RC22338 (W0202-041) February 14, 2002
Computer Science

|BM Research Report

A Note on Guaranteed Forward Progressin Compressed
Memory Systems

Peter A. Franaszek, Dan E. Poff

IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Y orktown Heights, NY 10598

== =— Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India- T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of 1BM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,

P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Note on Guaranteed Forward Progressin Compressed Memory Systems
Peter Franaszek and Dan Poff

IBM T. J. Watson Research Center

Abstract: In acomputing syslem where the contents of main memory are held in compressed form, a
possible problem is that changes in compressibility will lead to a condition where pageouts need be
done, but the process to accomplish this may require more physical memory resources than are
available, resulting in a system hang. The avoidance of this condition we term guaranteed forward
progress, or GFP. There have been anumber of proposas for system structures which ensure this
property. In this paper, we briefly review these, then concentrate on two new directions, termed
respectively orthogonal paging and dynamic address disabling. Either of these approaches appears
to provide afeasible and possibly preferable means for obtaning GFP. For convenience in the
discussion, we generdly assume an 1A 32 processor architecture, and IBM’s Memory Extension
Technology (MXT).

1. Introduction

Main or random access memory is generaly the most expensive component of the centra eectronic
complex of server class machines. This observation has led to a number of system design efforts where
part or dl of the memory contents are held in compressed form, and decompressed on access (1, 2, 3,
4,5). An example of such asysem isshown in Figure 1. Here the cache hierarchy hasthreelevels: L1,
L2, and L3, where L3 is furthest from the processor(s). Thisisthe configuration used in IBM’s
announced MXT (memory extension technology) design (2). There L3 cache lines contain 1K bytes,
and the content of aline is compressed on write back to main memory. The content of main memory is
decompressed on a cache line miss when data is being fetched to the cache from main memory.
Typicdly, dl contents of main memory may be held in compressed form. Accesses to memoary involve
an extralevd of indirection, the translation between processor ‘rea’ addresses and the physical
location(s) of the contents. The trandation is done via a content trandetion table or CTT. Physica
memory space is dlocated in units of 256 bytes. These units are termed sectors. The physical space or
number of sectors occupied at any given timeisafunction of the number of pagesin memory, and of
their compressibility. Some page contents are fully compressible; that is, they are fully described in the
CTT, and thus do not require any alocation of sectors. In the current MXT implementation, the real
memory Sze can be as greeat as twice the nominal physica space required. That is, the number of red
addresses corresponds to twice the amount of physica memory.

Compresson results in aStuation where there is no longer a one to one relation between the number of
pages hed in memory and the amount of physica space occupied. This means that the system must

Page 1 of 18

include a mechaniam for monitoring the amount of free physicd space available. This can then lead to
pageouts if the physica spaceis running low, and conversdy to increasing the number of assigned real
addresses when space is available. This mechanism would operate in conjunction with, and in amanner
roughly andogous to today’ s virtual memory managers, which attempt to ensure that there isdways a
sufficient number of available page frames.

However, compressbility can vary much fagter than the I/O bandwidth, since data can be modified and
recompressed a the full memory bandwidth. Further, the act of deleting pages from memory can itself
cause expanson due to the modification of various data Structures, and aso as aresult of write backs
from the caches during this process. This means that some provision need be made to avoid a Stuation
where pageouts need be done, but the amount of available free space to do so isinsufficient; this
condition causes a system crash or hang.

There appear to be two generd approaches to the problem of guaranteeing forward progress, whichwe
respectively term safety and dynamics. In the safety approach, the number of pages to which
read/write access is permitted is limited by the physicd space available. Thet is, the number of pages
which can be modified and thus require additiona space is limited. Attempts to access additiona pages
resultsin an interrupt, which then permits pageouts to occur. A requirement of this method isthat al
essential memory contents required for pageouts are ble. In the dynamic approach, actions need
be taken to stop further memory degradation, followed by pagng to recover required space.

Weilludrate these gpproaches via some examples. The following two are safety based:

Al) Compressed Page Store:

Thisisthe approach taken by Loughbourough Universty (3). Here a set of pages are
compressed at any given time. These are accessed asin today’ s machines. The rest of memory
is essentidly a paging store holding compressed data. Accesses of any of these pages resultsin
an interrupt, a check on the available physicd space (with the possibility of a pageout), and
finaly the decompression of the desired page, as well as possbly the recompression of a
currently compressed page. The operating System operates as in today’ s machines, with
decompression or movement of pages done only under guarantees of adequate space.

A2) M-Space:

A technique termed M -space, or mapped space (7.). Here asubset of pagesis subject to
read/write access, with read-only access for the others. A read/write request to aread-only
enabled page causes an interrupt. Access to the desired page is then granted only if thereis
aufficient physical space, asin Al. Differences here from the prior technique include: @)
essentidly al pages may be held in compressed form, b) read-only pages are dways accessible,
and c) aread/write request can be satisfied without decompressing an entire page.

Page 2 of 18

Potentid drawbacks of M-Space are associated with the overhead of moving pages between say
read-only and read-write status. This can require TLB invalidates, updates to data structures and flushes
of cache contents, as well as arequirement for substantia free-gace reserves. However, this technique
offers advantages over Al in that only L3 lines which are actualy accessed need be
decompressed/compressed. Also it is not necessary to keep alarge part of memory unmapped.
Another problem with the above two approaches is related to the fact that adl programs/ data needed
for paging needs to be accessible independently of the amount of free physicd storage. Thisindudes
metadata describing disk addresses. This can be a problem with applications such as web acceerators,
which occupy space in the system cache, and where metadata required for paging may be scattered
throughout the system cache, and thus difficult to identify. Here the entire system cache, comprising the
bulk of storage, may be need to be held in uncompressed or mapped space, thus diminating any
advantage of compression.

The second or dynamic type of approach requires that the shortage of free space be detected, and
some action taken before a point of no return. That is, that the action taken ensures that whatever
additional spaceis used during the process of recovery isnot larger than the reserves of physica space.
There are anumber of varigions:

B1) Knowledge:

Here andys s/experimentation is used to determine how large areserve of free physica spaceis
required for safe operation. Any required paging is done by the operating system, with no
modifications for redtricting address ranges etc. A potentid problem here isthat it may be
difficult to andyticaly determine what isworst case behaviour, and that the worst case reserves
computed with smplifying assumptions may be excessvely large. A smple approach to GFP
with knowledge isto have al except for alimited number of pages required to be unmodified
and listed on a specia data structure (the outlist discussed below) with a guaranteed smdll
footprint. Pages on thislist can then be eiminated as necessary for space recovery, with a
guaranteed bound on the space required. Knowledge isthe basis for the current MXT support
software (8).

B2) Dynamic address dissbling (DAD):

Here sufficient free space is maintained to guarantee access to operating system pages, for
example resarving sufficient space for the maximum expansion of such pages. Access to user
space is disabled given alow avallable memory interrupt. This limits the amount of expansion
which can occur. The disabling could be either by software (as described below), or by
hardware, the latter requiring a change in processor architecture.

Page 3 of 18

B3) Orthogond paging (OP):

Here a software component with a guaranteed smdll footprint ‘ stedls and outputs pages after
the operating system is stopped by an interrupt. These pages could be written to a swap area on
disk. After sufficient spaceis recovered, norma operation can resume, with specid treatment of
pages which have been stolen. We show that if this operation is done properly, the GFP
property can be obtained. A hypervisor, if properly structured, can be used to implement

orthogond paging.

B4) Cache-based Interrupts:

Asabasisfor an dternative approach, a property of the above-mentioned MXT architectureis
that expansion of memory contents occurs only on cache cast outs. A machine might then be
designed so that a cache miss to an address outside some specified range (e.g. including the
kernd) would cause an interrupt. A problem with this method is that in modern processors,
there are multiple indructions in flight & any given moment. Here it may not be feasible to
identify the ingtruction associated with the interrupt. An advantage of this technique is that
gpplications need not be stopped unless they cause cache faults to locations outside alowed
aress. Thislimits expanson to the cache contents plus the permitted area.

B5) Combinations:

In some cases, such asweb acceerators running in kernel space, it may be necessary to use a
combination of the above. (Alternatively, aweb accderator, which works in conjunction with a
user mode web server, could be bypassed whenever physica memory runs short.}

Each of the above dynamic gpproaches will in generd require some space reserves, aswdl as
regtrictions on incoming 1/0. We discuss this in section 3. The amount of such reserves corresponds to
the sum of possible expansion for the Kernd, for cache write backs, for incoming /O, and for the
operations associated with recovering physica space.

Tools useful for implementing the approaches and/or minimizing the amount of pace required to be held
in resarve include:

i) Interrupts with high priority. In particular, we will use the non-maskable interrupt, which is
employed in Microsoft NT only for * Blue Screen’, but does find some additiona usein Linux.

i) Classing. Thisis afeature of the MXT architecture, where physical memory usage of a
gpecified set of pages can be monitored.

i) Hipped operations. Thisis appropriate for the current MXT design, where dl 1/0 isdone
through the L3 cache. The pageop mechanismin MXT permits the memory controller to change
the ‘real’ address of a page without modifying the physica locations of its contents. This permits

Page4 of 18

I/O operations to be done out of asmall set of real addresses. The reault isalimit on the
number of L3 cache lines that would be written back, and thus atighter limit on required
Memory reserves.

iv)_ Outlig (1). Thisis adata structure with a guaranteed small footprint which a) keeps track of
pages which are unmapped and clean or unmodified, which can be erased given aneed for
more space, and b) is used to record which pages have been so erased. This avoidsthe
potentialy cogtly (in physica space requirements) operation of walking through and modifying
page tables and other structures during space recovery. The content of the outlist are thus
closely eguivalent to standby or reclaimable pages. Once sufficient space has been recovered
using the lig, the norma OS data structures can be updated.

Of the dynamic methods, B2 may be easest to incorporate into an operating System or computer
architecture, while B3 is gppears wdl suited for incorporation in a hypervisor.

Thefallowing isan outline of this paper. Section 2 describes some properties of the MXT and Intel
architectures, and of some data tructuresin Microsoft'sNT operating system. Also described are
properties of the MXT compression agorithm (9), which are related to the question of how much
change in required physica space can occur as afunction of changes to the data. Section 3 contains a
brief discusson of how the mechanism chosen to ensure forward progress affects the steady-state
memory management. Section 4 describes dynamic address disabling, how it might be implemented in
the NT operating system, and its guarantee of forward progress. Section 5 describes orthogond paging,
aong with aproof of guaranteed forward progress. Section 6 considers applications (such as web
accderators) running in Kernd space. Here a combination of dynamic address disabling and orthogonal
paging is discussed. Findly Section 7 contains some concluding remarks.

2. Background

Wefirgt congder some further details associated with the MXT system shown in Figure 1. At any time,
the memory controller maintains a count of available free 256 B sectors. As mentioned above, the
classing mechanism has the cgpability of maintaining a count of the sectors in use by each of a number of
classes of pages, with these classes specified by the OS. The hardware supports two thresholds for
available 256 B sectors. If this count falls below specified numbers, interrupts are triggered. Thefirst
weterm an dert interrupt, the second alow memory (LM) interrupt. The priority of the interrupt isa
parameter that can be set by the OS.

The MXT compression dgorithm isapardld variant or extenson (9, 10) of the well-known LZ77
algorithm. Here ablock of data (1K bytes) to be compressed in MXT is partitioned into four
subblocks. Each is sent to a different compressor, which uses as part of it compression dictionary the
datain dl the subblocks, subject to congtraints on decodability. Its compression performanceis smilar
tothat of LZ77, with afourfold parallel speedup obtained at the cost of additiond hardware complexity.
From the point of view of this paper, however, a property of interest iswhat might be termed its
compression stability: suppose a64B L1 lineis modified. What then is the effect on the compression of

Page5of 18

the entire 1K block? There is no tight upper bound known to the possible expangon, athough it is
known that such a change can cause an increase of at least 2 sectors or 512B in space requirements.
Moreover, a property of the MXT memory organization (2) isthat some 1K lines, if sufficently
compressible, are stored in the compression directory or CTT. Theresult isthat atrivid upper bound
for the additional memory required as the result of a64B line modification is an additiona four 2568
sectors or 1K. This means that for example deleting a page which isfully compressible (i.e. does not
require any sectors), might in principle require an additiona

1K of storage for each entry in apage table or data Sructure that is modified as the result of this
deletion. Deleting pages from memory so asto recover space thus needs to be done with some care.

A typica operating system (e.g. NT) partitionsits virtuad memory space into OS space and user space.
In this paper, we will make some assumptions regarding accesses to these spaces.

a) Assumption 1. Accesses to user space are interruptible, except DMA or /O activity. More
precisdy, no access to user space, by the O/S or user code, can prevent paging activity.
Accessto the file system cache must be interruptible as well, for systems incorporating a web
accelerator.

b) Assumption 2: Any OS operation can be treated as time-independent. For most cases, this
istrue only within limits, due to phenomena such as I/O time-outs. If the OSis running under a
hypervisor, this may be true in generd.

Assumption 1 is necessary for the dynamic address disabling (DAD), where accesses to (at least some
subset of) user space are blocked pending space recovery. Basicdly, this meanstha no OS thread
holds locks on data structures associated with paging while accessing user space or the file system
cache. In particular thisimplies that once the NM1 is complete, OS threads can get locks that are
needed for pageouts while keeping threads which access user space interrupted. Assumption 2 isa
requirement for orthogond paging, which, while essentidly invisble to the OS, may causetime lagsin
operations.

Some applications do not conform to the above assumptions. Examples are some web accelerators,
which reside, dong with large amounts of data, in kernd space. Access to this space may be needed to
do 1/0O, so that say dynamic-address disabling is not gpplicable. However, a combination of the
techniques discussed in the introduction can be appropriate.

We now consider the addressing structure of NT (essentialy afeature of 1A32), and the data Sructures
which may be affected by paging.

Figure 2 shows aversion of the addressing structure which is sufficient to illugtrate the techniques under
discussion. Here each process has a 4K page which contains page directory entries or PDES. Each
entry in this page points to a page which holds page table entries or PTEs. The PTES in turn point to
individua pages. Each PTE or PDE describes certain attributes associated with the page it points to.

Page 6 of 18

For example, the page could be vdid or invalid, read-only or read-write etc. Given an accessto a page
which currently is not in the processor table look-aside buffer or TLB, the processor successively reads
the PDE and the PTE associated with this page, obtaining the information regarding the page’ s redl
address. If any page in this sequence is marked as invalid, an interrupt hands control over software
which for example may pagein the requested page.

The pages holding PDEs and PTEs act as paths for processor addressing. However, they are also data
from the point of view of the OS. Thus the OS could mark certain PDEs as invalid for purposes of
processor access, while esawhere noting thelr correct status.

Other data structures affected by paging activity include the page frame data base which records
atributes of pages, such asther presence on say free lists, data structures associated with keeping track
of working set memberships, and data entries noting page sharing between processes.

Thistdly of the various data Structures associated with the presence of a page in memory, coupled with
the lack of atight upper bound on compression expansion means that in principle the deletion of a page
from say aworking set may require changesto three or more L1 cache lines, each residing in a different
L3 cacheline. The above observations on compression stability indicate that as many as 3K B of
expanson may be produced by a pageout operation.

Another issue of interest isthe functioning of the 1/0 adapters. At any time, each adapter may have a
queue of commands. Further, processing of the queue may require interactions with the OS, and in
genera thereis no preemption possible. This property congtrains gpproaches such as orthogona paging.

3. Space M anagement

The technique chosen for avoiding system hang-ups due to running out of physical memory isabasisfor
the structure of the virtual memory manager. Ineach case there is an added level of complexity as
compared to today’ s systems, which attempt to maintain an adequate number of available page frames.
In a compressed memory system such as one with MXT architecture, page frames correspond to real
addresses, or entriesin the compression directory. This directory isusudly of fixed size, so that such
entries are alimited resource. This resource corresponds closdly to today’ s list of page frames. Sincein
a compressed-memory system the number of real addresses exceeds the corresponding nomina
physical space, thereisthe additiona dimension of available physical space. EveninaAl or safe
system, there is the problem of ensuring that there is sufficient space in the part of memory holding
compressed data So as to maintain efficient operation.

Thus al compressed memory systems of the types we consider require keeping some amount of free or
readily reclamable physicd memory. In an A1 system the reclaimable memory can be smply an
ordinary reclam ligt, as dl data structures modified due to a pageout are assumed to bein the ordinary
or uncompressed part of memory. In an A2 type system, much of M-space may hold compressed data.
Physica space must be available for expanson of this data. However, as noted above, alarge part of
this space may hold pages on an Outlist. This meansthat a system of type A2 can be more space

Page 7 of 18

eficient than an AL. Further, if sufficient space ismaintained it is shown in arecent patent gpplication
(7) that it is not necessary to do an immediate cache invadidate when a page is removed from M-gpace.
Thisis because the number of modified lines hdd in the cache belonging to pages removed from
M-space islimited. However, care must be taken regarding the amount of free space to be maintained,
as any interrogation of the memory controller to determine the number of free sectors may be out of
date before the OS can act on the information. The above mentioned application (7) dso provides an
inequdity for the amount of free storage which guarantees sufficient goace despite this problem. We
modify this dightly to obtain a requirement for entering a new page into M-space:

G> (C+M-B)+Q+4kB [1]
where G is the measured amount of free space a time t, and the other quantities represent:
Cisthe sze of the L3 cache (whose contents include those of L1 and L2)
M isthe nomind (uncompressed) size of the M membership at thistime.
B isthe actua amount of physical space occupied by the M membership.
Q isthe space required for pending 1/O.
4kB represents the size of the page to be added to M.

The above inequdity represents that current cache contents, plus 1/0, plus the current page, cannot take
up more space than G, even with delays in measuring this quantity.

Condder an Al or an A2 type system. Here, as mentioned above, the uncompressed (A1), or
read/write (A2) pages are assumed to hold those parts of the OS which are required for pagng.

That is, no new pages need be added to these spacesin order to delete or pageout others. In generd,
the required pages are identified by ranges of virtua addresses. Access to pages outside these ranges
are then not needed for the recovery of space. User pinned pages will not be removed from memory,
but generdly need not be mapped or accessible for space recovery.

InaDAD system, the low memory interrupt disables access to pages outside ranges required for
paging. An advantage here is that the system operates smilarly to one without compression, except in
the unusua case of low memory.

Inan Al or A2 system, some mechanism needs be present to determine the set of pagesthat are
accessble. This could be the norma working set mechanism, but thisis probably too inefficient. Instead,
the usud OS memory management software could determine the set of pages to be paged out given a
need for more space. Membership in the accessible st is probably best determined via a separate
fadlity with ashort path length. An example might be a FIFO stack, where a page is entered at the head

Page 8 of 18

when accessis granted, and eventudly aged out. Thisis less efficient from a‘page fault’ point of view
than an LRU mechanism, but requires no updates until a page isto be removed. An MXT A2 system
might then provide read-only access to dl pagesin memory, and read-write access to pages on this

FIFO ligt. A wrinkle incorporated in arecent design (11) for afollow-on to MXT maintains a FIFO
stack of uncompressed L3 cache lines. A line about to be removed is placed on the top of this stack if it
has been recently referenced (as determined by a cache-like structure). A smilar mechanism could be
used to improve the hit ratio to the mapped pages here.

In dl these systems, where pages on areclaim list are held in compressed form, the amount of free or
reedily available space needs to be estimated, or aternatively measured via the classng mechaniam
discussed above. Thisis somewhat more complicated if 1/0 is done through the L3 cache (asin one
verson of MXT), or where substantia numbers of pages are alocated before their contents are
inserted. Here there isthe possihility of what in (1, 12) istermed allocated but unused storage, where
the physica space which will be occupied by these pages is counted as free, while these pages are
counted as part of the number of adlocated. The result is an gpparent but spurious or temporary
measured improvement in compressibility, which could potentidly cause some ingability. (Typicdly for
1/O, there isamax. of 64mb per device, due to DMA addressing limitations.) If free plus readily
reclamable (eg. on an Outli, plusreclam ligt) is monitored, or if interrupts are set a various levels, the
OS can take action before the scarcity of space becomes critical. Pageouts can begin, and/or user
processes suspended etc. However, the amount of free gpace required may be underestimated, or high
priority tasks may consume free space. Thus, for dynamicaly controlled systems, it may be desirable to
ensure that physicd memory cannot be exhausted, and the system has guaranteed forward progress.

The above discussion hasignored the mechanics of 1/0. In an A1 system, this could smply be done into
the uncompressed area. Alternatively, in A1, and necessarily for the others, space needs to be set aside
for incoming pages. The way thisis done is system dependent. For example, in Microsoft NT, apageis
pinned before it iswritten out, but dso before 1/0 into its page frame. The request to the OS for the
pinning operation would need to distinguish between these two aternatives. For incoming 1/0O, the
physica storage thresholds which control paging could be adjusted, and such pinning could be denied
under certain conditions, causing an interrupt. We discuss this operation further below in the context of a
B2 or DAD system.

The following sections respectively discuss orthogond paging and dynamic address disabling. As
mentioned above, these techniques provide bounds on the amount of physical reserves required for
space recovery.

4. Dynamic Address Disabling

In some systems, given alow-memory interrupt, it may be feasible to stop dl writes (except for ongoing
1/0) into user space. For examplein NT, an I/O driver isrequired to pin a page before writing into it. It
as0 needs to pin a page before writing it out. If the former type of pinning is stopped by the OS, then
gpace Utilization due to adapter actionsis blocked. If one then reserves sufficient space for kernel

Page 9 of 18

expanson, plus ongoing I/O, one then has GFP (1). However, in generd it may not be feasible or easy
to suspend kernel or user processes writing into user space. In an M -Space system, this problemiis
handled by keeping alarge set of pages not critica to the pageout process unmapped or in read-only
datus, with the disadvantage of loss of efficiency due to mapping and unmapping overhead. In this
section, we discuss the dternative of essentidly instantaneous unmapping of nonessentia pages.

Hgure 2 shows the addressing path for an 1A32 processor. Given a TLB miss, the processor references
the page directory for the process. which is a page with 1024 entries, each a PDE (Page Directory
Entry) pointing to apage table. Each page table page has 1024 entries, each aPTE. A PTE pointsto a
page frame (or in MXT area address) allocated to a process or to akernel page. The point here is that
a currently active process on a processor has a single page which formsthe root of its address tree.
Invaideting dl PDEs on this page which point to user space, and invaidating the TLB contents, ensures
that attempts to access user space will result in interrupts. Under assumptions a and b of Section 2, the
associated interrupted processes can then be suspended until sufficient physical space is recovered.

The above process of address disabling B iswell suited to the | A32 architecture. Other systems have
different addressing paths. However, ameansis generaly implemented for efficient switching between
different user address spaces. For example, in PowerPC, addresses generated by program code
(termed ‘ effective addresses in PowerPC parlance), are prefixed by segment ID’sto form *virtua
addresses which are then trandated into real addresses viathe TLB. Address disabling here could be
done on the segment levd.

We now return to the IA32 case. The system would maintain (possbly in an Outlist) sufficient reserve
gpace for 1/0, cache and kernd expanson. Given the crossing of the TO threshold, an NM1 would be
triggered. Thiswould cause the disabling of the PDE’ s of the currently active process(es) pointing to
user address spaces. Any process that becomes active would have its appropriate PDEs disabled.
Appendix A provides ahigh leve view of the programlogic to carry out this operation. Two examples
are given: the straightforward case where two spare bits in the PDES are used for this, and an dternative
with shadow PDEs.

Once the relevant addresses are disabled, control is returned to the OS which is, however, placed in
what we term the E-recovery state. It can then proceed to reduce working sets, do pageouts etc.
References to pages whose address paths have been disabled result in interrupts. In Windows NT,
process PTEs are in kernel space, so that user address disabling does not affect pageout operations.
Once sufficient space has been recovered, the OSis returned to its normd sate. Thisinvolves
re-enabling the PDEsS, just prior to context-switch.

5. Orthogonal Paging
The basic idea hereisthat, given alow memory condition, specia software, with low memory usage

requirements, takes over the process of pageouts. After sufficient space has been recovered, control is
returned to the OS. It is especialy suited to cases where the OS runs under control of a hypervisor

Page 10 of 18

which actudly does dl 1/0. Otherwise, an I/O adapter may need to be reserved, or a means provided
for interrupting or preempting current ongoing 1/O.

A specid case is where orthogona paging is done in conjunction with dynamic address disabling, as
discussed in the following section. Here the OSis in control during the orthogond paging operation, o
no special 1/0 adapter is required.

A possible implementation of orthogond paging as amodification to NT, is as follows. The system
mantainsalig (which we term the Paging list or PL) of pagesthat are not pinned or shared. Pinned
pages cannot be written out, and shared pages (at least in Windows NT) are associated with data
structures (Prototype PTES) that are awkward to change. This awkwardnessis due to the property that
there is no backward pointer from the page frame data base to the PTESs for this page in the sharing
processes. Pages not on the PL, if fully uncompressed, mugt fit in memory. That is, the amount of
physicd memory in the sysem, minus that taken for the CTT, isrequired to be at least as greeat asthe
number of such pages, times 4K bytes per page.

The PL could be viewed as having asubset which isan Outlist. That is, asubset of the paging list which
contains pages which are unmodified, and on the reclaim list, so that they can be smply erased, and
which in tota occupy arequired amount of space. The following is an overview of the opertion. (If the
OS runs under the control of a hypervisor, operation is somewhat smplified, aswill be described
below).

a) Stop dl operations viaa non-maskable interrupt.

b) By various operations described below, recover sufficient space by paging to aspecia swap area of
disk some number of pages. Pages so written out are marked as ‘ stolen’ or invadid (the stolen bit isan
additiond entry inthe PTE).

¢) When the OS is restarted, references to the stolen pages cause an interrupt. The OS then fetches the
stolen page from the specia area.

Note that membership in working setsin not changed. Pages on the Ouitligt are reclaim pages, so that no
PTEs are affected. The aboveisan outline. A description is required for the data structures used, and
on the sequence of operations required so as to have GFP. Firgt, the structure of the PL needsto be
congstent acrossthe NMI. That is, if the NMI occurs in the middie of on update to this data structure,
no dataislog, and the list is eventualy updated correctly. Appendix A describes a structure with these
properties. The trick used combines an atomic operation with a technique for bypassing the item being
updated.

We now consider the sequence of operations. Once the NMI occurs, pageouts and or page deletions
need be done. The NMI would occur when free physica space fals below agiven threshold , say LO,
gpace would be recovered until athreshold L2 is exceeded, with say L1 thelevel at which the OSfirst
starts to react to a space shortage.

Page 11 of 18

Pageouts would be done by a program triggered from the NM1. A page on the reclam or Outlist would
smply be erased. In the current verson of MXT, 1/O is done through the L3 cache. This means that
potentidly 4K of cache contents might be written back into memory, with up to 4K of potentia
expangon for each pageout. One way of handling thisisto reserve sufficient space for such 1/0,
essentidly the Sze of L3. An dternative isto use the flipping technique mentioned in the Introduction.
Here the real address of the page to be written out is changed prior to the pageout. Thisresultsin the
invaidation of a TLB entry for this page, aswell asthe write back of dl cache linesfrom this page.

The red address of the page is changed, and the page is then written out. The advantage is that afew
real addresses can be used for such pageouts, thus avoiding much cache damage. The amount of
reserve space needed is then reduced to the size of the specia paging program, plus the number of red
addresses used for such pageouts, plus the number of pagesin the paging program that are subject to
change (i.e. not read-only). It should be noticed that the amount of space that is recaptured by removing
a page from memory is not known in advance. Thusin particular, there are cases where no paceis
recovered. Further, each change to a PTE or other data structure might in principle cause an expanson
of 1K in physica memory requirements. This means that updating of PTESs and other OS structures
must be separated from paging. The procedure can then be done as follows:

i) Trigger an NM1 when the amount of free space falls below LO.

i) Remove (by erasing or writing out) enough pages on the paging list so as to recover some desired
number of megabytes of physica memory. (The choice of this number affects efficiency, but not the
guarantee of forward progress.)

iif) Update the PTEs and Page Frame Database entries of the paged out pages. If during this process
the leve of physicd memory falsbedow LO, return to (ii).

iv) Repest the above until either (a) the amount of free physica spaceisincreased to more than T2, or
(b) dternatively until the number of pages contained in memory, times 4K bytes, is equal to the memory
szeminusthe sze of the CTT. Notethat if the condition reached is (b), it is guaranteed that the updates
in (iii) can be done.

V) Retart the OS.
Separating the updates of OS data structures from the paging of individua pages ensures that the

process can continue until either sufficient space is recovered, or the nomind size of the memory
contents is no greeter than the physca sze. Thus thereis GFP.

Pageouts after the NMI in anorma OS mean that certain 1/0 operations need to be preempted. This
ether requiresthat the 1/0 adapters have this capability, or that there is an adapter and disk dedicated
to this purpose. This problem does not arise in a system with a hypervisor, which handles dl 1/0, and
could handle structures such asthe PL.

Page 12 of 18

Above did not include use of an Outligt, asthis could be regarded as part of the free space. In the
above, asthe PL processing causes expansion, additiona members of the Outlist would be erased.
After the OSis restarted, the Outlist would be reconstructed.

6. Combined Approaches

In the previous sections, it was generdly assumed (except for orthogond paging) that metadata required
for paging could be separated from the bulk of the memory contents. An example of applications where
thisis not true are web cache accelerators. Here a possibly very large number of pagesis stored in the
system cache, which isin kernd space. The file system metadata is generaly interspersed throughout

this space.

Approaches to guaranteed forward progress such as the pagng store (A1), or M-space, are dependent
on restricting access to the bulk of the memory contents. If metadata cannot be easily separated from
the data, these gpproaches areimpractical. Smilarly, dynamic address disabling, which would in this
case block access to the system cache, is unworkable due to lack of necessary access to the metadata.
Orthogond paging could be used, but is awkward due to the above-mentioned requirement on
interruptible or reserved 1/0 adapters.

The above difficulties can however be addressed by a combination of orthogona paging and dynamic
address disabling. This could work by first disabling access to the system cache. Once thisis done (with
adequate space reserves for expansion of the remainder of the kerndl, and ongoing 1/0), the operating
system can be restarted, and some contents of the system cache paged out orthogondly, so asto
recover space. Once some desired level of space is recovered, access to the system cache could be
restored, with orthogonaly paged out pages marked as “ stolen”, following the orthogona paging
approach described above.

Some OSs have a paging system that is independent of the file system. Independent paging systems
could il operate even if accessto the file system cache were blocked. However, during space
recovery it still may be necessary to page out memory-mapped pages that otherwise would be written
back home.

7. Conclusion

In today’ s systems, if the number of available page frames declines below a given threshold, the OS can
stop the dlocation of additiona pages. This, coupled with the restriction that dl data structures and
programs required for paging are resdent in memory, ensures that no additiona page frameswill be
required during the process of ddleting pages from memory. The result is that the system will not run out
of page frames required for paging.

Ensuring asmilar property for a compressed memory system requires in addition that the system will
aso not run out of physical space. In this report, we consder techniques for insuring this property. Such
techniques fdl into two main categories which we term respectively safety and dynamics . A safe

Page 13 of 18

system operates in away andogousto today’s. Allocated physica space is controlled so thereisno
danger of a space shortage. In a dynamic system, a space shortage can occur unless the OS must takes
actions such as suspending user processes, or blocking accessto al but a subset of the address space.

In this report, we discuss various approaches within these two classes, including two new techniques,
which we term orthogona paging (OP), and dynamic address disabling (DAD). Dynamic address
disabling may be easier to implement in NT-like operating systems, while orthogona paging appears
well suited to hypervisors.

Thediscussion islargely centered on systems where applications run in user space. For exceptions such

as web accelerators, both OP and DAD have implementationd difficulties. Here a combination of the
two, as discussed in Section 6, may prove attractive.

Page 14 of 18

Appendix A: Dynamic Address Disabling

We discuss two approaches to implementing dynamic address disabling. The first uses two spare bitsin
the PDEs. Thisiseasier to explain, but is probably less practica than the second gpproach. In either
approach, the OS is prevented from alocating additiona pages.

1) Spare hits. Given an NMI indicating alow physicad memory condition, the ‘ page directory’ for the
currently active process has al its non-kernd space entries, PDES, marked asinvaid. One spare bit
indicates the actua status of the page (i.e. valid or invalid), the other the OS dtatus. either space
recovery or norma processing. The result is that access to the private space of a processtriggers an
interrupt, but status information can be entered in PDES. Once space recovery is complete, the spare
bitsin the currently active processes are reset. PDES are updated atomicaly, for example using
‘compare-and-swap’ .

2) Shadow. Here no spare bits are required in PDEs. Instead, the system maintains shadow copies of
the page directories. The shadow directories are the same as the originas, except the PDES mapping
user space are marked ‘invalid'. In space recovery mode, the shadow page directories are used in
place of the origind page directories - blocking addressability of user space. The switch to shadow
directories occursinitidly within the NM1 handler, and subsequently at context switches. After space
recovery, context switches are resumed with the original directories and accessibility to user space
returns.

A variation would be to create the shadow PDEs only when necessary - when the NMI occurs, a
shadow would be built for the current process, and subsequently context switch would build shadows
as long as the system remained in space recovery mode. In this case, the shadows would be used to
save the origind page descriptor. PDESs addressing user space would then be marked invalid or read
only. Updates to the PDEs would be made to the shadows while the system remained in space recovery
mode. This scheme would need away to ‘detour’ updating a PDE from the NMI if memory
management were updating the same PDE. With this scheme, the shadow does not need to be updated
every timethe principd is.

Figures (3, 4) illugtrate the data Structures involved. There is a Status data structure reserved for
indicating the current mode of operation for the system and a per-process entry for the address of its
shadow page directory. Given an NMI the shadow directory is made active for the current process.
Subsequent context switches establish addressability using shadow directories as long as the system
remains in space recovery mode. Once space recovery is complete, the status data structure is returned
to normal operation and context switches will revert to the origind page directories, reestablishing user
addressability.

Page 15 of 18

Appendix B: Orthogonal Paging

We now describe data structures used for orthogona paging. There is avaue Tfree denoting the tota
amount of free space. A list PL ismaintained of pages that are not pinned or shared. The total number
of pagesin the system is denoted by Nt, the number on thislist by NI. During norma operdtion, it is
required that (Nt-NI)* 4K be less than the Sze of memory minusthe sze of the CTT <o that removing
(aether by eraaing or writing out) the pages PL guarantees that the remainder will fit. The CTT inturn,
has 64B per page, and its Sze, in the current MXT design, is st so that the number of redl addressesis
twice the nomind physical space. Thus say four megs of physicd space trandate to eight megs of ‘redl
space’ . Thesgzeof the CTT in the current design cannot be changed, but this may not be the casein
future releases. The amount of space occupied by items on PL is denoted by L Free.

Operations on L include:
A) Operations during norma processing:
i) Adding an item to PL, updating L Free.
i) Deleting an item from PL, updeting L Free.

B) Operations during space recovery. This starts upon the processor receiving an NMI. It ends when
sufficient space has been recovered so that the OS can be restarted. If part of PL comprises an outlig,
the operation might start by eraang a sufficient number of pages on thislist to recover space for the
other operations. Outlist entriesin PL could be linked by pointers, and the total amount of space
covered denoted by OFree.

The procedureis as follows:

i) Delete items from the Outlist until sufficient free spaceis obtained. This spaceis as mentioned
above the size of the orthogona paging program, plus the pages that will be modified (i.e. data
areas) plusthe area used for 1/0 (viathe flipping operation), plus sufficient space to cover cache
castouts.

i) Erase, or write out enough pages so that so as to recover some amount delta of free space,
ddtatypicaly being guaranteed enough so as to update PTES as well as other data structures
for say N(delta) pages. Each update requires no more than 1K bytes of extra space. After the
updates, the amount of free space TFree is checked. Additional updates made, or dternatively
additional pages written out. The result is that either the required amount of spaceis freed, or
the number of pages reduced to where they are guaranteed to fit in memory without respect to
their compression ratio.

Page 16 of 18

iii) Return from the NMI. At this point, pages which have been written out are dtill potentialy
members of process working sets. Attempts to access them result in page faults, where the page
fault handler is aware that they have been written out by the orthogona pager. The orthogond
pager might typically write out pages to a swap area on disk, o asto minimize the amount of
data lookup which would otherwise be required to determine an appropriate disk address.

Figure (5) illugtrates the data structure for PL. 1t isadoubly linked lit, with one entry per red address,
S0 that an entry can be found via direct mapping. Each entry indicates whether a page is on the Outlist
(these could aso be linked). In order to preserve correctness given an NMI, adetour is used. Here the
item about to be changed or updated is entered into a Detour field via an atomic operation (i.e. a
compare with zeros and a swap with the red address). The NMI handler would examine the Detour
fieds, and bypass the rdlated items on the list. That is, the entry with the corresponding real address, as
wdll asthose addresses linked to this one. The result isthat an extra three pages of space need to be
reserved. Once the NMI processing is complete, the interrupted program can continue with its update.

Page 17 of 18

Acknowledgments:

The authors gratefully acknowledge va uable discussonswith M. Audander, M. Hack, P. Heidelberger,
C. Schulz, and T.B. Smith.

Refer ences:

1. P.A. Franaszek, P. Heidelberger, D.E. Poff, and J.D. Robinson, “ Algorithms and data structures for
compressed-memory machines’, IBM J.R.&D, Vol.45, No.2, pp.245-258, March 2001.

2. RB. Tremane, P.A. Franaszek, J. T.Robinson, C.O. Schulz, T.B. Smith, M.E.Wazlowski, and P.M.
Bland, “1BM Memory Expanson Technology (MXT),” IBM JR.&D., Vol.45, No. 2, pp.271-286,
March 2001.

3. M. Kjelso, M. Gooch, and S. Jones, “ Performance evauation of computer architectures with main
memory compression”, J. Syst. Arch. 45, 571-590, 1999.

4. J.-S. Lee, W.-K. Hong, and S.-D. Kim, “ Design and eva uation of a selective compressed memory
system.” Proceedings of the International Conference on Computer Design, |EEE, 1999, pp. 184-191.

5. F. Douglis, * The compresson cache: usng on line compression to extend physical memory”,
Proceedings of the Winter 1993 USENIX Conference, USENIX Association, San Diego, 1993, pp.
519-529.

6. W.P. Hovis, K.H. Hazelhorst, SW. Kerchberger, J.D. Brown, and D.A. Luick, “ Compression
architecture for sysem memory gpplications” U.S. Patent 5,812,817, Sept.22, 1998.

7. P.A.Franaszek, M. Hack, C.S. Schulz, and T.B. Smith, “ Space management in compressed main
memory,” IBM patent gpplication, August 1996.

8. B. Abdi, H. Franke, D. E. Poff, R. A. Saccone, Jr., C. O. Schulz, L. M. Herger, and T. B. Smith,
“Memory Expansion Technology (MXT): Software support and performance’, IBM JR.&D., Val. 45,
No. 2, pp. 287 - 302, March 2001.

9. P.A. Franaszek, J. Robinson, and J. Thomas, “ Paralel compression with cooperative dictionary
construction,” Proceedings of the DCC 1996 Data Compression Conference, |IEEE 1996,
pp.200-209.

10. P.A. Franaszek, J. Robinson, and J. Thomas, “ Parallel compression and decompression using a
cooperative dictionary,” U.S. Patent 5,729,228, March 17, 1998.

11. C.D. Benvenigte, P.A. Franaszek and J.T. Robinson, “Cache-Memory Interfaces in Compressed
Memory Systems,” |EEE Transactions on Computers, Vol. 50, No. 11, November 2001

12. P.A. Franaszek, P. Heidelberger, and M. Wazlowski, “On Management of Free Spacein
Compressed Memory Systems,” Proc. International Conference on Measurement and Modelling of
Computer Systems, pp. 113 - 121, 1999

Page 18 of 18

Processor
module

Processor
maodule

Processor
rmodule

Processor
module

|

I

|

Processor front side bus

<

Large shared

CNB30 memory
controller

Compression,
decompression,
and memaory

cache L3
(32 MB) management
Cﬂ::;ﬁ:;fiz; Main memory
table Free sector storage
(CTT) 256-byte sectors,
0—4 allocated to each
1KB compression
block as needed.
Flgure 1 (eM, R0, vol 45, no 2, 2001: MXT Software Support and Performance)

Owerview of a system with memory expansion technology (MXT).

I1A32 Address Translation

Linear Address

Fage Directory

Chir Fage Offset
4kb page
|| Feal Address
Fage Table
* PTE '.-=

PDE

CR3

Figure 2

L J

1024 PDE = 1024 PTE ™ 4kb
= 4gb per address space

Intel's 1A-32 Software Developer's Manual, Wolume 3
svatem Programming Guide

System Status: Normal

Process 1
User Page Tables

1
d=zer PTE QO
") "
I
h Pentium CR3
d=zer PTE 3 entium
v
Process 1
Page Directory
- Y
- h— POE O
b W
d=zer PTE n b <
- PDE 1
. A
System
Page Tables
- ﬂh‘l/rﬁ
PDE 512 mystem PTE O
b w i
-
.

Figure 3

System Status: E-recovery

Process 1
User Page Tables
- Ty
d=zer PTE O
-, A ™
]
A Pentium CR3
d=er PTE 3
A
Process 1
Shadow
Page Directory
3 K
DOE
- ™
d=zer PTE n >:-—
- A
M
System
Page Tables
S o
o =vetem PTE D
L PDE 512 a
. A
-
.

Figure 4

Orthogonal Paging
Structures

SN

age Frame Number

/’\\/’u\//\

NEPAN

Qutlist

Clean, unmapped pages

SN N N Y Y N
S N NN N N

Paging List
oubset of Page Frame Database
LInpinned and unshared pages

Entries include PTE backpointer and Detour flag

Figure 5

