
RC22359 (W0203-017) March 7, 2002
Computer Science

IBM Research Report

Thirteen Notes on Equal--Execution--Time Scheduling

Philippe J. Baptiste
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Vadim G. Timkovsky
CGI Group Inc., 1 Dundas St. W., Suite 2700

Toronto, Ontario M5G 1Z3, Canada, and
Department of Computing & Software, McMaster University

Hamilton, Ontario L8S 4L7, Canada

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Thirteen Notes on Equal{Execution{Time

Scheduling

Philippe Baptiste

IBM T. J. Watson Research Center

Mathematical Sciences, OÆce 35-214

P. O. Box 218, Yorktown Heights, NY 10598

baptiste@us.ibm.com

Vadim G. Timkovsky

CGI Group Inc., 1 Dundas St. W., Suite 2700

Toronto, Ontario M5G 1Z3, Canada, and

Department of Computing & Software, McMaster University

Hamilton, Ontario L8S 4L7, Canada

timko@cgi.ca

March 5, 2002

Abstract

We show how 13 equal{execution{time scheduling problems whose

complexity status has been unknown before can be solved in polyno-

mial time by well known and recently found techniques applicable to

problems of this kind. We consider single{machine, parallel{machine,

parallel{batch, open{shop and job{shop machine environments.

Keywords: scheduling, computational complexity, polynomial time.

1

Thirteen Notes on Equal{Execution{Time Scheduling 2

Introduction

Looking through the listing of complexity results for scheduling problems
[6] one can observe that the vast majority of problems whose complexity
status is unknown involve jobs with equal{execution{time operations. Hence,
the state{of{the{art in studying the complexity of scheduling problems has
reached the level at which approaches and techniques successfully working
for equal{execution{time scheduling become especially important.

This paper is devoted to polynomial{time solutions to equal{execution{
time scheduling problems in parallel{machine, parallel{batch, open{shop and
job{shop environments, the area where a certain progress has been recently
made. When the results we present here are variations of earlier results that
are explicitly discussed in cited papers, we give only short sketches on how
to obtain polynomial{time algorithms for either problems by using certain
modelling techniques such as reductions to similar problems, ows in net-
works, linear programming, dynamic programming and transversal graphs.
Given such sketches the reader can restore necessary details.

All denotations follow the notation of Graham et al. [10]: Cj, wj, rj
and dj are the completion time, the weight, the release date and the due
date of a job Jj, j = 1; 2; : : : ; n; Lj = Cj � dj, Tj = maxf0; Ljg and Uj,
where Uj = 0 if Tj = 0 or Uj = 1 if Tj > 0, are the lateness, the tardiness
and the unit penalty per late job, respectively; pj is the execution time of
a single{operation job that can be executed on any of the parallel machines
Mi, i = 1; 2; : : : ; m; pij is the execution time of the ith operation, Oij, of a
multi{operation job, which is a chain of operations O1jO2j : : : Omjj in a job
shop or an unordered set of operations O1j; O2j; : : : ; Omj in an open shop;
Oij has to be executed on a speci�ed machine M�ij ; the case of a job shop
with mj = m and �ij = i is a ow shop; symbols P , Q, R, O, F , J in
problem denotations stand for identical (equal{speed), uniform (di�erent{
speed) and unrelated parallel machines, an open shop, a ow shop and a job
shop, respectively; the appended symbol m, for example Pm, means that the
number of machines m is �xed; abbreviations pmtn and nowait mean that
jobs can be preempted and that multi{operation jobs cannot be interrupted
between operations, respectively.

Jj l Jk means that Jj is an immediate predecessor of Jk in accordance
with speci�ed precedence constraints. Words chains, intree and prec denote
chain{like, intree{like and arbitrary precedence constraints, respectively. We
set amin = min1�j�n aj and amax = max1�j�n aj for numbers a1; a2; : : : ; an.

Thirteen Notes on Equal{Execution{Time Scheduling 3

Without loss of generality, we assume that rmin = 0. All numerical param-
eters are assumed to be integers. Among minimization criteria we consider
Lmax,

P
Cj,

P
Tj,

P
Uj,

P
wjUj and

P
fj, where fj is a nondecreasing cost

function. The last criterion is the most general.
A key observation we use to obtain polynomial{time solutions to nonpre-

emptive problems with equal execution times pj = p or pij = p is that there
are very few possible start times. Indeed, since an optimal nonpreemptive
schedule is active, i.e., no operation can be shifted to the left without vio-
lation of release dates or precedence constraints, start times and completion
times of jobs in it belong to the set

T = ft : 9j 2 [1; n] : 9l 2 [0; nmmax] : t = rj + lpg;

where mmax = 1 in the case of single{operation jobs. Thus T contains
at most n(nmmax + 1) time points. Tpmtn will denote a time space for a
preemptive problem. In comparison with T it depends on preemptions and
hence requires a special consideration.

1 Pmjintree; pj = 1j
P

Cj

Using the fact that the precedence relation is an intree, it is easy to make
sure by contradiction that the number of busy machines is not increasing in
time in any optimal schedule. Hence, an optimal schedule de�nes the time
unit [t; t + 1] that contains a set L with less than m jobs such that either
t = 0 or the time unit [t � 1; t], where t > 0, contains m jobs. It is evident
that L is the set of leaves of the subtree S scheduled in [t; Cmax], and the set
F of other jobs is a forest with mt jobs scheduled in [0; t]. Let Cj denote
the completion time of Jj in an optimal schedule. Then the total completion
time of the schedule can be written as m(1 + 2 + : : :+ t) +

P
Jj2S

Cj:

Note that any active schedule for S is optimal because it requires less
than m machines. Once L is given, F and S can be obviously restored in
linear time. The subschedule for F and the time point t can also be found
in linear time by Hu's algorithm [12]. To �nd a set L we need to check all
O(nm) subsets with less than m jobs. Since m is �xed, we obtain a solution
in polynomial time.

Thirteen Notes on Equal{Execution{Time Scheduling 4

2 Omjnowait; intree; pij = 1j
P

Cj

There is a polynomial{time reduction to Pmjintree; pj = mj
P

Cj [5].

3 P jchains; rj; pj = 1jLmax

Without loss of generality we assume that release dates and due dates are
adjusted to precedence constraints by replacing rk by maxfrj + p; rkg and dj
by minfdj; dk � pg for each immediate precedence Jj l Jk. Hence, we can
assume that release dates are increasing and due dates are decreasing along
each chain of precedence constraints.

We consider only the decision version of the problem of �nding a schedule
meeting given release dates rj and deadlines Dj = dj+Lmax. If we show that
it can be solved in polynomial time for a �xed Lmax, we can �nd a schedule
with minimum Lmax in polynomial time as well by a binary search.

Let us create a network with a source S, job vertices Jj, 1 � j � n,
chain{time vertices (c; t) for each chain c and integral time point t 2 T , time
vertices t 2 T and a sink T . Since the number of chains is at most n and
jT j = O(n2), the number of vertices in the network is O(n3). The arcs in the
network will be the arcs in all possible paths

S ! Jj ! (c; t)! t! T

under the condition that arcs Jj ! (c; t) exist if and only if rj � t < Dj and
Jj 2 c. Assign capacity m to arcs t! T , and 1 to the other arcs.

It can be easily shown that a feasible schedule exists if and only if the
maximal ow in the network is n. The unit ow through the arc Jj ! (c; t)
models an assignment of the job Jj belonging to the chain c to be executed
in the time unit [t; t + 1] inside the the time interval [rj; Dj]. The ow of
value at most m through the arc t! T models an assignment of at most m
jobs to be executed in the time unit [t; t + 1].

The network{ow model observes all precedence constraints with the ex-
ception of possibly those between jobs Ji and Jj that are both assigned to the
time interval [maxfri; rjg;minfDi; Djg]. However, transposing such jobs we
can obtain a schedule that observes all precedence constraints in time O(n2).
The overall time complexity of �nding a feasible schedule is at most O(n9),
because �nding a maximal ow in a network takes at most cubic time in the
number of its vertices [9].

Thirteen Notes on Equal{Execution{Time Scheduling 5

4 Ojchains; rj; pij = 1jLmax

There is a polynomial{time reduction to P jchains; rj; pj = 1jLmax [21].

5 1jpmtn; prec; rj; pj = pj
P

Cj

As we show, there is no advatage to preemptions in this problem. Thus
it can be solved in polynomial time by the algorithm of Simons [20] for
1jprec; rj; pj = pj

P
Cj. Let t be the earliest preemption time, and let Jj be

the job interrupted at time t, started at time Sj and completed at time Cj

in a preemptive schedule. Let K and k denote the set and number of jobs,
respectively, that are started not earlier than t and completed earlier than Cj.
We can reconstruct the schedule in the time interval [t; Cj] by moving all parts
of Jj into the time interaval [t; Sj+p], so that Jj becomes uninterrupted, and
placing all parts of other jobs in [t; Cj] without changing their order in time
into the time interaval [Sj + p; Cj]. The reconstruction obviously observes
precedence constraints and release dates. It is easy to make sure that the loss
of Jj in completion time is at least kp and that the gain of jobs of K in total
completion time is at most k(p� t+ Sj). This, the reconstruction decreases
the total completion time by at least k(t � Sj). Recursively applying the
reconstruction procedure we obtain a nonpreemptive schedule that is not
worse that the original preemptive schedule.

6 P jpmtn; pj = pj
P

Tj

Let us consider the class of problems P jpmtn; pj = pj
P

fj, where fj are
convex nondecreasing functions such that di�erences fi�fj are all monotone
functions. Since tardinesses Tj = maxf0; Cj � djg meet these conditions,
P jpmtn; pj = pj

P
Tj is in the class. Note that

P
Tj is a piecewise linear

function. We assume that the jobs are in a linear order where for each pair of
jobs Ji and Jj the functions fi � fj are either strictly increasing or constant
if i < j. As it is shown in [2], such an order always exists.

It can be trivially shown by the exchange argument that for any problem
in the class there exists an optimal schedule where i � j) Ci � Cj. Let us
consider completion times Cj for all j = 1; 2; : : : ; n as deadlines. It is known
[11] that a feasible schedule for the decision problem P jpmtn with deadlines

Thirteen Notes on Equal{Execution{Time Scheduling 6

Cj exits if and only if

8j :
Pn

i=1maxf0; pi �maxf0; Ci � Cjgg � Cjm and Cj � pj:

Under the conditions pj = p and i � j) Ci � Cj this predicate is

8j :
Pn

i=j+1maxf0; p� Ci + Cjg � mCj � jp and Cj � p:

Introducing additional variables Xij = maxf0; p � Ci + Cjg for all i =
2; 3 : : : ; n and j = 1; 2; : : : ; n we �nally obtain the convex program of mini-
mizing

Pn

j=1 fj(Cj) under the linear constraints

8j :
Pn

i=j+1Xij � mCj � jp and Cj � p;

8i : 8j : Xij � p� Ci + Cj and Xij � 0:

For any convex piecewise linear objective function it can be solved in poly-
nomial time [18]. Once the optimal completion times are known, the optimal
schedule can be produced by Sahni's algorithm [19].

7 Qjpmtn; pj = pj
P

Uj

Since late jobs can be arbitrarily scheduled we can consider schedules of only
early jobs. It is easy to see that the maximum number of early jobs can be
reached on jobs with latest due dates. In other words, if d1 � d2 � : : : � dn,
then J1; J2; : : : ; Ji are early jobs in an optimal schedule if and only if there
is no schedule of the jobs J1; J2; : : : ; Ji; Ji+1 which are all early. We can test
each integer among 0; 1; 2; : : : ; n on the role of i checking by the polynomial{
time algorithm of Lawler and Labetoulle [16] for Rjpmtn; rj whether there
exists a schedule where all jobs among J1; J2; : : : ; Ji are early.

8 Pmjpmtn; pj = pj
P

wjUj

Let us consider the extension Pmjpmtnj
P

wjUj. Applying the dynamic
programming approach to this problem, we use an algorithm of �nding a
feasible schedule for P jpmtn that meets due dates dj. The following recurrent
procedure we call a staircase algorithm is just a variation of Sahni's algorithm
[19]. Let us introduce an arti�cial job J0 with execution time p0 = 0 and due

Thirteen Notes on Equal{Execution{Time Scheduling 7

date d0 = 0. We assume that J0 is scheduled at time 0 on each machine and
that the jobs J0; J1; : : : ; Jn are ordered by nondecreasing due dates.

Let after scheduling jobs J0; J1; : : : ; Jj�1 the machines become available
at times ai, i = 1; 2; : : : ; m, such that a1 � a2 � : : : � am. Then de�ne
an availability pro�le to be the vector a = (a1; a2; : : : ; am). Initially a0 =
(0; 0; : : : ; 0). To schedule Jj the algorithm in loop on i = m;m � 1; : : : ; 1
assigns a part of Jj of length `ij = maxf0;minfpj; dj � aigg to start at time
ai on Mi and sets

ai = ai + `ij; dj = dj � `ij; pj = pj � `ij:

If pj = 0 after the loop, then Jj becomes scheduled. The resulted availability
pro�le we denote as aj. It is easy to see that components of aj are nonde-
creasing. If pj > 0 after the loop, then Jj cannot be early, and the algorithm
terminates. Using induction it can be shown that the algorithm terminates if
and only if there is no feasible schedule. The proof, closely related to Sahni's
result [19], can be found in [3].

Let Wj(a) denote the minimum weighted number of late jobs among
Jj; Jj+1; : : : ; Jn for schedules with the availability pro�le a. It is easy to
check that then

Wj(a) =

�
minfWj+1(a) + wj;Wj+1(a

j)g if aj + pj � dj;

Wj+1(a) + wj otherwise:

Setting Wn+1(a) = 0 for all availability pro�les a, which number is at most
jTpmtnj

m, we can solve the problem by the dynamic programming approach
in time O(n � jTpmtnj

m).
To evaluate how much time space Tpmtn is needed in the case of equal ex-

ecution times pj = p let us �gure out how many di�erent availability pro�les
the staircase algorithm can produce. Obviously, components of availability
pro�les can be computed as completion times of nonpreemptive parts of jobs.
Let us �nd for each machine Mi a set of time points Tpmtn;i that contains all
possible completion times in staircase schedules. If Mi runs a part of Jj in
a staircase schedule, then Cij will denote the completion time of the part.
Thus Cij 2 Tpmtn;i.

It is easy to see that Tpmtn;m is contained in the set of positive integers
in the time interval [0; np] that are equal to due dates modulo p. Now let
i < m. Notice that for any job Jj in a staircase schedule there exists vj � m

such that M1;M2; : : : ;Mvj�1 do not run Jj while Mvj ;Mvj+1; : : : ;Mm run Jj

Thirteen Notes on Equal{Execution{Time Scheduling 8

in succession. Herein, if Jj passes Mi and Mi+1 without waiting, then Cij is
also the completion time of another job on Mi+1. Let Cik, where k < j, be
the latest completion time earlier than Cij such that Cik = Ci+1;k�1. Since
there are no idling machines in a staircase schedule, all jobs Jk+1; : : : ; Jj are
executed in the time intervals

[Cik; Cij]| {z }
machine Mi

; [Ci+1;k; Ci+1;j]| {z }
machine Mi+1

; : : : ; [Cmk; Cmj]| {z }
machine Mm

:

In other words, Cik = Ci+1;k�1 and
Pm

u=i(Cuj � Cuk) = p(j � k). Extracting
Cij with i < m gives

Cij = p(j � k) + Ci+1;k�1 �
Pm

u=i+1(Cuj � Cuk):

From this expression we have jTpmtn;ij � n�jTpmtn;i+1j�
Qm

u=i+1 jTpmtn;uj
2: Obvi-

ously, jTpmtn;u+1j � jTpmtn;uj: Therefore,
Qm

u=i+1 jTpmtn;uj
2 � jTpmtn;i+1j

2m�2i <

jTpmtn;i+1j
2m and hence

jTpmtn;ij < n � jTpmtn;i+1j
2m+1:

Resolving this inequality with the initial condition jTpmtn;mj = O(n2) it is not
hard to make sure that jTpmtn;1j < n2

mmm

: This implies that the problem can
be solved by dynamic programming in time O(n2

mmm+1+1).

9 Pmjrj; pj = pj
P

wjUj

We describe a decomposition scheme that follows the technique used earlier
for 1jrj; pj = pj

P
wjUj [1], Pmjrj; pj = pj

P
wjCj, Pmjrj; pj = pj

P
Tj [2]

and a suggestion in [8].
De�ne a resource pro�le to be a vector a = (a1; a2; : : : ; am) with inte-

gral components in T such that amax � amin � p, and the components are
associated with the machines M1;M2; : : : ;Mm. We assume that amin is the
completion time of a job, ai = amin implies that ai is the completion time of
a job or an idle time on Mi, and ai 6= amin implies that ai is the completion
time of a job that is in process on Mi at time amin. Let � and � denote
the coordinate order and the strict coordinate order on resource pro�les,
respectively, i.e.,

a � b , 8i 2 [1; m] : ai � bi and a � b , a � b ^ a 6= b:

Thirteen Notes on Equal{Execution{Time Scheduling 9

Let tmax = maxt2T t. For a resource pro�le x 6= (tmax; tmax; : : : ; tmax) de�ne
the set of next resource pro�les

next(x) = fx0 : 9h 2 [1; m] : xh = xmin ^ xh + p = x0h ^ i 6= h) xi = x0ig:

In what follows, we assume that jobs are ordered by nondecreasing due dates,
i.e., d1 � d2 � : : : � dn. We say that a schedule of jobs is feasible on an in-
terval of resource pro�les a � b if the jobs are scheduled between their release
dates and due dates, no more than m jobs are processed simultaneously, and
Mi is idling before ai and after bi for all i = 1; 2; : : : ; m.

For positive integer k � n and an interval of resource pro�les a � b,
let Wk[a; b] denote the maximum weight of early jobs Jj with j � k and
amax � p � rj < bmin in schedules that are feasible on a � b. Then it is not
hard to make sure that the minimum weighted number of late jobs sought
for is Pn

j=1wj �Wn[(0; 0; : : : ; 0); (tmax; tmax; : : : ; tmax)]

and

Wk[a; b] =

�
maxfW 0

k[a; b];Wk�1[a; b]g if amax � p � rk < bmin;

Wk�1[a; b] otherwise;

where

W 0
k[a; b] = max

rk � xmin � dk � p

x0 2 next(x)
a � x

x0 � b

fWk�1[a; x] + wk +Wk�1[x
0; b]g :

If amax � p > rk or rk � bmin, then Jk is not taken into account in Wk[a; b],
so Wk[a; b] = Wk�1[a; b]. If amax � p � rk < bmin, then we try all possible
positions of Jk by scheduling it between the ressource pro�les x and x0 on
Mh with xh = xmin = x0h�p. Since Jk is early, we add the cost wk. As shown
in [2], the problem of �nding Wk[a; b] is a decomposition of two independent
subproblems of �nding Wk�1[a; x] and Wk�1[x

0; b].
Finally, we add initial conditions W0[a; b] = 0 for all pairs of resource

pro�les a and b with a � b. Since the number of resource pro�les is at most
jT jm, where jT j = O(n2), the number of triplets a, x, b is at most (jT jm)3 =
O(n6m). The recurrence formula should be applied for each k = 1; 2; : : : ; n,
therefore, we can calculate all weights Wk[a; b] and related schedules in time
O(n6m+1) using the dynamic programming approach [13].

Thirteen Notes on Equal{Execution{Time Scheduling 10

10 Omjnowait; rj; pij = 1j
P

wjUj

There is a polynomial{time reduction to Pmjrj; pj = mj
P

wjUj [5].

11 1jp-batch; rj; pj = pj
P

fj

Let us consider a more general problem, 1jp-batch; rjj
P

fj, where execution
times (lengths) of jobs can be di�erent [4]. The jobs are to be executed in
parallel batches, i.e., jobs in a batch start and complete at the same time,
and the length of a batch is the maximum length of its jobs. We assume that
batches can contain an unbounded number of jobs.

It is easy to show by contradiction that there exists an optimal schedule
where, for any batch, jobs that are shorter than the batch and released not
later than the batch starts are assigned to the batch or a previous batch.
Hence, if start time of a longest batch is known, then the problem can be
decomposed into two subproblems that appear before and after completion
time of the batch.

Let the jobs be ordered by nondecreasing lengths, i.e., p1 � p2 � : : : � pn,
and let [ax] and [by] denote a left batch and a right batch with start times a and
b and lengths x and y, respectively. De�ne a subproblem for k = 1; 2; : : : ; n
as �nding a minimum{cost schedule of jobs Jj with j � k and a < rj � b

that are assigned to the batch [by] or a batch following [ax]. Let Fk[
a
x][

b
y] denote

the minimum cost of the schedule, and let Gk[
a
x][

b
y] = Fk�1[

a
x][

b
y] + fk(b + y).

Then Fk can be expressed via Gk and Fk�1 by the recurrence formula

Fk[
a
x][

b
y] =

�
F 0
k[
a
x][

b
y] if a < rk � b;

Fk�1[
a
x][

b
y] otherwise;

where F 0
k[
a
x][

b
y] = min

�
Gk[

a
x][

b
y]; min

maxfa+x;rkg�t�b�pk

�
Gk[

a
x][

t
pk
] + Fk�1[

t
pk
][by]
	�

:

The interior minimum models the appearance of a new batch [tpk] capturing
Jk between the batches [ax] and [by]. Gk[

a
x][

b
y] models the appearance of Jk in

the batch [by]. Setting F0[
a
x][

b
y] = 0 for all possible batches [ax] and [by] we can

calculate the minimum
P

fj as Fn[
0
0][

rmax+npmax
pmax

].
Since the number of quintets (t; a; b; x; y) is at most jT j5 in the case of

equal{length jobs, and the recurrence formula should be applied for each
k = 1; 2; : : : ; n, the problem can be solved by dynamic programming in time
O(n � jT j5). Since jT j = O(n2), we obtain the time bound O(n11).

Thirteen Notes on Equal{Execution{Time Scheduling 11

12 J jprec; rj; pij = p; n = kj
P

fj

Following [17] we reduce the problem to �nding a shortest path in a related
transversal graph. Vertices in it are vectors

u = (v1; v2; : : : ; vk; t1; t2; : : : ; tk);

where vj 2 f0; 1; 2; : : : ; mjg counts operations Ovjj in Jj if vj > 0, and tj is 0
if vj = 0 or completion time of Ovjj if vj > 0. A vertex v presents the right
front of a partial schedule at time tmax that involves vjth operations of jobs
Jj with vj > 0 and does not involve jobs Jj with vj = 0. Vertices

(0; 0; : : : ; 0; 0; 0; : : : ; 0) and (m1; m2; : : : ; mk; t1; t2; : : : ; tk)

are the source and a sink, respectively. A pair (u0; u) is an arc if and only if
9i 2 [1; k] : 8j 6= i : (1) ^ (2) ^ (3) ^ (4), where

(1) vi = v0i + 1 ^ vj = v0j ^ tj = t0j ^ ti � tj;

(2) �vii = �vjj) ti � tj + p;

(3) vi > 1) ti � t0i + p;

(4) vi = 1) [[Jj l Ji) vj = mj] ^ ti � maxfri;max
JjlJi

tjg+ p]:

The predicates above mean that: (1) the front u is at time ti and reached
from the front u0 by adding O1i or exchanging Ovi�1;i into Ovii if vi > 1, (2)
Ovii does not overlap in time with other operations that require the same
machine M�vii

, (3) start time ti � p of Ovii is not earlier than completion
time of the preceding operation Ov0

ii
, (4) Ji starts only after all its immediate

predecessors are completed and start time ti � p of Ji is not earlier than
release date ri or completion times of immediate predecessors of Ji. De�ne
the length of the arc (u0; u) to be

`(u0; u) =

�
fi(ti) if vi = mi;

0 otherwise:

It is easy to make sure that source{sink paths in the graph are in a one{
to{one correspondence with schedules of costs equal to the lengths of the
correspondent paths. Hence, the problem reduces to searching a shortest
path in the graph. Since the number of vertices is at most mk

max � jT j
k, where

jT j = O(mmax), and a shortest path can be found in square time [7], the
problem can be solved in polynomial time O(m4k

max).

Thirteen Notes on Equal{Execution{Time Scheduling 12

13 J jnowait; prec; rj; pij = p; n = kj
P

fj

A polynomial{time solution to the no{wait counterpart of the previous prob-
lem and even to J jnowait; prec; rj; n = kj

P
fj can be obtained by exchanging

\�" into \=" in Predicate (3) and replacing \p" by \pvi�1;i" in Predicates
(2), (3) and (4). The number of vertices in the transversal graph in this case
is at most mk

max � jTnowaitj
k, where Tnowait is the time space required for saving

all active no{wait job{shop schedules. Since no{wait jobs are not interrupted
in such schedules,

Tnowait = ft : 9l 2 [1; k] : 8j 2 [1; k] : 9xj 2 [1; mj] : 9yj 2 [1; mj] :

xj � yj ^ t = rl +
Pk

j=1

Pyj
i=xj

pij

o
:

Thus jTnowaitj � k �
Qk

j=1mj = O(mk
max). Hence, a shortest path in this case

can be found in polynomial time O(m2k2+2k
max).

Conclusion

Though we did not �nd an extension of the technique described in Note 1 to
unit{time ow shops, we conjecture that Fmjintree; pij = 1j

P
Cj can also be

solved in polynomial time. Notes 8 and 11 present pseudopolynomial{time
solutions to Pmjpmtnj

P
wjUj, 1jp-batch; rjj

P
wjUj, 1jp-batch; rjj

P
wjTj

that prove the ordinary NP{hardness of these problems since 1jpmtnj
P

wjUj,
1jp-batchj

P
wjUj, 1jp-batchj

P
wjTj are NP{hard [14, 4].

On the other hand, though P jpmtnj
P

Uj [15] and 1jj
P

wjUj [14] are
NP{hard, it is still unclear whether P jpmtnj

P
Uj or Pmjrjj

P
wjUj can be

solved in pseudopolynomial time. The complexity status of P jpmtnj
P

Tj
remains unknown.

References

[1] Ph. Baptiste, Polynomial time algorithms for minimizing the weighted
number of late jobs on a single machine when processing times are equal,
Journal of Scheduling 2 (1999) 245{252.

[2] Ph. Baptiste, Scheduling equal{length jobs on identical parallel ma-
chines, Discrete Applied Mathematics 103 (2000) 21{32.

Thirteen Notes on Equal{Execution{Time Scheduling 13

[3] Ph. Baptiste, Preemptive Scheduling of Identical Machines, Technical
Report, Universit�e de Technologie de Compi�egne, Compi�egne, 2000.

[4] P. Brucker, A. Gladky, H. Hoogeveen, M. Kovalyov, C. Potts, T. Taut-
enhahn and S. van de Velde, Scheduling a batching machine, Journal of
Scheduling 1 (1998) 31{54.

[5] P. Brucker, B. Jurisch and M. Jurisch, Open shop problems with unit
time operations, Zeitschrift f�ur Operations Research 37 (1993) 59{73.

[6] P. Brucker and S. Knust, Complexity Results for Scheduling Problems,
http://www.mathematik.uni-osnabrueck.de/research/OR/class/.

[7] B. V. Cherkassky, A. V. Goldberg and T. Radzik, Shortest paths algo-
rithms: theory and experimental evaluation,Mathematical Programming

73 (1996) 129{174.

[8] J. Chuzhoy, R. Ostrovsky and Y. Rabani, Approximation algorithms
for the job interval selection problem and related scheduling problems,
Proc. 42nd Annual Symposium on Foundations of Computer Science,
Las Vegas, Nevada, 2001.

[9] A. V. Goldberg, �E. Tardos and R. E. Tarjan, Network ow algorithms, in
Algorithms and Combinatorics 9: Flows, Paths, and VLSI{Layout, (B.
Korte, L. Lov�asz, H. J. Pr�omel, and A. Schrijver, eds.), Springer{Verlag
(1990) 101{164.

[10] R. L. Graham, E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy
Kan, Optimization and approximation in deterministic sequencing and
scheduling: a survey, Annals of Discrete Mathematics 5 (1979) 287{326.

[11] W. Horn, Some simple scheduling problems, Naval Research Logistics

Quarterly 21 (1974) 177{185.

[12] T. C. Hu, Parallel sequencing and assembly line problems, Operations
Research 9 (1961) 841{848.

[13] L. Hubert, Ph. Arabie and J. Meulman, Combinatorial Data Analysis:

Optimization by Dynamic Programming (SIAM Monographs on Discrete
Mathematics and Applications), SIAM 2001.

Thirteen Notes on Equal{Execution{Time Scheduling 14

[14] R.M. Karp, Reducibility among combinatorial problems, in Complex-

ity of Computer Computations (R.E. Miller and J.W. Thatcher, eds.)
Plenum Press, New York, 1972, 85{103.

[15] E.L. Lawler, Recent results in the theory of machine scheduling, inMath-

ematical Programming: the State of the Art (A. Bachem, M. Gr�otschel
and B. Korte, eds.), Springer, Berlin, 1983, 202{234.

[16] E. L. Lawler and J. Labetoulle, On preemptive scheduling of unrelated
parallel processors by linear programming, Journal of the Association

for Computing Machinery 25 (1978) 612{619.

[17] M. Middendorf and V. G. Timkovsky, Transversal graphs for partially
ordered sets: sequencing, merging and scheduling problems, Journal of
Combinatorial Optimization 3 (1999) 417{435.

[18] A. S. Nemirovskii and A. Ben{Tal, Lectures on Modern Convex Opti-

mization : Analysis, Algorithms, and Engineering Applications (MPS{
SIAM Series on Optimization), SIAM 2001.

[19] S. Sahni, Preemptive scheduling with due dates, Operations Research

27 (1979) 925{934.

[20] B. Simons, Multiprocessor scheduling of unit{time jobs with arbitrary
release times and deadlines, SIAM Journal on Computing 12 (1983)
294{299.

[21] V. G. Timkovsky, Identical Parallel Machines vs. Unit{Time Shops and

Preemptions vs. Chains in Scheduling Complexity, Technical Report,
McMaster University, Hamilton, 1998.

