RC22362 (W0203-022) M arch 8, 2002
Computer Science

|BM Research Report

Power -Perfor mance and Power Swing Char acterization in
Adaptive Microar chitectures

Pradip Bose, David M. Brooks, Viji Srinivasan, Philip G. Emma
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Y orktown Heights, NY 10598

== =— Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India- T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of 1BM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,

P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Power-Performance and Power Swing Characterization
in Adaptive Microarchitectures

Pradip Bose, Viji Srinivasan, David Brooks, Phil Emma
IBM T. J. Watson Research Center

ABSTRACT

In this paper, we present an analysis of some of the fundamental
power-performance tradeoffs in processors that employ
adaptive techniques to vary sizes, bandwidths, clock-gating
modes and clock frequencies. Initial expectations are set using
simple analytical reasoning models. Later, simulation-based
data is presented in the context of a simple, low-power super
scalar processor prototype (called LPX) that is currently under
development as a test vehicle. There are three fundamental
issues that we attempt to address in this paper: (a) Does
dynamic adaptation - in clocking or microarchitectural
resources - help extend the power-performance efficiency range
of wider-issue superscalars ? (b) What factors of power and
power-density reductions are within practical reach in future
adaptive processors ? (c) Does the presence of dynamic
adaptation modes cause unacceptably large, worst-case power
(or current) swings in affected sub-units ?

Keywords

Power, performance, scalability, adaptive, microarchitecture

1. Introduction:

Power and power-density limits constitute one of the
primary design constraints in future high performance
processors. In current CMOS technologies, dynamic
(“switching”) power still dominates; but, increasingly, the static
(“leakage”) component is threatening to become a major - or
even the dominating - component in future technologies [1].

Current generation high-end processors like the IBM
POWER4™[2,3] are performance-driven designs where power
limits are still comfortably below the 0.5 watts/sq. mm. power
density limit afforded by the package/cooling solution of choice
in the server markets targeted by such processors. In designing
and implementing future processors (or even straight “remaps’)
the power (and especially the power-density) limits could
become a potential “show-stopper” as the areas shrink and the
frequencies keep increasing.

As such, techniques like clock-gating (e.g. [4, 5]) and
dynamic size adaptation of on-chip resources like cache and
queues (e.g. [6-10]) are now being actively examined as
candidate power management methods during the early-stage
microarchitectural definition of future processor cores. Many of
these techniques are relatively new in the server-class processor
design world, and aspects like reliability and inductive noise on
the power supply rails (Ldi/dt) have not been properly assessed
prior to committing a particular gating or adaptation technique
to a real design.

In this paper, we present an analysis of the
fundamental trade-offs confronting the designer during
early-stage microarchitecture definition of a future, high

performance, power-efficient processor. At this stage of the

design, the exact organization and parameters of the target

processor are not known. As such, a custom, cycle-accurate
power-performance simulator (e.g. the PowerTimer tool
described in [11]) for the full machine is often not available or
relevant.

We focus on the following early-stage design issues
in this paper:

* Pipeline Depth: We wish to understand the fundamental
tradeoffs in power and performance when the pipeline
depth (and hence the operating frequency) of the target
machine is varied.

* Instruction Issue Width: We wish to study the basic issues
of power-performance scalability within the current
generation superscalar paradigm.

* Adaptive Structures: A popular approach in proposed new
architectures is one where a resource size, latency or
bandwidth is dynamically adapted to fit the requirements
of the input application (workload). We wish to
understand the effect of selected ideas within this
approach, on the power-performance scalability criterion.
In addition, we wish to quantify the worst-case power
(current) swing problem in such architectures.

* Adaptive Clocking: Power consumption can be reduced by
conditional clocking (i.e. Clock-gating) or by reducing
clock-frequencies in regions that are not
performance-critical. Such mechanisms can be employed
as an alternative to (or in addition to) the “adaptive
structures” paradigm. We wish to compare the
power-performance benefits and the current swing
problems afforded by the two adaptive methods.

We present an initial analysis based on a simple model of
power and performance for basic pipelines and superscalars.
Such a view enables us to understand the fundamental tradeoffs
and scalability issues in the power-performance behavior of
superscalar pipelines. Subsequently, we validate some of the
expectations from analytical reasoning via “simulation in the
small” experiments in LPX [19]: a low power issue-execute
processor prototype currently under development. The LPX
power-performance simulator allows us to run
application-based and synthetic test kernels in trying to
understand the fundamental benefits and pitfalls of some of the
key ideas of interest.

2. Analytical Reasoning Models

In this section, we attempt to set up some simple
analytical models to understand the fundamental tradeoffs and
scalabilitly limits in power-efficient pipelines and superscalar
extensions. Later, in section 3, we report LPX simulation-based

results to validate the expectations derived from such analytical
reasoning.

Optimal Pipeline Depth
A fundamental question that is asked in very
early-stage definition studies has to do with pipeline depth. Is a
deeply pipelined, high frequency (“speed demon”) design better
than an |PC-centric lower frequency (“braniac”) design? For
the purposes of this paper, “better” must be judged in terms of
power-performance efficiency. Let us consider, first, a simple,
hazard-free, linear pipeline flow process, with k stages. Let the
time for the total logic (without latches) to compute one answer
be T. Assuming that the k stages into which the logic is
partitioned are of equal delay, the time per stage and thus the
time per computation becomes (see [16], Chapter 2)
t=T/k+D
where D is the delay added due to the staging latch. The inverse
of t determines the clocking rate or frequency of operation.
Similarly, if the energy spent (per cycle) in the logic is W and
the corresponding energy spent per level of staging latches is L,
then the energy per cycle for the k-stage pipelined version is
roughly
E=Lk +W (2.2)
The energy equation assumes that the clock is free-running, i.e.,
on every cycle, each level of staging latches is clocked to
enable the advancement of operations along the pipeline.
(Later, we consider the effect of clock-gating). As the number
of stages increases, the energy or power consumed increases
linearly; while the performance also increases, but not as fast.
In order to consider a power-delay product (“watt/mips’ [18])
based power-performance efficiency, we compute the ratio:
Power/Performance = (L.k+ W) (T/k + D)
=L.T+W.D+ (L.DK*+W.T)k

Figure 1 shows the general shape of this curve as a
function of k. Differentiating the right hand side of expression
in (2.3) and setting it to zero, one can solve for the optimum
value of k for which the power-performance efficiency is
maximized; i.e., the minimum of the curve in Figure 1 can be
shown to occur when

Kopt)= v ((W.T)YL.D)) e, 2.4)
Larson and Davidson (see reference in [16]) first published this
kind of analysis, albeit from a cost/performance perspective.
The analysis shows that, at least for the simplest, hazard-free
pipeline flow, the highest frequency operating point achievable
in a given technology may not be the most energy efficient!
Rather, the optimal number of stages (and hence operating
frequency) is expected to be at a point which increases for
greater W or T and decreases for greater L or D. For a current
generation (~0.18 micron technology) floating point unit (or
complex multiply-add arithmetic unit) typical (albeit
approximate) values are: T=7.5ns, D=0.15 nsand W = 0.15
watts, L = 0.1 watts. This yields a k(opt.) = sgrt(75) = 8.67 ~=8
(rounded down).

Note that an energy-delay product formulation (“watts/mips®’
[18]) yields an equation that results in a larger k(opt.) for the
same pipline; but the basic behavior is roughly the same: i.e.,

k(opt.) increases with W or T and decreases with L or D. For

real super scalar machine pipelined units, however, the number
of latches tends to go up much more sharply with k than the
linear assumption above. This would have the effect of making
k(opt.) smaller. Also, in real pipeline flow with hazards, e.g. in
the presence of branch and cache-miss related stalls,
performance actually peaks at a certain value of k before

[}

(&)

&

=

‘:§ -——/
?;) minimum

g

k (opt)

Number of stages, k ----- >
Figure 1. Optimal hazard-free pipeline depth.

decreasing [17], instead of the asymptotically increasing
behavior implied by equation 2.1. This causes a further
reduction in k(opt.). above. So, for the arithmetic unit pipe
example, the k(opt.) value of 8 is the best-case upper bound.
Assuming a pipe stall frequency of b, the new form of equation
2.3 would be:

Power/Performance

=(L.k+W) (Tk+D) (1 + (k-1).b) (2.32)
assuming, as in [17] that the effect of a pipe stall has the effect
of invalidating k-1 instructions.

Figure 2 shows the variation of k(opt.) with b, for the
previously assumed values of T=7.5ns, D=0.15nsand W =
0.15 watts, L = 0.1 watts. We see that for the pipeline flow and
energy model assumed, k(opt.) decreases rather sharply with the
stall frequency b. For processors that predict conditional
branches, branch-related stalls may themselves contribute as
much as 0.04 to the value of b (1 branch per 5 instructions and
80 % prediction accuracy) in certain commercial workloads.
So, for the example cited, the real k(opt.) may turn out to be a
number around 4. A purely clock-frequency (Ghz)-driven,
power-unaware design, therefore, may lead to the choice of a

deeply pipelined machine operating at an inherently
power-inefficient design point.
Assume now that the pipeline has fine-grain

clock-gating support, with a “valid” bit propagated with the

cC

23

58K

o \

O 6 \

£

o4

45_2

(e

IO T T T T T T T T T T T
0 0.10 0.20 0.30 0.40 0.50
0.05 015 025 035 0.45

Pipe Stall Frequency, b
Figure 2. Decrease of k(opt.) with stall frequency

flow of data. The latch-set associated with a given pipeline
stage is clocked only if the coresponding valid bit is ON. Then,
the average, effective value of L. will now be reduced to u*L,
where, u < 1, is a fraction that relates directly to the average
“valid data” utilization of the pipeline. Thus, presence of
fine-grain clock-gating will have the effect of extending k(opt.),
i.e. the power-performance scalability, of a simple pipeline.
Adapting the microarchitectural resource sizes dynamically also
causes a reduction in the average, effective value of L; and,
therefore, a similar extension of scalable power-performance.

Super Scalar Processing

Let us model the IPC (or mips) performance of a
super scalar processor as follows:
Perf = K; -Ko* (W)_A
Here, K; and K are constants, W is the issue width and A > 0 is
a parameter (constant) that controls the manner in which Perf
increases towards the asymptotic value of K;. We will refer to
A as the “performance exponent.” Figure 3 illustrates the Perf
versus W behavior, for K; = 3.4 and K, = 2.4 for various values
of A < 1. The greater the value of A, the sharper is the rise of
the Perf curve towards the upper bound of 3.4. So, the
parameter A essentially tries to quantify the degree of
complexity (e.g. Speculation and out of order execution modes)
in the microarchitecture. The general behavior predicted by
equation 2.5, agrees with experimental evidence and with data
produced using other analytical models of IPC performance,
e.g. Zyuban et al. [15].

The power consumption, similarly, is modeled as:
Power=Ks*(W)® (2.6)

where, K3 is a constant and B is a parameter (constant) that can
be called the “power exponent.”

Figure 4 shows the variation of Perf/Power with W,
for A = 0.5, and across various values of B. (Kj is, arbitrarily,
assumed to have a value of 0.1). This figure shows that only for
rather small values of the power exponent, B, the

)
w
o

Performance (e.g. BIPS

4 5 6 7 8 9 10 111
Super scalar width W

== A=0.3 =0= A=0.5 == A=0.7 A A=0.9

-
N
w

Figure 3. IPC performance versus W (analytical model)

performance-power efficiency scales to large values of W. For
values of B greater than 0.35 or so, the efficiency seems to peak
at a small value of W, between 2 and 3. This is even more
clearly illustrated in Figure 5, where W(opt.) is plotted against

B. The equation for W(opt.) is obtained by differentiating the
ratio of expressions in 2.5 and 2.6, with respect to W and
setting it to 0. W(opt.) is governed by the following equation:

log W(opt.) = (1/A). log [(A+B).KA(B.K)] 2.7
Perf/Power

-0.25 B=0.1

c

S 42 B=0.2

B i

5 0.15 B=0.3

=

8 o1 B=0.4

S_J 0.05 B=0.5
1 3 5 7 9 11 =&

2 4 6 8 10 12
Super scalar width W

Figure 4. Perf/Power efficiency variation with W
As seen from Figure 5, irrespective of the value of the

performance exponent A, W(opt.) seems to settle to a low value
(less than 3) beyond B > 0.35 or so.

35 jo3
30

25
2 20 ok
@)

o [\

l5j.
;10A0\
5

0

0.1 0.3 0.5 0.7 0.9
0.2 0.4 0.6 0.8 1.0

Power exponent, B

Figure 5. Variation of optimal width W (opt.) with B

Note that without any form of clock-gating, the power

exponent B is expected to be high, i.e. greater than 0.5. For
such cases, typical of many current generation high-end,
server-class processors, super scalar scalability, in terms of
Perf/Power efficiency, is limited to small values (like 2 or 3).
With the presence of fine-grain, valid-bit based clock-gating, or
with the use of adaptive resource sizes, power will grow slower
with increase in W; and, so if B is architected to yield a really
small value (like < 0.2), then the super scalar paradigm can be
made to scale to larger values of W. The more aggressive the
microarchitecture (e.g. with greater degrees of out-of-order and
speculative execution), the performance exponent A is larger,
resulting in diminished scalability.

Power swing characteristics:

As stated at the beginning, one of the potential
negative impacts of adaptive clocking and resizing is the
problem of current (or power) fluctuations. Such instantaneous
current spikes is known to cause inductive noise (Ldi/dt effect)
on the power supply rails. Unless kept within control by the
effective use of decoupling capacitors, such noise can seriously
impact circuit reliability. Hence, it is important to be able to
quantify the worst-case swings during the early-stage
microarchitecture definition.

For the simplest, linear pipeline flow example, the
worst-case current swing occurs when a fully “gated off”
pipelined unit gets progressively “gated on” with the
transmission of a “valid” bit. The worst-case cycle-to-cycle
current increase is the amount drawn by the most power-hungry
pipeline stage. Assuming equal power per stage, the worst case
power spike would be L, the average power per set of latches
driving a pipeline stage. As a fraction of maximum possible
power in the pipeline, this power swing is therefore 1/k, where
k is the number of pipeline stages. As a fraction of average
power, the swing is 1/(u*k), where u is the average utilization
due to valid data. Since u < 1, for a minimally utilized pipeline,
the worst-case power swing may be substantial. For example, if
the floating point pipe has a value of k = 6, then the worst-case
power swing in the pipelined unit could amount to (1/6)th or
16.7 % of maximum power (with u = 1); but with respect to
average power, assuming u = 0.3, the worst-case swing could
be a staggering 550 %. In general, such swing characteristics
are expected to be smaller with larger pipeline depths (k) and
larger utilizations, u.

This analysis points to some interesting tradeoffs in
designs that employ fine-grain (i.e., pipeline stage-level)
clock-gating. Here, a small pipeline utilization is clearly
desirable to ensure a big reduction in average power. However,
the smaller the utilization, the larger is the instantaneous power
swing as a percentage of the average power consumption.
Microarchitectural techniques to improve the pipe utilizations
will increase IPC performance, at the cost of increasing the
average power, but with the benefit of reduced power swings.
Thus, early-stage design definition studies must carefully
balance the choices to ensure acceptable performance within
the constraints of power consumption and swing limits that are
considered feasible.

In the case where adaptive resource resizing is used,
the worst-case power swing is determined by the maximum
“chunk size” of adaptation. For example, if a 32-entry issue
queue is adapted in chunk sizes of 4 entries, then the maximum
cycle-to-cycle power swing for that unit is the maximum power
consumed by a 4-entry chunk of the issue queue; causing a
swing of roughly 4/32 or 12.5 % (in the absence of additional,
fine-grain clock-gating).

3. Experimental Results

In this section we present a snap-shot of our
simulation-based results to understand the effects of
clock-gating and dynamic resizing on super scalar
power-performance characteristics. The experimentally derived

results are interpreted in the light of earlier “fundamental”
tradeoff analysis.

The LPX super scalar processor model

Figure 6 shows a very high-level block diagram of the
baseline, parameterized LPX processor model. The
“fetch-and-issue” sub-units act together as a producer of
instructions, which are consumed by the “execute” sub-unit.
The design attempts to balance the dynamic complexity of the
producer-consumer pair with the goal of maximizing
performance, while minimizing power consumption. LPX
(details described in [19]) is a research prototype under
development by a small industry-academia team. LPX serves as
a test vehicle for simulation, design and measurement “in the
small”. The power-performance and power swing characterisics
obtained in the LPX project are used to understand the basic
tradeoffs in adaptive design. This understanding will help our
product-level design teams to be better aware of fundamental
tradeoffs, issues and pitfalls during the early-stage design
definition of future processors. The hardware measurements
will also help validate some of our energy models and the
underlying modeling methodology.

For the nominal design point, the issue width is W =
2. Correspondingly, the nominal instruction fetch bandwidth,
ifetch_bw is 4. One of the functional units is the scalar FXU (a
combined load-store unit and integer unit) and the other is the
(optionally vector or SIMD) pipelined arithmetic unit, ARU. In
scalar mode, the ARU enables a 32-bit wide datapath; in SIMD
mode, the datapath width is 32x4 = 128. The AR register file
(not shown in detail) is, for the nominal W=2 scalar case, a
3-read-port, 2-write-port array unit. The number of ports scale
as needed for maximal performance support, when W is
increased in the LPX simulator. The ARU execution pipe is
multi-cycle (nominally 4 cycles). The scalar FXU has a 1-cycle
pipe plus (nominally) a 1-cycle (infinite) data cache access for
loads and stores. At the end of the final execution stage, the
results are latched on to the result bus while the target register
tags are broadcast to the instructions pending in the centralized
issue queue. The issue queue can operate in in-order or full
out-of-order mode.

Using the LPX simulator?, experiments on adaptive
clocking and resizing can be performed; and within each such
adaptive mode experiment, W can be fixed to one of four
values: 2, 4, 6 and 8. (Again, in the actual LPX implementation,
W is 2). As W is adjusted, the maximum resource (e.g.
gueue/buffer) sizes and bandwidths (e.g. Ifetch bandwidth and
issue bandwidth) are also adjusted. The mapping relations used
to obtain the maximum resource sizes are:

Instruction fetch bandwidth, ifetch_bw = 2*W
Dispatch/decode/rename bandwidth, disp_bw =W
Issue bandwidth, iss bw=W

Completion bandwidth, compl_bw =W
Instruction buffer size, ibuf_size = 2*W

Issue queue size, issueq_size= 4*W

Number of scalar LSFX units = W/2

Number of AR units = W/2.

The above mapping relations used in scaling the issue
width W (see also, [20]) are based on historical data of super

! The simulator has integrated energy models developed from scaled, circuit-simulation based detailed energy data obtained from
prior high performance processor projects like POWER4. See description of PowerTimer tool in [11].

scalar RISC processors and/or bandwidth matching arguments
and expectations where applicable. We illustrate the use of
simple loop-based test cases in understanding the basic
power-performance trade-offs of adaptive structures and
clocking mechanisms that were chosen for study in LPX. The
challenge is to figure out the nominal sizes, adaptation windows
and (in each case) a simple “monitor-and-control” mechanism
that is appropriate in the context of building a small prototype
measurement engine, like LPX. We started with the simplest
baseline, where infinite (perfect) cache effects were modeled,
by architecting a single-stage LSFX pipe unit; but, we later
augmented the specification to include a variable-length LSFX
pipe, to simulate data cache miss latency. The choice of what
latency to assume, depends on the cache hit/miss scenario. In
the absence of real cache hardware (correspondingly, real cache
hit/miss code in the simulator), we architect for programmable
“miss” scenarios via a user-loadable miss specification register
(msr). Details of how this works in the real hardware are not
discussed in this initial submission. For brevity, we only show a
few example tradeoff analysis examples, mostly limited to the
infinite (perfect) cache scenario.

Example loop test-case: vect_add
A simple “vector add” loop trace, formed by execution of the
following loop:

[->VLD wvrl, 12 (0x4) (*vrlis the target register *)

| VADD vr4, wvrl, vr6 (* vr4is the target register *)

| VLD wvr6, r2(0x8)

| VADD vr4, vrd4, vré

| VST vr4, r3(0x8) (* vrdis the register stored *)
| DEC 17 (* decrements count reg r7 *)
--- BRzZ 17, -0x7 (* conditional branch back *)

A 160-iteration vect_add loop trace is run in vector mode,
where the VLD instruction loads a 32x4 bit register (vr) using a
scalar base address register sSpecifier, following standard
PowerPC™ architecture conventions.

Optimal Pipeline Depth:

The general behavior predicted by Figures 1 and 2
were easily validated by varying various pipe lengths in the
LPX simulator. However, to conserve space, we omit this
particular data, in lieu of the more interesting issues of
scalability, adaptation and power swing characterization.

Issue Width Scalability:

2 o3

&Ol VB,CG N -

8 0.25

C

£

§ 0.2

@ nqCG

o

- 0.15 bi

Q

>

& 0.1

S 2 4 6 8
Issue Width, W

As W is varied, the measured performance and power
characteristics agreed with the general trends modeled by
equations 2.5-2.7. An example result is shown in Figure 7
where the effect of valid-bit based clock-gating is shown to
extend the scalable range of W from 4 to 6 for the LPX
processor running the vect_add loop trace in infinite cache
mode. Note that since the vect_add loop trace presents only
dependence-related stalls in infinite cache runs, the scalable
range of W observed is rather large. With branch and cache
miss stalls present in more realistic simulations (i.e. intra-loop
branches and cache misses) the scalable range for
non-clock-gated operation was barely more than 2 (as expected
from Figure 3).

For the baseline (W=2) LPX engine targeted for
actual implementation, the following two adaptive resizing
mechanisms are studied in this paper:

_Conditional ifetch:

Gating off the ifetch process using a hardware
heuristic to compute the gating condition, is a viable approach
to saving energy [12, 13]. For LPX, we wish to experiment
with the simplest of such heuristics, that are easy to implement.
The basic method used is to employ the “stall” or “impending
stall” signals available from “downstream” consumer units to
throttle back the “upstream” producer (ifetch). Such stall
signals are easy to generate and are usually available in the
logic design anyway. Figures 8 and 9 show results from an
illustrative use of conditional ifetch, using the following simple
hardware heuristic for determining the ifetch gating scenario.
When a “stall” signal is asserted by the instruction buffer (e.g.
when the ibuffer is full) the ifetch process is naturally inhibited
in most designs; so this is assumed in the baseline model.
However, additional power savings can be achieved by
retaining the “ifetch-hold” condition for a fetch-gate cycle
window, W, beyond the negation of the ibuffer stall signal.
Since the ibuffer was full, it would take a while to drain it;
hence ifetch could be gated off for W cycles. Depending on the
size of the ibuffer, |PC performance would be expected to drop
off to unacceptable levels beyond a certain value of W; but
increasing W is expected to reduce |FU (instruction fetch unit)
power and overall chip power.

O cLk
B vCFxu
(] LSFxu
B su
B bu
B Fu

Power (watts)

O = N W ~ O

Base IO
+ 00 +C-IF-10
CPI of baseline in-order (10) = 3.00
CPI of all the other out-of-order (OO) = 2.29
Figure 8. LPX power: effect of clock-gating

+ VB-CG

Adaptive Issue Queue

For LPX, we started with a baseline design of the
POWER4 out-of-order integer issue queue [3], which is a
latch-based design. The LPX issue queue is structured as a
2-chunk structure, where in adaptive mode, one of the chunks
can be shut-off completely. Figure 10 illustrates the benefit of
using a simple, L PX-specific adaptive issue queue heuristic that
is targeted to reduce power, without appreciable loss of
performance. The design and adaptation heuristic illustrated is
simpler than proposed in the detailed studies reported earlier
[8], for ease of implementation in the LPX context. The
control heuristic in LPX is as follows:
if (current_cycle window_issuecount < 0.5 *
last_cycle window_issuecount) then

increase_size (* if possible*)

else decrease _size (* if possible *);

Discussion of results (adaptive microarchitecture experiments)
From Figure 8, we note that adding out-of-order (00)
mode to the baseline in-order (i0) machine causes a
performance increase (CPI decrease) of 23.6 %, but with a 12.5
% overall power increase. The |ISU, which contains the issue
queue, increases in power by 27.5 %. So, from an overall
power-performance efficiency viewpoint, including the
out-of-order (00) mode does seem to pay off in LPX for this
loop trace, in infinite cache mode. However, from a
power-density “hot-spot” viewpoint (issue queue region) even
this basic enhancement may need to be carefully evaluated with
a representative workload suite. Adding the valid-bit-based
clock-gating (VB-CG) mode in the instruction buffer, issue
queue and the execution unit pipes, causes a sharp (42.4 %)
decrease in power from the baseline 00 design point. Adding a
conditional ifetch mode, (with a cycle window W of 10 cycles
over which ifetch is blocked after the ibuffer stall signal goes
away) yields an additional 18.8 % power reduction, without

2.9 -
”g Pwr: ’52
2.7
2.6
2.5
2.4
2.3
2.2

Cycles per instruction (CPI)

2 4 6 8 10 12 14 16
Cond. Ifetch (C-IF) Gating Window, C-IF-W

Figure 9. C-IF gating window versus CPI

loss of IPC performance. As the gating cycle window W is
increased, we see a further sharp decrease in net power beyond
W=10, but with |IPC degradation (see Figure 9). For the
adaptive issue queue experiment (Figure 10) shown, we see that
a 8 % reduction in net LPX power is possible; but beyond an
adaptation cycle window, AW of 1, a 11 % increase in CPI is
incurred. Thus, use of fine-grain, valid-bit based clock-gating is
the simpler and more effective than adaptive methods. Detailed
results, combining VB-CG and adaptation will be reported
later.

Power Swing Measurements

Figure 11 shows an example measurement of power
swing characteristics using the LPX simulator, for the vect_add
loop trace. As seen from the graphs, as the average ARU pipe
utilization increases, the worst-case power swing problem
diminishes. The general trend is in agreement with earlier
analytic expectations. In the graph, we plot the worst-case
cycle-to-cycle power swing observed in the issue queue (set to
out-of-order mode) and for the full chip. The ARU pipe
utilization is controlled by varying the (statistical) cache miss
ratio parameter. Although the slope of the “full chip” plot is
much greater than that of the “issue queue” plot, it should be
noted that the worst-case swing is limited to a couple of cycles
at the beginning of the run for the “full chip” case; while, for
the issue queue, the worst-case swings occur quite frequently
over the simulation run.

4. Conclusions and Future Work

We discussed simple analytical formulations to set up
initial, early-stage expectations for power-performance
characteristics (including worst-case power swings) in
pipelined, super scalar processors. Subsequently, we reported
example, loop trace driven simulation results to understand the
fundamental trade-offs in more detail and to verify the scalable
growth of power-performance efficiency with the introduction
of clock-gating and adaptive resizing. The experiments were
done in the context of the early-stage design phase of LPX: a
low power issue-execute processor prototype under
development [19].

REFERENCES

1. S. Borkar, “Design challenges of technology scaling,”
IEEE Micro, vol. 19, no. 4, July/Aug. 1999, pp. 23-29.

2. C. Anderson et al., “Physical design of a fourth generation
POWER Ghz microprocessor, |SSCC 2001 Digest of Tech.
Papers, Feb. 2001, p. 232.

3. J. M. Tendler, S. Dodson, S. Fields, H. Le and B.
Sinharoy, “POWER4 System Microarchitecture,”
http://www-1.ibm.comy/servers/eserver/pseries/hardware/w
hitepapers/power4.pdf, Oct. 2001.

4. J. M. Rabaey and M. Pedram, ed., Low Power Design
Methodologies, pp. 279-281, Kluwer, 1996.

5. M. Gowan, L. Biro and D. Lackson, “Power
considerations in the design of the Alpha 21264
microprocessor,” Proc. ACM/IEEE Design Automation
Conference (1998), pp. 726-731.

6. D. H. Albonesi, “The inherent energy efficiency of
complexity-effective processors,” Proc. |SCA Workshop
on Power-Driven Microarchitecture, June 1998.

7. R. Baasubramonian, D. H. Albonesi, A. Buyuktosunoglu
and S. Dwarkadas, “Memory hierarchy reconfiguration for
energy and performance in general purpose architectures,”
Proc. 33rd. Int'l. Symp. on Microarchitecture, pp.
245-257, December 2000.

8. A. Buyuktosunoglu et al., “An adaptive issue queue for
reduced power at high performance,” Proc. Workshop on
Power-Aware Computer Systems, (PACS00), held in
conjunction with ASPLOS, November 2000.

9. D. Ponomarev, G. Kucuk and K. Ghose, “Dynamic
allocation of datapath resources for low power,” Proc.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Workshop on Complexity-Effective Design (WCED-01),
held in conjunction with ISCA, June/July 2001;

D. Folegnani and A. Gonzalez, “Energy-effective issue
logic,” Proc. ISCA-01, pp. 230-239, June 2001.

D. Brooks et al., “Power-aware microarchitecture: design
and modeling challenges for the next-genration
microprocessors,” Proc. IEEE Micro, vol. 20, no. 6, pp.
26-44, Nov./Dec. 2000.

S. Manne, A. Klauser and D. Grunwald, “Pipeline Gating:
Speculation Control for Energy Reduction,” Proc. Int'l.
Symp. on Computer Architecture (ISCA), June 1998.

T. Karkhanis et al. “Saving energy with just-in-time
instruction delivery,” under submission for publication.

S. Schuster, W. Reohr, P. Cook, D. Heidel, M. Immediato
and K. Jenkins, “Asynchronous interlocked pipelined
CMOS operating at 3.3-4.5 Ghz.,” Proc. Int’'l. Solid State
Circuits Conference (1SSCC-2000), pp. 292-293.

V. Zyuban and P. Kogge, “Optimization of high
performance super scalar architectures for energy
efficiency,” in Proc. IEEE Symp. On Low Power
Electronics and Design (ISLPED), 2000.

P. Kogge, The Architecture of Pipelined Computers,
Hemisphere Publishing Corp., 1981.

M. J. Flynn et al.,, “Deep-submicron microprocessor
design issues,” Proc. IEEE Micro, pp. 11-22, July-Aug
1999.

V. Zyuban, “Unified architecture level energy-efficiency
metric,” submitted to GLSVLSI-2002 conference.

P. Boseet al., “Early-stage definition of LPX, a low-power
issue-execute processor prototype,” submitted for
publication; IBM Research Report, Jan. 2002.

D. Brooks et al., “Power-aware microarchitecture: design
and modeling challenges for next generation
microprocessors,” Proc. IEEE Micro, vol. 20., no. 6,
Nov./Dec. 2000, pp. 26-44.

2.6
2.55+
2.5
2.45+
2.4
2.35+
2.3-Pwt=4.119, IssueQ-pwr=0.098
2.25+— T T T T T T T
1 2 4 8 16 32 64 128
Adaptation cycle window, AW (cycles)

Cycles per instruction (CPI)

baseline power (non-adaptive) = 4.46 watts
Figure 10. LPX power-perf: adaptive issue queue

170

util = 9@ %
160 —mn?&o%%;
150 util = 106 % IssueQ

)

140 | w77 % Full Chip

<
ﬁy Pipe util =12.5 %

130

120

0.0 0.05 0.1 0.15 0.2
Data cache miss ratio parameter

Worst-case cycle-to-cycle power s

Figure 11. Power swing characteristics

valid bit
(used for
—{ I-BUFFER .
(contains predecoded instructions) I l/Cl ock-gating)
,,,,,,,,,,,,,,,,, ‘
(RAM) load > l
I-CACHE d ! . 3 [
(loop buffer) 0-4 instr ata < - ! vector register file |
T |
per cycl (adaptive queue) stor : (3 read, 2 write) |
data | |
77777777777777777 |
. l l)
1ssu€ queue | | !
On-chip power/perf > Yo Y - !
counters opnd AlopndB |
l
“up to 2 instructions per cycle
misc. proggrammable v valid-bit
L 2
control regs to nject ¢ based CG
pipeline stalls e.g. | ¢ ,,,,,, ‘ {
|
for cache misses) | ! vector \
1 scalar fixed point : (ith)t' i
| unit (combined : W =2 baseline machine anthmetic unj
|
Figure 5. High-Level Block Diagram ! LSL[é]g;(“LF_XU) | ARU)
of the LPX Processor Prototype L @SEXUni) (IPCMOS pipe)

y

writeback (rename) bus/buffer

Figure 6. LPX high-level block diagram

