
RC 22339 (98613) 15, January 2001                                                                     Computer Science

IBM Research Report

Extensible Shallow Parsing for Semantic Nets
 

Jonathan Connell
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY  10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research Report
for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



January 2001

1

Extensible Shallow Parsing for Semantic Nets

Jonathan H. Connell
IBM T.J. Watson Research Center

30 Saw Mill River Road
HawthorneNY 10532 USA

jconnell@us.ibm.com

Abstract
This paper proposes a specific linguistic-based
format for semantic networks in which nodes
correspond to “open class” words. “Closed class”
words and morphological elements form thebasis for
atomic link labelsand nodetags. A simpleparser has
been developed to transform written text into this
representation. The properties of the resulting
networks are discussed and psychologically inspired
limited-horizon browsing techniques areexamined.

1. Introduction
Semantic networks as a form of knowledge representation
havea long history in AI and cognitivepsychology. There is
the spreading activation study of Quillian [68], the
propositional and multi-code networks of Anderson [76;
83], Winston’s arch learner [75], natural language parsing
[Sowa 84], reasoning in KL-ONE [Brachman and Schmolze
85], vision-based descriptors [Connell and Brady 87],
lexical affinities in WordNet [Miller et al. 93], and
thesaurus-based information retrieval [Clark 00]. Semantic
networksgenerally encodeknowledgein smaller granularity
chunks than alternatives such as frames or scripts. They are
essentially equivalent to association lists or database tables
– two other popular representation formalisms – but do not
have as strong ties to particular processing techniques as
these do. In somesense, two nodes and a link between them
is thesmallest particleof knowledge that can beexpressed.

While semantic networks based on triples [Winston 82]
of node-link-node are popular and flexible, they have
trouble directly representing certain facts. Basically, links
are often assumed to be predicates that take two arguments
(sort of S-V-O). This means straight property ascription has
to be rendered with a semantically empty link like “hq”
(has-quality) to the associated concept. Di-transitive verbs
need an auxiliary “to” adverbial link off the matrix verb to
denote their third argument. Predicates like “between”
require a reification of the interval between the specified
two extents in order to fit thestandard format.

In general, adverbial modification (links off links) and
sentential embedding generates a network with more links
than nodes. Consider Winston’s examplewhere:

((Macbeth murders Duncan) because
(Macbeth desires

(Macbeth to-be-a-kind-of king))).

This suggests that the links themselves may be the more
important part of the representation. Other researchers
(among them [Sowa 84]) have used this to argue that verbs
themselves should be given nodes in more of a case-frame
style representation. While this paper suggests a similar
approach, it does not directly specify which role arguments
are required and optional for each verb class. Instead, we
aim to create a network where the link labels aresimply not
amenable to further modification, thus flattening the
resulting graph structure.

2. Open and Closed Classes
Closed classes are those categories of words which do not
readily admit new members. Such categories include
prepositions, determiners, auxiliary verbs, pronouns, and
conjunctions, among others. By contrast new open class
words – nouns, verbs, adjectives, and adverbs – areadded to
languages all the time. Figure 1 shows an excerpt from a
Curious George children’s book. Closed class words have
been rendered in lower case and open class words in upper
case. Notice that most of the information content is carried
by these capitalized words; the other words just serve to
glue theconcepts together.

this is GEORGE . he LIVES in the HOUSE
of the MAN with the YELLOW HAT . GEORGE
is a LITTLE MONKEY , and all MONKEYS
are CURIOUS . but no MONKEY is as
CURIOUS as GEORGE . this is why his
NAME is CURIOUS GEORGE .

Figure 1 – Only open class words are capitalized. These form the
basis for the nodes in the network.
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Figure 2 – The semantic network (right) and a tree representation
(left) for: He lives in the house of the man with the yellow hat.
Note that nodes correspond to open class words while closed class
words and morphological elements become either link labels or
node tags. The “*** ” nodes have no open class head term.

For this reason we propose that the nodes in a semantic
network bebased on theseopen class terms, and thelinkson
the remaining “function” words. In such networks it does
not make sense to attach an additional modifier to some
link. Also, the actual link labels and tags can be dropped to
generalize the meaning. Figure 2 shows the output of the
proposed system for the second sentence in Figure 1’s
example text. The left side shows a tree-like representation
of the parse highlighting the argument structure. The right
sideshows theequivalent semantic network.

The head of each phrase is used as the label for a node
(e.g. “hat” ) and that modifiers of such nodes are also
realized as discrete nodes (e.g. “yellow” ). The bulk of the
links are labeled by prepositions although subject links (any
unmarked noun phrase occurring before the verb) are
marked by plain single arrows. Although there are no
examples here, unmarked noun phrases following the verb
would marked with a double arrow (==>) to preserve some
indication of surface order. Unary predicates, such as the
determiner “the” and the suffix “-s” , are connected to the
relevant nodewith a plain line indicating they are “tags” .

The handling of prepositions is somewhat non-standard.
Our system considers all prepositions to be role markers for
different noun-like constituents of a verb phrase. When a
prepositional phraseappears to directly modify anoun (such
as “with” in Figure 2) the system insert a dummy verb
phrase node (here “*** ” ). This allows the resulting net to
directly match, node for node, the nets produced by
conceptually similar sentences like“theman wearing ahat” .
The only exception to this handling technique is the
preposition “of” . Such phrases areallowed to directly attach
to noun phrases without an intermediary (cf. “house” and
“man” in Figure2 for an exampleof a “naked genitive” ).

this is george . he live-s in the house

of the man with the YELLOW HAT . george

is a LITTLE MONKEY , and all monkey-s

are curious . but no monkey is as

curious as george . this is why his

name is CURIOUS GEORGE .

Figure 3 – The usage of most words in a sentence can be
determined from partial knowledge. Theplain lowercasewordsare
from closed classes. The category of the bold faced words can be
obtained from their morphological endings. The category of the
underlined words can be inferred because they are sandwiched
between two closed class word (or a delimiter). The only
remaining ambiguous cases are the capitalized phrases.

3. Extensible Parsing
Although other techniques such as cascaded finite state
automata [Hobbs et al. 96; Silberztein 00] could beused, the
parser that produces thenetwork representations isbased on
Berwick’s version [85] of theMarcus parser [80]. There isa
phrase stack and a short look-ahead buffer containing
categorized constituents (typically words).

A question for this parser, and indeed any parser, is
where does this categorization (commonly called part of
speech tagging) come from? In the proposed system part of
the information comesfrom thebuilt-in closed classlexicon.
This contains on the order of 250 small words like
prepositions and pronouns. In terms of language learning
this is not an unreasonable number of items to memorize,
especially since these tend to be very high frequency terms
(in fact they aretypically on the“stop list” in an information
retrieval system [Salton 89]).

Another potent sourceof information arethe inflectional
endings. The parser looks specifically for words ending in
“-ing” , “-ed” , “-s” (plural or active tense), and “-ly” . Such
endings tell not only theclassof thecompleteword, but also
the class of the stem (e.g. adjective + “-ly” = adverb). The
parser attempts to restorethestem to itscorrect orthographic
form and then stores it in a separate open class lexicon for
later use. As a side note, while the spelling rules in such
cases can be complex, the auditory rules are usually very
simple and amount to simple appending the sound of the
suffix to the sound stream for the stem. Again the chosen
suffixes occur with high frequency and so should be easy to
acquire. In fact, it has been shown [Brown 73] that indeed
thesearesomeof the first morphemes children learn.

Still another source of information consists of tight
context markings. Iin Figure 3 there are a number of
unknown words which are directly bracketed by known
closed class words. For instance, in the phrase “the man
with” , the initial determiner unambiguously starts a new
noun phrase, while the final preposition suggests that the
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noun phrasehasterminated. Sinceall noun phrasesrequirea
head of the category “noun” , this must be the label of the
word “man” . Again, the word and its label are added to the
open class lexicon. This is what is meant by extensible
parsing – being able to handle a small number of unknown
words in any sentence.

Remaining ambiguities can often be resolved by even
weak phrasestructurerules. For instancetheparser includes
the rules shown below which encode the fact that modifiers
typically precede the head of a phrase. In the rules the
marker before thecolon is what typeof node is on the top of
the stack (“* ” means any). The bracketed items denote
sequential items in the look-ahead buffer. These are labeled
with their part of speech or “X” if unknown. Theright hand
side of each rule describes what to do with the contents of
thenumbered (left to right) buffer positions.

*: [DET]
�

new NP.tag = 1
NP: [X] [X]

�
NP.mod = 1

NP: [X] [NPi]
�

NP.head = 1

Now considered the phrase “the yellow hat <period>” .
The first word triggers the top rule and causes a new noun
phrase to be created with the word “the” attached as a tag.
Next the word “yellow” is read in but no action occurs
because its type is unknown. Then the further word “man”
(also unknown) is read in. This triggers the middle rule
which attaches the previous word (buffer element 1 =
“yellow” ) as a modifier. Finally, the <period> symbol is
read (could be a lengthy pause in a speech system) and the
bottom rule is triggered. A period is incompatible (label
NPi) with a noun phrase hence any pending unknown word
(“man” in this case) is attached as the head of thephrase in
order to complete it. Thus a reasonable argument structure
can be guessed despite lack of lexical knowledge. Whether
theassigned roles areadded to the lexicon or not isadesign
decision (e.g. sometimes nouns, not adjectives, modify other
nouns).

4. Navigating the Net
Given that wehavetheability to generatesemantic nets, just
how useful and perspicuous are they? One way to gauge
their utility is to cast them as Web pages(an optional output
from our parser). For instance focusing on the “live” node
from Figure 2 we get something like Figure 4 where the
network links are true HTML hyperlinks. If one clicks on a
word like “house” a similar Web page pops up with the
view of thenetwork from that node. Notice that when a link
to a page is generated all that is retained in the textual label
is thehead category of theother nodeon that page.

An interesting alternative view is shown in Figure 5
which contains the same information as Figure 4. Here we
assume there are regions of spacecorresponding to nodes of
various types. Conceptually a particular “grandmother” cell
in each region “lights up” (shown as black diamond) for
each particular instanceof a node type. Alternatively, some

-s
L IVE�

xxx

–in
�

house

live-1

Figure 4 – The view from a node can be represented as a Web
page. Here the head concept is shown capitalized with any tags
(function words or endings) placed above it. Below are links to
other nodes which arecoded with the relation (if any) and thehead
typeof theconnected node. Clicking on theunderlined wordsleads
to similar Web pages for these nodes.

distributed representation [Kanerva 88] might equivalently
be used to denote a particular instance. Regions can also
have subregions corresponding to modification of the basic
head term by “tags” or rolemarkers(directional link labels).
It is assumed that such regions could be grouped close to
each other (i.e. syntactic proximity mirrors semantic
proximity) using a method such as Kohonen maps [95].

In Figure 5 the activation point for the particular “ live”
node indicates that a “-s” morphological element was also
present. Thefeaturespacealso indicates that a “house” node
is linked to this oneas theobject of thepreposition “ in” (i.e.
“house” is the locative role filler). Similarly, a node of
unknown type “*** ” is the subject of the “live” relation.
The type is unknown since in Figure 2 the equivalent node
is only tagged with “he” (which gives it number and gender
but not category).

*** house man

hat

yellow [R>B;G>B] [B-O-B]

[grab-run]

[tap-click]

� in
�

live -s

Figure 5 – The view from a node can also be depicted as a feature
vector. The input spacehere isdivided intodiscretelabeled feature
regions, some with sub-specializations. The black dots represent
activations in these regions. This example encodes approximately:
“X live-s in-house” . Non-verbal predicates can also be included as
shown in some of the bracketed labels.
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This is essentially a feature set representation with
outgoing links “curried” down to a unary predicate
composed of the link label and head category (i.e.
In-House(x) is true of this particular instance of “ live” ).
Note that this is more than a connectionist encoding of a
single “triple” [Hinton 90] because multiple predicates are
represented simultaneously. Feature set representations are
desirable because they are easily interfaced to learning
programs and robot control systems.

Such representations also allow simple incorporation of
non-lexical inputs as indicated by some of the other region
labels in Figure 5. For instance, near the lexical term
“yellow” might be the output of a visual classifier which
lights up when the red and green components of a visual
area are much brighter than the blue component (cf.
[Horswill 96]). Or an area might respond to the probability
associated with the terminal state of some HMM acoustic
recognizer, likethephonemesequenceB-O-B. Similarly, an
area might respond to the final state of some FSM
behavioral controller. If the robot just grabbed something
then ran away this could be interpreted as an act of
“stealing” . One could also imagine regions which
correspond to saved statebased on exploratory routinessuch
as taping an object and listening for whether there is a click
(an indication that thesurface is “hard” ).

A browsing facility like shown in Figure 4 is certainly
useful, and its feature spaceequivalent shown in Figure5 is
compelling from an engineering perspective. Yet it feelslike
not quite enough information is being presented in a single
glance. For example, viewing the net from the “man” node
in Figure 2 one only sees the direct connection to the
“house” and “*** ” nodes. Since traditional slot-filler
representations usually have two meaning carrying parts, it
makes sense to extend the viewing horizon to two links
away from the focus. This is shown in Figure6.

the
MAN�

of house
�

of house
�

in live
�

xxx
�

xxx –with � hat

man-1

Figure 6 – Expanding the Web view to show up to two linksaway
feels more natural. Here it can be seen directly that this is theman
with the hat and the man who has a house that something lives in.

Unfortunately this does not translate easily into the
feature set representation. One approach to having an
expanded horizon yet retaining the“neurological” feel to the
system is shown in Figure 7. Here the substrate feature
space is time-shared [Shastri and Ajjanagadde 93] between
a small number of nodes which the system is attending to.
The first two temporal “phases” are devoted to nodes
outside the current network. The third phase however
corresponds to the “live” node represented in Figures 4 and
5 (identical pattern of activation). When this node is
deliberately in focus (darkened phase marker) any
remaining un-focused phases can be filled with nodes
directly linked to this one. Thus at least the most important
horizon-2 nodes can beautomatically brought to attention.

Based on thesurreptitiously loaded (or “expected” ) node
for “house” , the system might become interested in the
linked “man” node and bring it into focus (as phase 5).
Again, this would cause the most important nearby nodes
(such as “*** ” ) to auto-load themselves. Based on this the
system might intentionally focus on the linked “hat” node
and load its representation as well. Thus with multiple
phases available and a suitable focus policy, the effect of a
two link horizon can be simulated while still retaining the
benefits of the featurespaceview.

5. Limitations
The parser used in this study performs only a shallow
analysis of each sentence. There are many syntactic
phenomenon it does not handle such as subject-verb
agreement and quantification, among others(cf. [Allen 95]).
Nevertheless, it does a reasonable job with straightforward
text. Thus it could be used as a user interface to generate
semantic nets from somewhat constrained stylized input.

The system could also be used in text retrieval to
generatea better notion of proximity. Consider these:

A stray dog was recently bitten by a deranged man.
When theman bit into his sandwich, his dog whined.

If we are looking for a case of “man bites dog” a standard
retrieval system might haveproblems with thefirst sentence
becausenoneof these terms is directly adjacent. However in
thesemantic network there is thepath dog-bite-man. On the
other hand if the notion of proximity is loosened so that the
probe words just have to occur in the same sentence, then
the second example would generate a false hit. Yet when
processed to yield a semantic net, the argument structure is
mademoreexplicit and there isno direct dog-bite-man node
path present.

One of the biggest shortcomings of thecurrent system is
anaphora resolution. Although there are a wide variety of
types [Hirst 81] the system does not even do simple inter-
sentential pronoun resolution. A possibleway to handlethis
would be to have an associative memory running in the
background that constantly looked for matches of the
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hat
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*** live man

hat

yellow

*** live house

hat

yellow
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�
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Figure 7 – A larger fragment of the network can be visualized by time-sharing the input feature space. The backmost copy of the space
shows the same activation pattern as Figure 5 (corresponding to the Web page view of Figure 4). The closer copies of the space show the
network expanded around different nodes. The input region for the head term of each node is shaded for illustration purposes. Phases are
opportunistically filled (white phases) with the most important neighboring nodes relative the focal nodes (shaded phases).

current feature space activation pattern to previously stored
nodes. If a good enough match was found (based on
recency, specificity, etc.) the two representation could be
merged. This mechanism might also be applicable to more
difficult cases likedefinitenoun phraseanaphora.

A related phenomenon is prepositional phrase
attachment. Using a similar mechanism it may be possible
to dynamically evaluate the likelihood of the phrase
attaching to thecurrent nodebased on astatistical “overlay”
of all past nodes of the same type. However, it would seem
necessary to group attached nodes not only by head typebut
also by the actual preposition used. This suggests that the
subregion system for link labeling used in Figure 5 may
need revision to make such information more readily
apparent (work in ellipsis [Shaw 98] also hints at this).

Conjunction is also not handled by the current system,
yet is prevalent in real text. One approach would be to
“multiply out” all theseparatepaths. So, for instance, in the

example below there would be 16 basic assertions of the
form “Bill dried the spoons from lunch” . Yet in some sense
the grouping of Bill and Ted is not accidental – the
following sentence might have the pronoun “they” which
referred back to them as a group.

(Bill and Ted)
(washed and dried)
(the spoons and forks)
(from lunch and dinner).

Another phenomenon that seems important to handle is
quotation. Thisoccurseven in fairly formal narrativesand is
quitecommon in speech:

Then shegoes, “Well, at least I never …”

At a systems level, the phases in the time-shared feature
space already give a sense of “aboutness” while the
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subregions in the space provide “aspectuality” . The only
part missing from Dennett’s [78] prescription seems to be
linked with this quotation facility.

6. Conclusion
Thispaper haspresented aparser for converting English text
into semantic nets. Theparser isastandard shift-reducetype
and has a number of limitations – only a shallow parse of
the sentence is accomplished. Nevertheless, the resulting
semantic networks do a reasonable job of capturing the
anchoring concepts and the rough argument structure
between them.

The nets themselves can be visualized in a Web format,
or as a feature space where links are condensed into
predicates denoting the head types of the connected nodes.
The feature space view from a single node is also attractive
because it provides a simple means for interfacing the
system to other sensory modalities. However, thesingle link
horizon seems too miserly compared to standard slot-value
representations. For this reason, the feature space idea was
extended to a superimposed collection of such
representations, similar to a short term memory.

Obviously this work is just a start and much remains to
be done. Interesting avenues of exploration involve
anaphora resolution, handling of conjunction, production
rulematching, and extensions for computer vision.
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