correct answers in first place, next most
frequently in second place, and so on, (as we will later
see for our own system in Table 2), and since the MRR
scoring scheme awards a non-linear score (1/k) to a first
correct answer in kth place, we see that a large contribu-
tion to the MRR score is the FPS. We observe in
practice that the FPS generally tracks the MRR quite
well, although maybe about 20% below it. In the 2002
TREC evaluation, QA systems will submit only one
answer, so the MRR and FPS will then be equivalent.
We present in Table 1 the FPS and MRR scores for our
system with hit-lists of size 10.

Table 1. System performance. The Mean Reciprocal
Rank and First-Place Scores for a hit-list of size 10.

The optimum hit list size N’ is given by
)(maxarg NSN

N
=′

Our hypothesis that a maximum to S(N) exists can be
argued qualitatively as follows. If passage k is more
likely to be correct than j, for k<j, then the probability
that AS will pick out a correct passage, P(N), will de-
crease with N, since a larger N means more noisy data
to deal with. The probability that there exists some
correct passage somewhere in the hit-list, Q(N), is an
increasing function of N. The initial slope of Q is rela-
tively high, as the first few passages are considered, but
will ultimately flatten out (cf. Figure 2). If Q’s initial
slope is high enough (relative to P), then the product of
P and Q will initially increase, but will peak and even-
tually decrease as P’s decline takes over.

We will now proceed to derive formulas for P and Q
based both on theoretical arguments and empirically-
derived parameters, and demonstrate that the theoretical
model agrees quite well with our actual results.

Let p be the probability that when AS looks at a correct
passage, it internally says that it is correct. Let q be the
probability that it says that an incorrect passage is cor-
rect. Let us suppose that on average m(N) of the pas-
sages in the hit-list are correct. Then the probability
that AS will output a correct passage is

qNmNpNm

pNm
NP

))(()(
)(

)(
−+

=

{ }rNfNf

Nf
)(1)(

)(
−+

= (3)

where f(N) = m(N)/N and r = q/p. r is an internal pa-
rameter of AS which we will attempt to estimate from
observations of system performance4. To make the
dependency of P on r clear, we will henceforth write
P(N, r).

We note that the quantity f(N) is the fraction of pas-
sages in the hit-list that are correct, and can be calcu-
lated by

 ∑
=

=
N

k

kR
N

Nf
1

)(
1

)((4)

r measures how well AS is able to discriminate between
correct and incorrect passages. We will call r the dis-
crimination ratio of AS. Clearly, the lower r is, the
better AS will perform.

NIST and individuals in the TREC community have
made available pattern sets and scripts so that research-
ers can re-evaluate their systems as they improve them.
We have used these pattern sets both to evaluate our
system with different parameter settings, as described in
the next section, and to evaluate intermediate results.
In particular, we evaluated the output of the search en-
gine (prior to Answer Selection) to see if these passages
contained the correct answer, and if so where in the hit-
lists these correct passages were distributed.

For all three TREC QA question sets, we counted how
often the kth passage contained a correct answer. We
examined hit-lists of size 50; the counts for the top 10
passages are presented in Table 2.

Times Passage correct TREC8 TREC9 TREC10
Passage 1 87 219 136
Passage 2 81 159 117
Passage 3 64 145 103
Passage 4 63 140 104
Passage 5 51 117 99
Passage 6 51 123 92
Passage 7 46 124 78
Passage 8 38 108 81
Passage 9 41 94 73
Passage 10 39 95 59
Total questions 198 492 432

4 If a is the answer selection process precision, then
r = 1/a -1

TREC8 TREC9 TREC10

MRR on LR .442 .470 .342
FPS on LR .348 .388 .270
MRR on DT .353 .577 .265
FPS on DT .256 .535 .201

4

For submission to CIKM’02, McLean, VA.

Table 2. Passage accuracy. The number of times each
passage in a hit-list of 10 passages contained the correct
answer.
We note that the fractional performance represented by
these counts is precisely the value R(k) from Equation
(1), where k is the passage number. These values let us
calculate Q(N) from Equation 1, f(N) from Equation 4
and P(N) from Equation 3. Then, by substituting the
FPS scores from Table 1 into Equation 2, we can calcu-
late r for each run. The calculated values are presented
in Table 3.

Discrimination ratio r TREC8 TREC9 TREC10

LR .61 (.62) .45 (.69) .52 (.66)
DT .98 (.51) .24 (.81) .79 (.56)

Table 3. The discrimination ratio r (and corresponding
precision in parentheses) for our Answer Selection
component calculated for each of the 3 TREC QA ques-
tion sets and each version of Answer Selection.

We can now model the passage correctness scores in
Table 3 and complete our probabilistic model. By in-
spection, these passage scores seemed to be following
an exponential decline. Therefore a simple exponential

curve CAekR Bk += −)(
was fitted to them (for passage number k). To make the
fitting easier, we observe that as the passage number
gets very large, the probability that the passage is cor-
rect tends to zero. Thus we can set C=0, take loga-
rithms and perform the fitting by linear regression. The
fitted curves have the equations:

k
TREC ekR 026.

8 28.)(ˆ −=

k
TREC ekR 029.

9 28.)(ˆ −=

k
TREC ekR 026.

10 24.)(ˆ −=

The notation R̂ is used to indicate the estimated value,
as distinct from the measured value R . These func-
tions model the search-engine hit-list passage correct-
ness, and are independent of the AS algorithm.

4. Analysis of Model and Empiri-
cal Results
We are now in a position to calculate S(N) (from Equa-
tion (2)) for various values of N, and the fitted curves

R̂ . Figure 3 shows in the solid lines the value of S(N)
for LR8 for N ranging from 1 to 50, for the calculated
parameter r = .61. For comparison we also show in
dashed lines the family of curves generated by the same

the same equation but with r ranging from .1 to 1.0 in
steps of .1 (with the .1 curve at the top, the others
lowering progressively). Figures 4 and 5 show the
analogous curve sets for the LR9 and LR10 data.
The peak in Figure 3 suggests an optimum hit-list for
TREC8 data of 7 or 8, while the peak in Figure 4 sug-
gests an optimum hit-list size for TREC9 of 9 or 10:
this accords very well with our intuition of using a hit-
list of size 10, and as we will see shortly, it also accords
with direct empirical data. We note in both cases that
the right-hand tail is much flatter than the left, suggest-
ing that if in doubt one should err on the side of making
the hit-list too large. In any case, for our system, it
should not be 5 or lower.

Figure 3. First-place scores S(N) against hit-list size N,
as predicted by our model, for LR8. The dashed lines
are, from top to bottom, with parameter r ranging from
.1 to 1.0. The solid line is with r=.61. The peak is at N
= 7.

5

For submission to CIKM’02, McLean, VA.

Figure 4. First-place scores S(N) against hit-list size N,
as predicted by our model, for LR9. The dashed lines
are, from top to bottom, with parameter r ranging from
.1 to 1.0. The solid line is with r=.45. The peak is at N
= 9.5.

Figure 5. First-place scores S(N) against hit-list size N,
as predicted by our model, for LR10. The dashed lines
are, from top to bottom, with parameter r ranging from
.1 to 1.0. The solid line is with r=.52. The peak is at
around 10.

The peak for TREC10 data (Figure 5) is quite flat and
essentially ranges from 8 to 14, but as we shall see, this
too agrees with experiment. For reasons of space, the
corresponding figures for DT are omitted, but the peak
positions are summarized later in Table 4; the curves
themselves are similar-looking to those for LR.

The dashed curves in Figures 3-5 indicate how the hit-
list size should vary as the performance of the Answer-
Selection module changes. As the performance de-
creases (r increases and the curves become lower), AS
is less and less able to distinguish good answers from
bad, and the optimum hit-list size decreases. This
makes good sense given that the earlier the passage in
the hit-list, the more likely it is to contain the correct an-
swer; avoiding the extra noise which would come from
considering more passages than necessary is a good
strategy. Alternatively, the parameter r decreasing
indicates the AS module is becoming more dis-
criminating, and performs better by considering a larger
set of passages without being overcome by noise from
the weaker passages.

We ran our QA system on the three question sets for
every hit list size from 1 to 50 and calculated the first-

place scores with the NIST-provided patterns. The re-
sulting graphs are presented in Figure 6 for LR and
Figure 7 for DT.

Figure 6. Actual system performance against hit-list
size for LR. The top two curves are for TREC9 ques-
tions, the middle two for TREC8 and the bottom two
for TREC10. The solid lines are actual first-place
scores, the dashed lines are generated by the model.

Figure 7. Actual system performance against hit-list
size for the DT version of Answer Selection.

We summarize the predicted and measured peak posi-
tions for these six conditions in Table 4.

LR8 LR9 LR10 DT8 DT9 DT10
Predicted 7 8-9 8-14 7 9-11 8-13
Measured 4-7 5-10 3-12 4-8 10 5-19
Table 4. Predicted vs. measured peak position of
performance curves. In many cases the exact position

6

For submission to CIKM’02, McLean, VA.

of the peak is not particularly clear, so a range is given.
In every case the predicted value or range lies inside or
considerably overlaps the observed value or range.
In trying to match predicted with measured peak posi-
tions, we run into difficulty trying to be exact, due to
the flat peaks of the predicted curves and flat but jagged
plateaus of observed data. For our purposes of select-
ing an optimum hit-list size, we can finesse the problem
somewhat by erring on the side of selecting a larger
size, due to the very gradual performance drop-off to
the right of the maxima.

On the whole, we note very good agreement between
theory and experiment, regarding both the shapes of the
curves and the positions of the maxima. There are
magnitude offset discrepancies in LR10 and DT9,
which deserve further attention.

The mild disparities between prediction and observation
can have arisen from a number of causes. The model of
AS operation is clearly simplistic. Amongst many fac-
tors that the present model does not take into considera-
tion is the fact that AS gives more weight to a candidate
answer that shows up in more than one passage (this
may well explain why the empirical LR data does better
than predicted with very small hit-lists). The assump-
tion that there is only one candidate answer of the right
type per passage is clearly not generally true. The
modeling of passage correctness as a function of posi-
tion by an exponential function was a simple expedient
that worked quite well, but other functions might fit
better – this is a matter for further exploration.

Even though we have demonstrated both theoretically
and empirically that an Answer Selection component’s
performance characteristics do vary from question-set
to question-set, the observed variation within the three
TREC sets is rather minimal. Especially as all observed
performance curves have a very mild slope to the right
of the maximum point, we can choose for our system a
single hit-list size in the region of 10 that should either
be optimal or near-optimal for even an unseen set of
questions of the style used by TREC. We plan to do
such experiments in the near future to test this assertion.

Finally, we can make some observations about potential
improvements in overall system scores. Our model, as
illustrated in the performance curves in Figures 3-5,
predicts FPS performance as a function not only of hit-
list size but discrimination ratio r. By improving (low-
ering) r, the maximum achievable performance in-
creases. Our system currently performs best on TREC9
data, with an FPS of r=0.45 for LR and .24 for DT. It
is not unreasonable to suppose that with more training,
this value will be achievable on TREC8 and TREC10

TREC10 questions too. With the LR9 value of r, the
peak projected performance of LR8 improves from .38
to .44, of LR10 from .32 to .34 (see Figure 8), while
with the DT9 value of r, DT8 peak performance
improves from .50 to .59, and DT10 from .24 to .29
(see Figure 9). Thus we see that an additional benefit
of the model is its ability to indicate the possible value
to be achieved from investing effort in Answer
Selection training. The large differences between
projected improvement in the LR and DT cases stem
from the overtraining of DT on TREC9 questions. We
believe the LR performance figures are more robust,
and hence the improvement projections for LR more
reliable.

Figure 8. LR performance improvement from current
(solid) to projected (dashed). The TREC8 curves are
above the TREC10 curves.

7

For submission to CIKM’02, McLean, VA.

Figure 9. As Figure 8 but for DT.

5. Summary and Conclusions
We have derived a probabilistic model of QA system
performance, for fixed question analysis and search
engine, but with varying hit-list size and Answer Selec-
tion accuracy. We were able to fully parameterize the
model using empirical measurements, namely the pas-
sage correctness distribution and the first-place score
for a single hit-list size. From this model we were able
to derive a formula to show how performance varies
with hit-list size.

The agreement between the shapes of all six generated
theoretical and empirical curves for performance
against hit-list size suggests that the model is sound.
The agreement in location of the peaks reinforces this
view. It is reasonable to suppose that with a less sim-
plistic model of the Answer Selection process or the
data, even greater accuracy can be obtained.

The model made very few assumptions about the inter-
nal workings of the Answer Selection component. We
believe that the way it was modeled is sufficiently ge-
neric as to be applicable to a wide variety of actual im-
plementations of this process. Unfortunately, it is not
so easy to run experiments with alternative Question-
Answering systems as it is with other IR domains, for
example in document retrieval or classification where it
can be just a matter of using different formulas within a
fixed framework. In QA, there is a synergy between
the Question Analysis, Search and Answer Selection
processes which requires their simultaneous replace-
ment. Thus for us to experiment with other QA designs
means either building entirely different systems, or hav-
ing access to some other group’s complete system,
which is not easy to arrange. We hope that in the fu-
ture such access might become available.

The analysis presented in this paper represents the be-
ginnings of a formal model of the entire question-
answering process. The author hopes that by perform-
ing similar analyses of each of the stages in the QA
pipeline, a set of control parameters can be established
to determine the performance of the entire system as a
function of them. The model so derived will be enor-
mously useful in pinpointing where intellectual effort
and/or retraining most needs to be applied. It will also
allow for rapid (and complete) exploration of the multi-
dimensional parameter space without running large
numbers of time-consuming experiments.

The author wishes to thank Jennifer Chu-Carroll, Eric
Brown and Dave Ferrucci for their helpful comments
and suggestions. This work was supported in part by
the Advanced Research and Development Activity
(ARDA)'s Advanced Question Answering for Intelli-
gence (AQUAINT) Program under contract number
MDA904-01-C-0988.

References.
[1] V. Chaudhri and R. Fikes. Question answering

systems: Papers from the 1999 AAAI fall sympo-
sium. Technical Report FS-99-02, AAAI Press,
1999.

[2] Hovy, H., Gerber, L., Hermjakob, U., Lin, Chin-
Yew, Ravichandran, D. “Towards Semantic-Based
Answer Pinpointing”, Proceedings of Human Lan-
guage Technologies Conference, pp. 339-345, San
Diego CA, March 2001

[3] Moldovan, D., Harabagiu, S., Pasca, M., Mihalcea,
R., Girju, R., Goodrum, R. and Rus, V. The Struc-
ture and Performance of an Open-Domain Ques-
tion Answering System. In Proceedings of the Con-
ference of the Association for Computational
Linguistics (ACL-2000), 563–570.

[4] Pasca, M.A. and Harabagiu, S.M. “High Perform-
ance Question/Answering” Proceedings of SIGIR
2001, New Orleans, LA, 2001.

[5] Prager, J.M., Brown, E.W., Coden, A.R., and
Radev, D.R. "Question-Answering by Predictive
Annotation", Proceedings of SIGIR 2000, pp. 184-
191, Athens, Greece, 2000.

[6] Prager, J.M., Radev, D.R. and Czuba, K. “Answer-
ing What-Is Questions by Virtual Annotation.”
Proceedings of Human Language Technologies
Conference, San Diego CA, pp. 26-30, March
2001b.

[7] Srihari, R. and W. Li. 2000. A Question Answer-
ing System Supported by Information Extraction.
In Proceedings of the 1st Meeting of the North
American Chapter of the Association for Computa-
tional Linguistics (NAACL-00), 166–172.

[8] TREC8 - “The Eighth Text Retrieval Conference”,
E.M. Voorhees and D.K. Harman Eds., NIST,
Gaithersburg, MD, 2000.

[9] TREC9 - “The Ninth Text Retrieval Conference”,
E.M. Voorhees and D.K. Harman Eds., NIST,
Gaithersburg, MD, 2001.

[10] TREC10 - “The Tenth Text Retrieval Conference”,
E.M. Voorhees and D.K. Harman Eds., NIST,
Gaithersburg, MD, to appear in 2002.

8

For submission to CIKM’02, McLean, VA.

[11] Voorhees, E.M. and Tice, D.M. “Building a Ques-
tion Answering Test Collection”, Proceedings of
SIGIR 2000, pp. 184-191, Athens, Greece, 2000.

9

