
RC22336 (W0202-038) February 14, 2002
Computer Science

IBM Research Report

Discovering Fully Dependent Patterns

Sheng Ma, Feng Liang, Joseph L Hellerstein
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Discovering Fully Dependent Patterns

Feng Liang, Sheng Ma and Joseph L. Hellerstein

IBM T. J. Watson Research Center

30 Sawmill River Road

Hawthorne, NY 10532

Abstract

Pattern discovery is widely used to analyze market data. To date, the focus has been on

frequent patterns. However, in applications such as detecting anomalies in computer networks

and identifying security intrusions, frequent patterns characterize normal behavior, which is

not of interest in these domains. Rather, the interest is in patterns that proceed malfunctions

or other undesirable situations. Such patterns are characterized by items that co-occur with

high probability, especially long, infrequent patterns (since these provide better predictive

capabilities). Unfortunately, de�ning infrequent patterns in terms of the probability of item co-

occurrence yields neither upward nor downward closure, and hence eÆcient algorithms cannot

be constructed. Herein, we circumvent this problem by proposing fully dependent patterns

(d-patterns). d-patterns are de�ned so that all subsets of a d-pattern are also d-patterns, a

condition ensures downward closure. We develop a statistical test to qualify d-patterns, and

construct an eÆcient algorithm for their discovery. We apply our algorithm to data from a

network at a large insurance company and show that several patterns of interest are discovered.

1

1 Introduction

As it becomes feasible to collect large volumes of data, businesses are increasingly looking for ways to

capitalize on these data, especially market data. To date, the focus has been frequent patterns, especially

frequent association rules. However, in applications such as detecting anomalies in computer networks

and identifying security intrusions, there is much more interest in patterns that predict undesirable

situations, such as service disruptions. Such patterns are often infrequent (at least in well managed

systems) and are characterized by statistical dependency rather than their frequency. Unfortunately,

the statistical dependency based on the dependency test yields neither upward nor downward closure,

and hence eÆcient algorithms cannot be constructed. Herein, we circumvent this problem by proposing

fully dependent patterns, d-patterns. D-patterns are de�ned so as to ensure downward closure, which

makes it possible for us to construct an eÆcient algorithm for their discovery. We apply our algorithm

to data from a network at a large insurance company and show that several patterns of interest are

discovered[8]. For example, a group of hosts generated port-scan events three times in a week. This

provides a possible indicator of a security intrusion. In another example, we observed three events:

network interface card failure, unreachable destination, and \cold start" trap often occurred together,

although not frequent. The last event indicates that the router has failed and restarted. Then, the �rst

two events may provide advance warning of when the third will occur.

Our work is motivated by issues we have encountered in discovering patterns of events in computer

networks. First, as indicated above, we are concerned with how to discover infrequent, but dependent

itemsets. In computer networks, dependent temporal event sequences provide knowledge to predict

later events, which is of particular interest if these event are related to malfunctions and/or service

disruptions. Unfortunately, existing mining techniques require the support thresholds to be set very

low in order to discover infrequent patterns. This results in a large number of unimportant patterns

mixed in with a few patterns of interest.

Second, we need to deal with data collected in a noisy environment. In networks, data may be lost

because of severed communication lines or router bu�er overows. In help desk systems, data may

be corrupted because of human errors. Some valid patterns will be missed at the presence of noise.

To illustrate, suppose we have a 15-item pattern with true frequency 15% and the minimal support

is set to be 10%. Assume that we get the data though a transmission channel in which each item

could be lost with probability 5%. Due to the missing information, the observed frequency will be

15%�(0:95)15 � 7%, which is less than the minimal support. With a little more calculation, we see that

only sub-patterns with length no greater than 7 would satisfy the minimal support 10%. Consequently,

instead of reporting one long pattern with length 15, over 6435 subpatterns with length seven or less are

found and reported as the maximal frequent itemsets. Clearly, the problem is due to the �xed minimum

support threshold that favors short itemsets over long ones.

2

Third, we are concerned with skewed distributions of items. In our experience with alarms in computer

systems, 90% events are often generated by only 10% or 20% hosts. Liu et al.[10] has argued that this is

a major obstacle to applying traditional association mining in which a minimum support is �xed. This

motivates Liu [10] to use multiple minimum support thresholds that take into account the distribution

of items and the length of an itemset. However, this introduces extra parameters, which complicates

pattern discovery.

Clearly, the above three issues are directly related to the �rst step of the association rule discovery, i.e.,

�nding all frequent patterns with a �xed threshold. To address these issues, we employ the hypothesis

test, which has long been used to test whether a set of variables signi�cantly exceed an assumed

baseline distribution. When there is no speci�c prior knowledge about the association in a data set, the

reasonable baseline distribution is the independent distribution. Any departure from the independent

distribution will be of interest. Such a hypothesis test is known as the dependency test.

However, the dependency test are neither downward nor upward closed, a situation that impairs the

eÆciency of pattern discovery. Although we can apply the dependency test in the post-processing of

all frequent itemsets, doing so limits our ability to discover infrequent but dependent itemsets. This

motives us to introduce a fully dependent patterns (d-patterns). A d-pattern requires all its subsets

to satisfy the dependency test. Clearly, the full dependency is very stringent dependency. We will

further discuss this and provide solutions that combine the strength of the frequency test and consider

the possible negative dependency.

The dependency test (essentially the chi-square test), has been used previously. For example, Brin

et al.[2] used it for testing the dependence of a set of variables. Ma et al.[12] used it for testing the

periodicity. However, all these work used the normal approximation that assumes that the sample

size is large. In this work, we provide a thorough treatment for mining infrequent, but fully dependent

itemsets at the presence of noise. In particular, we analytically and empirically quantify the e�ect of the

randomness when itemsets occur infrequently in a noisy situation. To our best knowledge, this has not

been considered before in the context for pattern discovery. Extensive experiment have been conducted

to compare the performance of d-patterns against frequent patterns. We show that d-patterns can

discover infrequent patterns in a noisy situation, while the traditional approach fails. We also apply our

algorithm to real data. Many infrequent d-patterns are found, which can not be discovered otherwise.

1.1 Related work

There have been some interests recently in infrequent patterns. Cohn et al.[5] de�ne a symmetric

similarity measurement as the ratio of the support of a itemset divided by the summation of the

supports of its items. However, the focus is on two items that are highly correlated.

3

The problem of skewed item distributions has been addressed by a couple of authors. Brin et al. [2]

analyze this problem and introduce a chi-square test. However, their work focuses on the variable level

dependency test, while we focus on the item level testing. Liu et al. [10] develop an algorithm with

multiple support thresholds. Yang et al. [19] propose an approach based on information gain. None of

these e�orts address infrequent, noisy itemsets.

Mannila et al. [15] introduce frequent episodes, a generalization of association rules for temporal data.

Recently, [13] and [14] characterize temporal events from the statistical perspective. However, once

again, there is no consideration for infrequent patterns.

1.2 Organization of the paper

The remainder of this paper is organized as follows. Section 2 motivates, de�nes and analyzes d-patterns.

Section 3 extends these results to mine more complex associations. Section 4 shows some experimental

results. Our conclusions are contained in Section 5.

2 Problem Formulation

2.1 Probabilistic Model for Transaction Data

Let I be a set of k distinct items. A transaction T is a random variable taking values of all possible

subsets of I. Assume that there exists an unknown distribution P on the 2k possible states of T . A

transaction data T = fT1; : : : ; Tn : Ti
i:i:d� Pg is a collection of n independent samples from P . For

example, we could assume that there exists a distribution for people's shopping behavior at a super

market and each customer does his/her shopping independently. The market basket data are some

independent instances from that unknown distribution.

Given an item set E = fi1i2 � � � img, let c(E) denote the count of transactions containing E. To

distinguish dependent itemsets from the random ones, we apply the hypothesis testing, which has been

long studied in statistics.

2.2 Dependency Test

Under our probabilistic model about transaction data, the distribution of c(E) is Binomial with pa-

rameter n and p
E
, where p

E
is the probability of E being in a transaction. If the m items in E are

independent,

p
E
= P (fi1; i2; : : : ; img � Tg =

mY
j=1

P (ij � T) =
mY
j=1

pj:

On the other hand, if the m items are associated, the probability of their occurring should be higher

than that under the independent assumption, i.e., p
E
> p�, where p� denotes

Qm
j=1 pj. In the later

4

computation, all the pj's, whose real values are not available, will be replaced by their estimators

p̂j = c(ij)=n.

These can be further formalized as the following two hypothesis:

H0 (null hypothesis) : p
E
= p� (1)

Ha (alternative hypothesis) : p
E
> p�;

As shown in [4], we should reject the null hypothesis (independence assumption), if c(E) is bigger

than some threshold. Such a threshold can be determined by the pre-speci�ed signi�cance level �

(0 < � < 0:5), where � is known as the upper bound for the probability of false positive (incorrectly

accepting Ha). The dependency test
1 is then as follows: given a signi�cance level �, item set E is tested

to be dependent, if

c(E) � c� = max fc :
nX
i=c

n

i

!
(p�)i(1� p�)n�i < �g:

We will denote c� by minsup(E) since it is the minimal support for item set E to pass the dependency

test at signi�cance level �.

We note that when the sample size n is large, the above exact calculation for minsup(E) could be very

time-consuming. In this case, the Normal approximation can be applied. Under the null hypothesis,

the normalized c(E),

Z =
c(E) � np�p
np�(1� p�)

(2)

approaches to the standard Normal distribution by the Central Limiting Theorem[6]. Thus,

minsup(E) = np� + z�

q
np�(1� p�); (3)

where z� is the corresponding 1 � � normal quantile which can be easily found in any normal table

or calculated. For example, z� = 1:64 for � = 5%. Intuitively, � represents a con�dent level of the

test. A commonly used value is between 1% to 10%. There are many literatures discussing various

modi�cations to improve the accuracy of the normal approximation, such as [3], [17],[18] and [16]. In

our application, it is safe to assume that the number of transactions n is large. However, we still need

to distinguish two cases: np� is large and np� is small, where the np� represents the average number

of instances of itemsets in data. When np� is reasonable large, say np� > 5 [7][9], the usual normal

approximation (2) has been shown to be suÆciently accurate. However, when p� is extremely small, the

Poisson distribution has been shown to have a better accuracy[6]. In this case, minsup(E) becomes

minsup(E) = max fc : 1�
c�1X
i=0

e�np�(np�)i

i!
< �g: (4)

1The dependency test is optimal in the sense that it has the smallest probability for false negative (incorrectly accept

H0) among all the tests with the same signi�cance level, i.e., it is an uniformly most powerful test.

5

n*p

95
%

 q
ua

nt
ile

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1
2

3
4

5
6

Poisson
Normal
Normal + 0.5

O Binomial

Figure 1: Comparison of di�erent approximation for Binomial 95% quantile

To further evaluate the accuracy of the two approximations, we draw in Figure 1 the 95% quantile from

Binomial (denoted by circle), Poisson and Normal distributions versus np� when np� is less than 5,

where the quantiles from normal are rounded to integers. We can see that the Poisson approximation

works better than Normal. In this �gure, we also plot the quantile from the normal with the continuity

correction[6], i.e. Z = (c(E) � np� � 0:5)=
p
np�(1� p�). We �nd that such modi�cation actually

works worse than the usual normal approximation. To switch from the Normal approximation to the

Poisson, the rule of thumb used by many chi-square applications is that we switch from the Normal

approximation to the Poisson when np� < 5

2.3 De�nition and Properties of d-pattern

Ideally, we would like to �nd all itemsets that are dependent. However, this is computational infeasible

as we show in the following that the dependency test is neither downward nor upward close.

Proposition 1 Dependency test is neither upward nor downward closed .

Proof: It is enough to give two counterexamples for the normal approximation. We will consider an

item set E including three items i1; i2 and i3.

� Counterexample for upward closeness: It's possible that (i1; i2) passes the dependency test, but

c(E) = 0.

� Counterexample for downward closeness: Suppose that we have n = 20 transactions and the

observed counts are: c(i1) = c(i2) = c(i3) = 10 and c(i1i3) = c(i1i2i3) = 4. Consider the item set

E = fi1i3g and its superset F = fi1i2i3g. When we set � = 20%, F will pass the test. But E

can't pass the test with any signi�cant level � < 50%, because there dose not exist any z� > 0

(corresponding to � < 50%) satisfying c(E) = 4 > np̂1p̂3+ zs
p
np̂1p̂3(1� p̂1p̂3) > 5, observing that

6

c

a

b

c

a c

b

(1) (2) (3)

a

b

Figure 2: Di�erent Bayes Network Structure for three items a, b and c.

np̂1p̂3 = 20(10=20)(10=20) = 5.

2

As it is computationally infeasible to discovery all itemsets that are dependent, we de�ne a stronger

dependency condition. This enables us to discover all such itemsets eÆciently.

De�nition For a given signi�cant level �, an item set E = fi1i2 � � � img (m � 2) is a quali�ed d-pattern,

if

1. E passes the dependency test with signi�cant level �;

2. Any subset of E with more than one item also passes the dependency test with signi�cant level �.

The �rst condition in the de�nition tests whether the item set is dependent or not. This di�erentiates

a quali�ed pattern from a random one. The the second condition provides two bene�ts. First, it

enables us to develop an eÆcient algorithm for discovering all d-patterns. Second, it avoids some false

patterns. We recall the second counterexample in the proof for proposition 1 shows that it is possible

that set fi1i2i3g passes the dependency test, even though i3 is independent of the other two. The second

condition of d-patterns avoids this. Further, Figure 2 shows three di�erent Bayes Network structures

for items a, b and c. No matter which model our data is generated from, the longest pattern passing the

dependency test will be fabcg. The d-patterns are di�erent for the three di�erent structures: fab; acg
for model (1), fabcg for model (2) and fabg for model (3).

Compared with mining for frequent itemsets, in which an user de�nes a constant minsup, the d-patterns

are quali�ed by a variable minsup(E), which depends on the distributions of the items in E as well as

the length of E. This naturally provides some nice properties.

Property 1 The d-pattern is downward closed.

Proof: The conclusion is followed by condition (2) in the de�nition.

Property 2 The minimal support minsup(E) increases as the frequency of items increases, when their

product p� � 50%.

7

Proof: When p� � 50%, it is easy to see that minsup(E) = np� + z�
p
np�(1� p�) (by normal

approximation) is an increasing function of p�. The minsup(E) for Poisson approximation is equal

to the (1 � �) Poisson(np�) quantile. Then, to show that minsup(E) is an increasing function of

p� is equivalent to show that for any �xed k, the cumulative probability of Poisson(�)

F (k; �) = P (Poisson(�) � k) =
kX

i=0

e�(�)i

i!

is a decreasing function of �. Take the derivative of F (k; �) with respect to �.

@

@�
F (k; �) =

kX
i=0

[�e�(�)i

i!
+
e�i(�)i�1

i!
]

= �
kX

i=0

e�(�)i

i!
+

k�1X
i=0

e�(�)i

i!
= �e���

k

k!
� 0

So we've shown that F (k; �) is a decreasing function of � with �xed k. 2.

In the appendix, we further show that p�'s upper bound, 50% can be actually relaxed. For example,

when the total transactions is over 100, we can set the upper bound to be 99%. However, the 50%

upper bound is already enough for most of our applications.

Property 3 The minimal support minsup(E) decreases as the size of E increases. Especially, the

decrease is exponentially fast for minsup(E) by the normal approximation.

Proof: Recall that p� = p1p2 : : : pm. When m increases, p� decreases by multiplied with a number

less than 1. So the result follows by the property 2. For normal approximation, the leading term

np� decays exponentially fast when m increases.

Clearly, Property 1 enables to develop an eÆcient algorithm. Property 2 provides a natural solution to

deal with unevenly distributed data. Property 3 encourages the algorithm to discover long patterns.

2.4 Analysis

In this section, we analytically evaluate the performance of d-patterns in the presence of noise. Two

types of noise are considered here: one is the mixture of patterns and random events, and another is

that items may be lost from the instances of patterns.

Random Noise: To model the random noise factor, we assume the distribution over transaction data

P is a mixture: P =
P

P (� j �)p(�), where � is a hidden state indicating whether the noise is present

(� = 1) or not (� = 0) and the prior probability P (� = 1) = r. We consider a pattern E = fi1i2 : : : img
in the following analysis. When � = 0, all the m items are totally associated with each other, i.e.

P (E j � = 0) = 1. When � = 1, all the m items are independent with individual frequency p, i.e.

P (E j � = 1) = pm. Then the marginal probabilities are given by

p
E
= (1� r) + pmr; pj = (1� r) + pr; j = 1; : : : m: (5)

8

noise prior r

co
un

ts
 in

 p
er

ce
nt

ag
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

n=100
n=1000
n=5000

Figure 3: Plot of c(E) vs. minsup(E) for

di�erent n (p = 0:6 and z� = 2)

sample size n

r*

50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p=0.4
p=0.7

Figure 4: Plot of r� vs. n for di�erent p

(z� = 2).

The expected count is c(E) = n(1 � r) + npmr and the threshold for passing the dependency test is

minsup(E) = n[(1� r) + pr]m + z�
p
n(1� r + pr)m[1� (1� r + pr)m].

Figure 3 plots c(E) vs. minsup(E) for di�erent n's. We see that when noise is present, E is not always

be able to pass the dependency test even though it is dependent. There exists a breaking point r�,

which is the maximal noise prior E can tolerate to still be able to pass the test. Figure 3 also indicates

that r� is moving with sample size n. We �nd that r� is approaching 1 when n goes to in�nity, i.e.,

asymptotically d-patterns are not sensitive to noise as Figure 4 shows. How fast r� goes to zero is

related with p: the smaller p, the faster r� goes to zero.

The proof for the asymptotic noise non-sensitivity is sketched in the following. We divide n at both

sides of inequality c(E) � minsup(E),

1� r + pr � (1� r + pr)2 + z�O(1=
p
n): (6)

We can ignore the second term on the right hand side of (6). Rearranging the remaining terms, we get

a quadratic form of r. It can be showed that the inequality always holds true when 0 < r < 1.

Lost Information: In many applications, data is collected through a channel in which each record

could be lost. For example, alarms in a distributed computer network is collected by a unreliable

protocol (UDP) through the network. To evaluate the performance under the lossy environment, we

assume the lost probability is `. Suppose we have a pattern E = fi1i2 : : : img and each item ij in E has

frequency p, i.e. each item only appears as a part of the pattern E in the transaction data. Due to the

lost information, the real count for E is expected to be c(E) = np(1� `)m, which decays exponentially

with the pattern length m. The expected frequency for each item is also changed to be pk = p(1 � `).

The corresponding threshold minsup(E) is thus given by

minsup(E) = npm(1� `)m + z�

q
npm(1� `)m[1� pm(1� `)m]: (7)

9

pattern length m

co
un

ts

2 3 4 5 6

0
50

0
10

00
15

00
20

00 *

*

*

*
*

minsup(E)
frequency threshold

* c(E)

Figure 5: Plot of c(E) vs. pattern length

(n = 1000, p = 0:8 and ` = 0:5)

frequency p

m
ax

im
al

 lo
st

 p
ro

ba
bi

lit
y:

 l*

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

n=1,000
n=5,000
n=10,000

Figure 6: Plot of `� vs. p for di�erent n

(z� = 2).

In �gure 5, the solid line shows the threshold minsup(E) of the dependency test and the dashed line is a

constant frequency threshold. Both thresholds will not miss E as a pattern, but minsup(E) adjusts its

value with the pattern length and shrinks the gap between the counts and the threshold. This implies

that using minsup(E) has much less false patterns than using the frequency threshold.

Rearrange the inequality c(E) > minsup(E), we can obtain

` < 1� (
n(p� pm)2

pmz2�
+ pm)�

1

m (8)

The right hand side of inequality (8), denoted by `�, is the maximal lost probability that can be tolerate

while pattern E is still quali�ed as a d-pattern. It is easy to see that such a tolerance increases when

sample size n increases. Further, from �gure 6 we can see that `� is decreasing with p and the slope for

the decay is getting smaller when n gets larger.

2.5 Level-wise Algorithms

Because d-patterns are downward closed (Property 1), an level-wise search algorithm can be developed

as detailed in Algorithm 1.

Our algorithm searches the candidate space in a level-wise. This is similar to Apriori[1]. Step 1 and 2

handle the special situations for level 1 and 2. Step 4 constructs candidates Ck+1 based on the quali�ed

patterns Lk in the previous level. This can be accomplished by the joint operation followed by the

pruning done in the A-priori algorithm[1]. Step 5 scans data and computes count for each candidate

itemset. Step 6 �nds all d-patterns of length k by using isDPatttern. These steps are iterated until

there is no more quali�ed d-patterns.

Now, we discuss some di�erences between our algorithm and Apriori. First, by de�nition, the length

of a d-pattern is at least two. However, we still need to scan data and compute the count of each

10

Algorithm 1 Level-wise algorithm for mining d-patterns

Input: Transaction data T and signi�cant level �

Output: all d-patterns

(1) L1 = ffagja 2 Ig; Scan T to count the occurrences of each pattern in L1
(2) Find level 2 d-patterns: L2
while Lk 6= ; do

(4) Generate Ck+1 based on Lk;

if Ck+1 is ; then
break;

end if

k=k+1

(5) Scan data to count occurrences of each candidate in Ck;

(6) Find all quali�ed d-patterns Lk = fvjv 2 Ck and isDPattern(v) is trueg;
end while

(7) Output [k
i=2Li

item. These counts will be used in the later steps. Second, we use a di�erent criterion to qualify

patterns as detailed in isDPattern. The basic idea is to check the count of an itemset, if the count

is above 5 [9] [7], we use the normal approximation (Equation (3)); otherwise, Equation (4) is used to

give more accurate estimation for an infrequent items. Last, we note that the candidate space at the

second level, C2, can not be pruned through the normal joint operation. However, we note that the

level 2 itemsets can be pruned by using the upper bound. Consider any 2-itemset fij ; ilg 2 C2. As

count(ij ; il) � min(count(ij); count(il)), fij ; ilg can not pass the dependency test, if either count(ij) or

count(ik) is not bigger than minsup(ij; il) = np̂1p̂k + z�
q
np̂j p̂l(1� p̂j p̂l). This upper bound allows us

to conduct pruning at the second level.

Algorithm 2 isDPattern. Algorithm for qualifying a d-pattern

Input: an item set E, and the counts of every its subsets.

Output: True, if E is a d-pattern; False, otherwise

if count(E) � 5 then

Compute mincount(E) by Equation (3).

else

Compute mincount(E) by Equation (4).

end if

if count(E) > mincount(E) then

Return true

else

Return false

end if

It is easy to see that Algorithm 1 needs k-1 data scans. The complexity of this algorithm is linearly

11

dependent on the length of data, but is exponentially dependent on the size of the longest d-pattern.

In practice, the algorithm converges quickly, especially when patterns are not very long.

3 Discussion

In this section, we generalize the d-patterns in two ways. First, we discuss how to combine the frequency

test that relaxes the condition of d-patterns. Second, we discuss how to mine a more complex pattern

de�ned by both negative and positive dependency.

3.1 Frequency and d-patterns

This section shows that the concepts of frequent itemsets and d-patterns can be combined to develop

an algorithm that discovers a broader range of itemsets.

As we discussed, the d-pattern de�nition is a very strong condition that requires that not only the

itemset, but also all its subsets are dependent. This strong condition enables us to explore infrequent,

but fully dependent patterns. However, it may miss some patterns that can be discovered by the frequent

itemsets. We begin with the conjunction and disjunction of downward closure properties developed by

our previous work[11].

Proposition 2 (Conjunction and disjunction of downward closure properties) Let boolean

functions f1(:) and f2(:) be two quali�cation functions of an item set such that f1(:) and f2(:) are both

downward closed . Then, the quali�cation function f1(E) ^ f2(E) is downward closed , where \^"
represents the \and" operation. And f1(E) _ f2(E) is also downward closed , where _ is the \or"

operation.

Proof: Let E be a nonempty itemset, E0 � E. Assume that f1(E) ^ f2(E) holds. Since f1(E) and

f2(E) both hold, we know that both f1(E
0) and f2(E

0) are true since f1 and f2 are downward closed .

Therefore, we obtain f1(E
0)^ f2(E0) is true. Similarly, assume that f1(E)_ f2(E) holds. Then, at least

one of f1(E) and f2(E) is true and so f1(E
0) _ f2(E

0) is true. 2

As both d-pattern condition and the frequency condition are downward closed , we can combine them

by either conjuction or disjunction without losing the downward closure property.

Clearly, the conjunction operation leads to even more restrictive d-pattern called the frequent d-pattern.

In our experience, we often set the minimum support to be between 2 and 5, which is still considerably

low, however, it avoids the situation that there are only one or two instances and the statistical test is

not very stable.

In contrast to the conjunction operation, the disjunction operation looses the fully dependent conditions.

In this case, quali�ed itemsets are either frequent (above theminisup) or infrequent, but fully dependent.

12

This enriches the ability of both d-patterns and frequent patterns.

Since the two derived conditions are downward closed, we can use the similar level-wise algorithm to

discover all itemsets satisfying these conditions by just changing the quali�cation step correspondingly.

3.2 Negative Dependency

Now, we further discuss the negative dependency and an itemset with complex dependency, which may

be missed by both the d-pattern test and frequent pattern test.

Although the dependency test in section 2 is designed to capture the positive dependency relationship

between items, it can be modi�ed to perform the negative dependency test with the alternative hy-

pothesis Ha : pE � p�. Given a signi�cance level �, we should reject the independency assumption, if

c(E) < np� � z�
p
np�(1� p�).

Combining the two tests, we can mine either positive or negative associated items. Further more, the

combination of the those tests can mine more complicated patterns which could be missed by d-patterns

and association rules. We illustrate this by an example given in the table (in percentage) for item a; b

and c.

a �a

b c 0 12.5 12.5

�c 25 12.5 37.5

�b c 25 12.5 37.5

�c 0 12.5 12.5

50 50 100

Here, the true pattern is that a is purchased with either b or c. We denote such a pattern by a(bc).

Clearly, in this setting, b and c are negatively correlated. Further more, d-patterns and frequent itemsets

can not characterize such a relationship since the support of fabcg is 0 and a and b are independent (

p(a)� p(b) = p(ab)).

A possible way to mine such an association is to �rst mine all negative dependent itemsets, and add an

extra new item into every transaction containing either b or c. Second, we mine d-patterns from the

extended transaction. Since p(a(bc)) = 50% > p(a) � p((bc)) = 0:5 � 0:875, the dependency test can

pick the pair fa(bc)g as a positive associated pattern.

13

4 Experimental Results

This section assesses our algorithm for discovering d-patterns. Two kinds of assessments are presented.

The �rst one evaluates the performance of our algorithm using synthetic transaction data. Here, we

will demonstrate that our algorithm for d-patterns has signi�cant advantages over that for mining

frequent itemsets at the presence of noise and in the situation that items are unevenly distributed. The

second one studies our algorithm using real data collected from a production computer network. Our

results demonstrate that there are indeed many infrequent d-patterns that can not be discovered by the

traditional approach.

4.1 Synthetic data

We begin by using synthetic data to study the scalability and eÆciency of our algorithm for discovering

d-patterns. The synthetic data are constructed by �rst generating items randomly and uniformly, and

then adding instances of patterns into randomly selected transactions. Thus, the synthetic data are

speci�ed by the following parameters: the number of transactions, the number of distinct items, the

average number of random items per transaction, the number of the instances of patterns and their

length, and the noise to single ratio (NSR). Here, the NSR for an item in a pattern is de�ned by

the ratio between the number of random instances to the number of the item instances in the pattern.

Throughout, the number of distinct items is 1000, the number of patterns is 5 with length 5, the average

number of random items in a transaction is 10 and the NSR is 5.

We assess scalability by varying the number of transactions and compare the level-wise algorithm for

mining frequent patterns and our d-patterns. The minchi (i.e. z� de�ned in Section 2) is set to achieve

95% con�dence level. The minsup for frequent patterns is adjusted so that there are no false positives

above level 2. An experiment consists of 5 runs done with di�erent random seeds. Figure 7 plots the

average CPU time against the total number of transactions (in thousands). The results for frequent

itemsets are indicated by the dotted line and those for d-patterns by the slide line. We see that the

two curves are almost indistinguishable, although the curve for frequent patterns is just below that for

d-patterns. This shows that the extra overhead required for computing dependency test is very small.

Indeed, we see that both algorithms scale linearly as the number of transactions increases.

Now, we study the e�ect of noise by varying the NSR, and evaluate our results in terms of two types

of errors: false positive and false negative. We note that we can always lower the minchi or minsup

so as to discover all true patterns in the expense of generating more false positive itemsets. In our �rst

experience, both the minchi for d-patterns and minsup for frequent itemsets are tuned so that there is

no false negative. Here, the number of transaction is �xed at 10,000. The results are plotted in Figure 8.

The x-axis is NSR, and the y-axis is the cpu run time in second. The solid line represents the results for

14

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

Figure 7: Average run time in second vs. the

number of transactions in 1,000.

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

900

1000

Figure 8: Average run time in second vs.

NSR (noise signal ratio).

the d-pattern algorithm, and the dotted line is for the frequent itemset algorithm. The �gure shows that

the cpu time of both algorithms grow exponential after some cut-o� points. This is because as the NSR

increases, it becomes more diÆcult to distinguish true patterns from noisy patterns. Thus, for a large

NSR, the minchi threshold has to be set very low in order to discover all true patterns. However, doing

so picks up more noisy patterns and thus use more cpu-time for counting. A second observation from

the �gure is that the d-pattern algorithm can tolerance much more noise, and its performance (so as its

total candidate itemsets) decreases much more gracefully than that of the frequent itemset algorithm.

This can be explained by the fact that the minsup of frequent itemsets should be set below the number

of the instances of the true patterns. However, the minchi of d-patterns can be considerably larger

than that of the true patterns for mining at a low level by taking into a consideration of the expected

noisy instances.

Our second experience studies how the chi-threshold relates to the false positive and the false negative

of our results. Figure 9 draws false positive for NSR 20 (dashed line), 10 (solid line) and 5 (dotted line).

Figure 10 shows the false negative. In these two �gures, the y-axis is normalized by the total number of

the subsets of true itemsets. Clearly, the smaller the minchi, the more false positive and the less false

negative. Also, when NSR is not too large (in this case NSR is less than 15), both the false positive and

negative can be close to zero. For example, when NSR is 5, we can achieve very good overall results for

1:5 < minchi < 7. However, when NSR is large, this is no longer true. For example, when NSR is 20,

we either miss true patterns when minchi is large or result in too many false patterns when minchi is

small. However, we note that even in this very noisy case, the d-patterns still signi�cantly outperform

the frequent patterns as we shown in Figure 8.

Third, we study the e�ect of unevenly distributed itemsets. Here, we divide items into two groups with

50 items each. 10k transactions are randomly generated with items in the �rst group. We then generate

15

10k � u transactions for the second group of items with the NSR being 5. u represents the uneven

factor. Figure 11 plots the cpu run time versus the uneven factor. It shows that the frequent itemset

algorithm runs exponentially with respect to u because there are many random itemsets being above a

threshold. While, the uneven factor has a little impact of the performance of the d-pattern algorithm

that discover all true itemsets with minchi being 1.84 that corresponds to 5% statistical con�dence.

This results is consistent with our analytical results derived in Section 3.

4.2 Production Data

The windowing schemes as in [15] can construct transactions from time series data. Doing so allows us

to discover temporal d-patterns2. In this section we applies the algorithms for discovering d-patterns in

temporal data from a production computer network. Here, our evaluation criteria are more subjective

than the last section in that we must rely on the operations sta� to detect whether we have false

positives or false negatives.

Two temporal data sets are considered. The �rst was collected from an insurance company that has

events from over two thousand network elements (e.g., routers, hubs, and servers). The second was ob-

tained from an outsourcing center that supports multiple application servers across a large geographical

region. Events in the second data set are mostly server-oriented (e.g. the cpu utilization of a server is

above a threshold), and those in the �rst relate largely to network events (e.g. \link down" events).

Each data set consists of a series of records describing events received by a network console. An event

has three attributes of interest here: host name, which is the source of the event; alarm type, which

speci�es what happened (e.g., a connection was lost, port up); and the time when the event message

was received at the network console. We preprocess these data to convert events into items, where an

item is a distinct pair of host and alarm type. The �rst data set contains approximately 70,000 events

for which there are over 2,000 distinct items during a two-week period. The second data set contains

over 100,000 events for which there are over 3,000 distinct items across three weeks.

We apply our algorithm for mining d-patterns to both data sets, and compare the results to those for

mining frequent itemsets. We �x minsup to be 3 so as to eliminate a pattern with only one or two

instances. Our results are reported in Tables 3 and 4 for data sets 1 and 2, respectively.

Table 1 displays the d-patterns discovered by level (pattern size) in the level-wise search. Column 1

is the level index, i.e. the size of d-patterns; column 2 indicates the number of broader d-patterns

found from the �rst data set. A broader d-pattern is the one that is not a subset of any other d-pattern.

Column 3 is the actual count (minimum to maximum) of d-patterns at the corresponding level. Columns

4 and 5 report results for the second data set.

2Concerns are needed to deal with the overlapped windows. We refer to [15] for more detailed discussion

16

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Figure 9: False positive vs. minchi

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Figure 10: Normalized false negative vs. minchi

1 2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

Figure 11: CPU time vs. uneven factor

17

Level d-patterns count (min:max) d-patterns count (min:max)

(Data 1) (Data 1) (Data 2) (Data 2)

2 273 3:144 160 4:137

3 56 3:8 53 5:16

4 64 3:7 77 4:61

5 25 3:7 44 5:6

6 7 3:9 41 5:9

7 0 13 4:61

8 0 11 5:6

9 0 9 5:6

10 0 2 4:5

11 0

12 0

13 1 3

Table 1: Experimental results

From the table, we can observe that there are indeed many d-patterns in our data. Over half of them

have a small number of occurrences, less than 10 in both data. To provide some insights of how frequent

itemsets performance, Figure 12 plots the total number of frequent itemsets (the solid line) and the

number of border frequent itemsets (the dashed line) against minsup. Here, a border pattern refers to

a pattern that is not a subset of any other pattern. The x-axis is minsup, and the y-axis is the number

of frequent patterns discovered on a log scale. Note that the number of frequent patterns is huge{in

excess of 1,000{even when when minsup is 20. Examining the frequent patterns closely, we �nd that

most of them can not pass the dependency test. This is not surprise since the marginal distribution of

items in our data is highly skewed. Indeed, a small set of items account for over 90% of total events,

and consequently, these items tend to appear in many frequent patterns. Beyond the quality of the

results produced by mining for frequent itemsets, there is an issue with scalability as well. When we

attempt to run with minsup = 3, more than 30k candidates are generated at the third level. Not only

does this result in very large computation time, we ultimately run out of memory and so are unable to

process the data.

We reviewed the d-patterns found with the operations sta�. Many patterns are related to installation

errors (e.g. a wrong parameter setting of a monitoring agent) and redundant events (e.g. 11 events

are generated to signal a single problem). In addition, a couple of correlations were discovered that are

being studied for incorporating into event correlation rules for the real-time monitoring. We emphasize

that over half of the d-patterns discovered have very low support levels that can be discovered by the

18

10 15 20 25 30 35 40
10

1

10
2

10
3

10
4

10
5

minsup

Th
e

nu
m

be
r o

f f
re

qu
en

t p
at

te
rn

s

Figure 12: Frequent patterns of the �rst data set. \{": the number of frequent patterns in the log scale;

\..": the number of border frequent patterns in the log scale; x-axis is minp

traditional approach.

5 Conclusion

In this paper, we address three fundamental issues of the traditional association mining so as to mine

patterns that are infrequent from noise, and unevenly distributed data. Our key idea is to use the

dependency test. The dependency test has been used before under the large sample assumption. This

work argues that it is possible to apply the dependency test for infrequent itemsets.

As the dependency test is neither downward nor upward closed, we de�ne a strong dependency test that

requires not only an itemset but also all its subsets satisfy the dependency test. Although the strong

dependency test may miss some dependent patterns, a level-wise algorithm can be constructed so as to

discover all d-patterns regardless of their support. To provide the ability to discover more dependent

patterns that may be of interest, we further extend the d-pattern in our discussion in two ways: one is a

more complicated dependency de�ned by both positive and negative dependency, another is combining

with the frequency test so that we can discover patterns that either frequent or infrequent but fully

dependent.

We demonstrate that the d-patterns signi�cantly outperform the frequent pattern both analytically and

empirically. In particular, we develop analytical results that characterize the accuracy of the d-pattern

test at the noisy and lossy environment. We conduct intensive experiments using both synthetic and

real-word data. Our results con�rm that the d-patterns are insensitive to unevenly distributed data

and work gracefully in the presence of noise.

19

frequency p

m
in

su
p(

E
)

0.95 0.96 0.97 0.98 0.99 1.00

99
.5

10
0.

0
10

0.
5

10
1.

0

minsup(E) vs p, n=100

Figure 13: plot of minsup(E) vs p

sample size n

br
ea

ki
ng

 p
oi

nt
 p

*

0 2000 4000 6000 8000 10000

0.
99

0
0.

99
2

0.
99

4
0.

99
6

0.
99

8
1.

00
0

p* vs n

Figure 14: plot of p� vs n

Acknowledgments

We are grateful for Jiong Yang, Wei Wang, Irina Rish and Charles Perng's valuable discussions. Dis-

cussions with Professors John Hartigan and Andrew Barron are also really appreciated.

Appendix

The property of minsup(E) = f(p) when p > 0:5

As we mentioned in section 2.2, minsup(E) is a deceasing function of p when p � 0:5. How about its

property when p > 0:5?

f(p) = np+ �s

q
np(1� p)

f 0(p) = n+
�sn(1� 2p)

a
p
np(1� p)

= n+
�s

p
n

2

 s
1� p

p
� 1p

(1� p)=p

!
: (9)

Observe that (1� p)=p decreases with p 2 (0; 1). Then f 0(p) decreases with p since f(x) = x� 1=x is a

increasing function for x. Hence there exist a p�, such that

f 0(p) � 0; f(p)increase; forp � p�;

f 0(p) � 0; f(p)decrease; forp � p�:

That is, f(p) is a unimodal3 function with respect to p. Figure (13) plots f(p) for n = 100; s% = 95%,

where the break point p� is close to 0:995.

Expression (9) also shows that p� increases with n and decreasing with �s. Figure (14) plots p� versus n
for �xed s% = 95%. We can see that p� increases very fast with respect to n. When the item frequency

3A function f(x) is unimodal if there exists x� such that f(x) is non-decreasing for x � x� and non-increasing for

x � x�

20

is less than 95% and the total transactions is more than 1000, the minimal support minsup(E) can be

regarded as is a increasing function with respect to p.

21

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large

databases. In Proc. of VLDB, pages 207{216, 1993.

[2] S. Brin, R. Motiwani, and C. Silverstein. Beyond market baskets: Generalizing association rules

to correlations. Data Mining and Knowledge Discovery, pages 39{68, 1998.

[3] Andrew Carter and Davi Pollard. Tusnady's inequality revisited. Technical report, Statistics

Department, Yale University, New Haven, CT, July 2000.

[4] G. Casella and Berger R. L. Statistical Inference. 1990.

[5] Edith Cohen, Mayur Datar, Shinji Fujiwara, Aristides Gionis, Piotr Indyk, Rajeev Motwani, Jef-

frey D. Ullman, and Cheng Yang. Finding interesting associations without support pruning. In

ICDE, pages 489{499, 2000.

[6] R. Durrett. Probability: Theory and Examples. Duxbury Press, 1996.

[7] Priscilla E. Greenwood and Mikhail S. Nikulin. A Guide to Chi-squared Testing. John Wiley &

Sons, Inc., New York, NY, 1996.

[8] J.L. Hellerstein and S. Ma. Mining event data for actionable patterns. In International Conference

for the resource management & performance evaluation of enterprive computing systems, 2000.

[9] H. O. Lancaster. The Chi-squared distibution. John Wiley & Sons, New York, 1969.

[10] B. Liu, W. Hsu, and Y. Ma. Mining association rules wiht multiple minimum supports. In Pro-

ceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,

1999.

[11] S. Ma and J.L. Hellerstein. Mining mutually dependent patterns, 2001.

[12] S. Ma and J.L. Hellerstein. Mining partially periodic event patterns. In ICDE, pages 205{214,

2001.

[13] H. Mannila and D. Rusakov. Decomposition of event sequence into independent components. In

SAIMKDD, 2001.

[14] H. Mannila and J. K. Seppanen. Finding similar situations in sequences of events via random

projections. 2001.

[15] H. Mannila, H. Toivonen, and A. Verkamo. Discovery of frequent episodes in event sequences. Data

Mining and Knowledge Discovery, 1(3), 1997.

[16] W. Molenaar. Approximations to the poisson, binomial, and hypergeometric distribution functions.

Technical Report CWI Tract 31, Center for Mathematics and Computer Science, 1970.

22

[17] David B. Peizer and John W. Pratt. A normal approximation for binomial, f, beta, and other

common, related tail probability, i. Journal of the American Statistical Association, 63:1416{1456,

December 1968.

[18] John W. Pratt. A normal approximation for binomial, f, beta, and other common, related tail

probability, ii. Journal of the American Statistical Association, 63:1457{1483, December 1968.

[19] J. Yang, W. Wang, and P. S. Yu. Informiner: Mining surpising periodic paterns. In Int'l Conf. on

Knowledge Discovery and Data Mining, 2001.

23

