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Abstract

The process of building a Bayesian network model is often
a bottleneck in applying the Bayesian network approach to
real-world problems. One of the daunting tasks is the quan-
tification of the Bayesian network that often requires specify-
ing a huge number of conditional probabilities. On the other
hand, the sensitivity of the network’s performance to varia-
tions in different probability parameters may be quite differ-
ent; thus, certain parameters should be specified with a higher
precision than the others. We present a method for a selective
update of the probabilities based on the results of sensitivity
analysis performed during learning a Bayesian network from
data. We first perform the sensitivity analysis on a Bayesian
network in order to identify the most important (most critical)
probability parameters, and then further update those proba-
bilities to more accurate values. The process is repeated un-
til refining the probabilities any further does not improve the
performance of the network. Our method can also be used
in active learning of the Bayesian networks, in which case
the sensitivity can be used as a criterion guiding active data
selection.

Introduction

Bayesian networks provide a graphical framework for com-
pact representation of multivariate probabilistic distributions
and efficient reasoning under uncertainty. Graphical proba-
bilistic models are widely used in various applications, in-
cluding medical diagnosis, computer troubleshooting, traffic
control, airplane failure isolation, speech recognition, and
error-correcting codes, to name a few. However, Bayesian
network construction is often considered a major difficulty
when applying this framework to real-world problems. One
of the daunting tasks is the quantification of the Bayesian
network that often requires specification of thousands of
conditional probabilities, as the probability matrix for each
node is exponential in the number of its parents.
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One way to acquire the probability distributions is to elicit
the probability parameters by interviewing domain experts.
However, such knowledge-engineering approach can be
quite expensive and time-consuming. Another way is es-
timate the parameters from the available data. Unfortu-
nately, the typically huge number of probability parameters
in a Bayesian network may require quite large data sets in
order to learn accurate parameter estimates, especially for
probability distributions describing rare events. In real-life
applications, the data base is often too scarce and results
in erroneous values for the rare-event probabilities. The
third way utilizes the domain knowledge as well as the data,
and becomes the standard method for estimating probabil-
ity distributions in Bayesian learning. It views the prior
knowledge of a domain expert as an equivalent of a pseudo
(or imaginary) data set which observes Dirichlet distribu-
tions (Geiger & Heckerman 1995). The Dirichlet exponent
parameters (also called hyperparameters) are used to repre-
sent the equivalent sample size of the experts’ prior knowl-
edge (Cooper & Herskovits 1992). However, the number of
the hyperparameters is as large as the number of the proba-
bility parameters in a Bayesian network.

On the other hand, not all parameters are equally impor-
tant since they all have different effects on the network’s
performance. Sensitivity analysis can identify the most
important parameters. In the past few years, significant
progress has been made in developing sensitivity analy-
sis techniques for Bayesian networks. Efficient sensitiv-
ity analysis methods based on inference algorithms have
been provided in (Couṕe et al. 2000; Darwiche 2000;
Kjærulff & van der Gaag 2000). Those techniques have been
used for efficient quantification of large-scale Bayesian net-
works (Couṕeet al. 1999).

In this paper, we present a method that uses sensitivity anal-
ysis for a selective update of the probabilities when learning
a Bayesian network. We first run sensitivity analysis on a
Bayesian network learned with uniform hyperparameters to
identify the most important probability parameters. Then
we update this set of probabilities to their accurate values by
acquiring their informative hyperparameters. The process
is repeated until further elaboration of probabilities does



not improve the performance of the network. Our method
can also be applied to active learning of Bayesian networks,
where the sensitivity analysis can suggest which data should
be collected or selected for further learning.

Bayesian Network

Bayesian networks (also calledbelief networks) provide a
increasingly popular graphical framework for Bayesian rea-
soning, a probabilistic approach to inference based on com-
bining prior knowledge with observed data using theBayes’
rule:

P (H|D) =
P (D|H)P (H)

P (D)
, (1)

whereP (H) is theprior probability of hypothesisH, P (D)
is the prior probability of observing dataD, P (D|H) (called
likelihood) is the probability of observingD if hypothesisH
holds, andP (H|D) is theposteriorprobability of H after
observing dataD.

Formally, a Bayesian networkB is a pair(G, Θ), where G
is a directed acyclic graph in which nodes represent random
variables of interest (e.g., the temperature of a device, the
gender of a patient, a feature of an object, an occurrence of
an event) and the edges denote probabilistic dependencies.
Since the directed edges are often interpreted as direct causal
influences between the variables, Bayesian networks are
also calledcausal networks. Let X = {X1, X2, . . . , Xn}
be a set of random variables, and letΘ = {θxi,pai

} be the
set of parameters that represent conditional probabilities for
each nodeXi given its parentsPai (the nodes pointing toXi

in the graph) inG, i.e. θxi,pai
= P (Xi = xi|Pai = pai)

(or, using a shorter notation,P (xi|pai)). The distributions
P (Xi|Pai), associated with each nodeXi, are calledlo-
cal probability distributions(Heckerman 1998). Typically,
Bayesian networks are defined for discrete variables with fi-
nite number of states. Thus, the local probability distribu-
tions are represented by(m + 1)-dimensionalconditional
probability tables (CPTs), wherem is the number of par-
ents, and each entryθxi,pai

corresponds to a particular value
assignment toXi and its parents. A Bayesian network rep-
resents a joint probability distribution overX as a product
of local distributions:

P (x1, ...., xn) = Πn
i=1P (xi|pai) . (2)

Exploiting conditional independence assumptions allows a
compact representation of multivariate probabilistic distri-
butions and allows for efficient reasoning techniques.

Figure 1 shows an example of Bayesian network. It is a
small fragment ofHEPAR(Oniśko, Druzdzel, & Wasyluk
2000) network built for medical diagnosis for liver diseases.
The causal relationship between liver disorder to possible
causes (e.g., gallstone, alcoholism) and to symptoms (e.g.,
fatigue, jaundice) can be read directly from the links in the

Figure 1: An example of a Bayesian network.

graph. In this network, nodeDisorderhas three binary par-
ents:Alcoholism, Hepatotoxic medications, andGallstones,
each of which is a causal factor contributing to each of six
possible liver disorders. There are totally 48 probability pa-
rameters to define nodeDisorder conditioned on its parent
configurations. For a root node (i.e., a node having no par-
ents), the prior probability distribution is defined over the
node’s outcomes.HEPARincludes 94 variables and requires
over 3,700 numerical parameters for its full quantification.

Traditionally, Bayesian networks have been used as a
knowledge-engineering tool for representing uncertain ex-
pert knowledge and for subsequent reasoning under uncer-
tainty. However, the process of building and debugging a
Bayesian network is recognized as a major difficulty in ap-
plying this approach to real-world problems. Over the last
decade, the research focus is shifting more towards learn-
ing Bayesian networks from data, especially with increas-
ing volumes of data available in biomedical, Internet, and
e-business applications. In the past few years, significant
progress has been made in developing techniques for learn-
ing Bayesian networks (Heckerman 1998). Most recently,
there is a growing interest to the reliability (sensitivity) of
Bayesian networks in the presence of noise in its parameters,
and to the validation of Bayesian network models (Pradhan
et al. 1996; Kipersztok & Wang 2001) by using sensitiv-
ity analysis techniques. Based on reasoning algorithms for
probabilistic inference, efficient computation methods have
been developed for sensitivity analysis (Coupé et al. 2000;
Darwiche 2000; Kjærulff & van der Gaag 2000) and made
the technique applicable to quantifying large-scale real-
world Bayesian networks (Coupé et al. 1999). For a brief
introductory survey on the advances in Bayesian network
learning, see (Rish 2000); for a comprehensive one, refer to
(Heckerman 1998).



Learning Probability Parameters

Assume that we have acomplete(no missing values) data set
D = {d1, . . . ,dN} over a set of discrete, multinomial vari-
ablesX = {X1, X2, . . . , Xn}, where each variableXi has
ri possible valuesx1

i , . . . , x
ri
i , i = 1, . . . , n. We denote by

θijk the probabilityP (Xi = xk
i |Pai = pai

j), wherepai
j

is thej-th possible configuration ofXi’s parents. Similarly,
we useθij = {θijk|1 ≤ k ≤ ri} to denote the set of pa-
rameters describing the local distributionP (Xi|pai

j . Also,
we assumeparameter independence, which says thatθij is
independent ofθij′ for all j 6= j′. For convenience, we also
useθ to denote any distributionθij in this section.

In classical statistical approach, the probability parameters
are viewed asphysical property, though unknown, of the
world. They are assumedobjectiveconstants that can be
estimated purely from a data set of training examples us-
ing maximum-likelihood (ML)estimates. The log-likelihood
logP (D|Θ) can be decomposed according to the graph
structureG using the chain-rule representation of joint prob-
ability in the equation 2:

logP (D|Θ) =
∑
i,j,k

Nijklogθijk, (3)

whereNijk aresufficient statisticsrepresenting the number
of data instances matching the instantiationsXi = xk

i and
Pai = pai

j . It is easy to show that this expression is max-
imized by the frequencies (maximum-likelihood estimates)
θ̂ijk = Nijk

Nij
, whereNij is the number of samples matching

the assignmentPai = pai
j , andNij =

∑ri

k=1 Nijk.

Bayesian approach takes a different view at the probabil-
ity parameters. In Bayesian statistics, the probabilities rep-
resent degree ofsubjectivebelief. The parameters are un-
known variables governed by probability distributions. We
assume some prior belief (e.g., based on background knowl-
edge or historical information) inθ that is represented by
the prior distribution P (θ). When a new data setD be-
comes available, this belief is updated according to Bayes’
rule P (θ|D) = P (D|θ)P (θ)

P (D) . Thus, the Bayesian approach
takes advantage of prior knowledge about the parameters,
which is especially useful when data are scarce. Imagine all
possible values ofθ from which this data set could have been
generated. Themaximum a posteriori (MAP)estimate ofθ
is the expectation ofθ with respect to our posterior beliefs
about its value:

Ep(θ|D)(θ) =
∫

θ p(θ|D) dθ .

A common approach to modeling the prior belief overmulti-
nomial variablesX with the parametersθ usesDirichlet
distribution, a conjugatedistribution to multinomial, which
has a nice property that the posteriorP (θ|D) belongs to the

sameconjugate familyas the priorP (θ) (Geiger & Hecker-
man 1995). TheDirichlet distribution is defined as follows:

Dir(θ|αij1, . . . , αijri
) ≡ Γ(αij)∏ri

k=1 Γ(αijk)

ri∏
k=1

θ
αijk−1
ijk ,

whereαij =
∑ri

k=1 αijk andΓ(·) is theGamma-function
which satisfiesΓ(x + 1) = xΓ(x) andΓ(1) = 1. The ex-
ponent parametersαijk are often calledhyperparameters, in
order to distinguish them from theθijk parameters of the
corresponding multinomial distribution. A common inter-
pretation forαijk parameter is the number of times that an
expert has previously observed the instantiation ofXi = xk

i
andPai = pai

j . For that, theα-parameters are also called
equivalent sample size(i.e. the size of a data set that is an
equivalent of the expert’s knowledge). Thus, larger param-
eters reflect higher confidence in our prior. Given a set of
observationsD on multinomial variablesX with the param-
etersθ = {θijk|1 ≤ k ≤ ri}, it is easy to see that the
posteriorP (θ|D) is also Dirichlet:

P (θ|D) ∝ P (D|θ)P (θ)

∝
ri∏

k=1

θ
Nijk

ijk ·
ri∏

k=1

θ
αijk−1
ijk

∝
ri∏

k=1

θ
Nijk+αijk−1
ijk .

Therefore (taking into account normalization constant),

P (θ|D) = Dir(θ|αij1 + Nij1, ..., αij1 + Nijri) .

Given a network structureG, a complete data setD, a set
of Dirichlet prior parametersαijk, and the assumption of
parameter independence, it can be shown that the expected
value of the parameters of the network with respect to the
posterior distributionp(θ|D,G, αij) can be estimated by
Equation 4:

θ̂ijk =
αijk + Nijk

αij + Nij
, (4)

whereαij =
∑ri

k=1 αijk, andNij =
∑ri

k=1 Nijk.

As is apparent from Equation 4, the Dirichlet exponentsαijk

completely specify a user’s current knowledge about the do-
main for purposes of learning probability parameters of the
Bayesian network. Unfortunately, the specification ofαijk

for all possible(xk
i ,paj

i) configurations corresponding to all
values ofi, j, andk is formidable. Thus, most learning algo-
rithms simply adopt an uninformative assignment. For ex-
ample, Cooper and Herskovits (Cooper & Herskovits 1992)
suggest a uniform distribution withαijk = 1 for all val-
ues ofi, j, andk; Buntine (Buntine 1991) suggests an un-
informative assignmentαijk = α/(ri · qi), whereri is the
number ofXi’s possible values andqi is the total number of



Pai’s configuration. With additional assumption oflikeli-
hood equivalence1 and introducingcomplete networkstruc-
tures2, Heckermanet al.(Heckerman, Geiger, & Chickering
1995) derived an exponent constraint on theαijk parame-
ters. As a consequence, informative prior for theαijk pa-
rameters can be constructed by building a complete network
Sc and assessing an equivalent sample sizeα for Sc.

αijk = α · p(Xi = xk
i ,Pai = paj

i) ,

wherep(Xi = xk
i ,Pai = paj

i) is the joint probability in
the complete networkSc. Whereas assessing an equivalent
sample sizeα is quite an easy task, building a complete net-
work is demanding, to say the least. Most of the current
learning algorithms simply ignore the variety of background
knowledge of the domain experts by using uninformative
prior for the αijk parameters. How to efficiently employ
domain knowledge with data remains an unsolved problem.

Sensitivity of Bayesian networks

As we discussed above, learning probability parameters
from data uses eithermaximum-likelihood (ML)estimate or
maximum a posteriori (MAP)estimate for probability distri-
butions to quantify a Bayesian network. However, the typ-
ically huge number of probability parameters in a Bayesian
network requires very large data set to be sufficient to learn
accurate estimates, especially for those probability distribu-
tions conditioned on rare events. For a real-world Bayesian
network, the data base is often relatively too scarce and re-
sults in extreme values for the probability parameters, espe-
cially in ML estimates. TheMAP estimate can avoid this
problem by choosing appropriate hyperparameters that rep-
resent domain background knowledge. However, the uni-
form distributions used for the hyperparameters in the cur-
rent learning algorithms ignore the variety of prior proba-
bility distributions. Therefore, theMAP estimates also can
deviate from the true probability values. When there is no
data available for learning, the domain experts’ estimates
are the only possible resource to quantify a Bayesian net-
work. Unfortunately, the subjective estimates are notori-
ously inconsistent and biased (Morgan & Henrion 1990;
Cooke 1991). Even for a consistent belief, the numerical
estimation can vary within a not small range. For example,
a person believes a certain event happensvery likely may
assign the probability value as 0.8, or 0.9. The inherent in-
accuracy of the probability estimation raises some interest-
ing questions to Bayesian networks: when the probability

1Likelihood equivalence says that, for any database D, the prob-
ability of D is the same given hypotheses corresponding to any two
equivalent network structures. Two network structures are said to
be equivalent when they encode the same independence relation-
ships between nodes, only that the directions of edges can be dif-
ferent.

2A complete network is a network that has no missing edges.
It encodes no assertions of conditional independence. In a domain
with n variables, there aren! complete network structures.

parameters vary in a reasonable range, how the performance
of the Bayesian network changes? Which parameters are the
most important with regard to their effects on the sensitivity
of the network?

Sensitivity Analysis

Sensitivity refers to how sensitive a model’s performance
are to minor changes in the model. In a Bayesian network,
the conclusion is drawn based on posterior probabilities of
user queries, sensitivity analysis often investigates the ef-
fect of the changes in probability parameters on the posterior
probabilities corresponding to the queries posted to the net-
work. Depending on the application tasks of the Bayesian
network, other criteria may be more indicative to measure
its performance. For example, in a Bayesian network for
multi-failure diagnosis, rank change among the possible fail-
ures (Kipersztok & Wang 2001) is more appropriate than the
value change of posterior probabilities; in a network which
involves recommending actions and decision making, the
changes in decisions is a more indicative measure (van der
Gaag & Couṕe 2000). Without loss of generality, we use the
change in posterior probability of the target query as sensi-
tivity measure for a Bayesian network in this paper.

A mathematical function, namely,sensitivity function, can
be used to express the sensitive change in posterior proba-
bility of the target query due to the variation of a Bayesian
network’s probability parameters. Laskey first proposed to
use partial derivative of the sensitivity function and used
an iterative approximation methods to determine the neces-
sary derivatives (Laskey 1995). Castillo et al later proved
that any posterior probability of a query is a fraction of
two linear functions of a parameter (Castillo, Gutiérrez, &
Hadi 1997). Since then, more efficient algorithms are pro-
posed for sensitivity analysis based on message passing and
joint tree propagation (Coupé et al. 2000; Darwiche 2000;
Kjærulff & van der Gaag 2000). These analytical algorithms
compute the posterior probability of the query as a function
of the parameters according to Theorem 1 using various in-
ference technique.

Theorem 1 Let B be a Bayesian network,x be a probabil-
ity parameter,y be a query, ande be evidence entered into
B. The posterior probabilityp(y|e)(x) is a fraction of two
linear functions ofx.

p(y|e)(x) =
α1x + β1

γ1x + δ
.

For simplicity, the function can be normalized as following:

p(y|e)(x) =
αx + β

γx + 1
.

Then the partial derivative ofp(y|e)(x) on x can be ex-



pressed as

∂p(y|e)
∂x

=
α− βγ

(γx + 1)2
. (5)

Take the value ofx in the Equation 5, we can get thesensi-
tivity valueof queryy atx givene.

To determine the value ofα, β, andγ, there are only three
message propagations necessary for each given evidence.
For example, if we use message passing scheme in junction
tree inference withx’s value set as0, 0.5, and1, the values of
the coefficients are completely determined as the following:

β = p0

γ = β−p0.5

p0.5−p1 − 1
α = p1(γ + 1)− β

.

wherep0, p0.5, andp1 denote the corresponding posterior
probabilities ofp(y|e) respectively. Note that whenx’s
value was manipulated, the items in the same conditional
probability table (CPT) column asx should be changed ac-
cordingly, since the summation of a single column param-
eters is equal to 1.Proportional scalingis often used to
change the related parameters in such a way that they keep
the original proportion. We usemeta parameterto denote
the parameter being manipulated to distinguish it from other
dependent parameters in the same probability distribution.

As we see, the partial derivative∂p(y|e)
∂x reflects the changing

behavior of the posterior probability ofy due to the changes
in x under the evidence scenarioe. It defines how sensitive
the single query variabley to the probability parameter vari-
ablex given evidencee. We call this simplest sensitivity in
Bayesian networkParameter Sensitivity.

Definition 2 (Parameter Sensitivity) Let B be a Bayesian
network, x be a probability parameter, y be a query, and e
be evidence entered into B. Parameter sensitivity of x on y
given e is a partial derivative:

S(x|y, e) =
∂p(y|e)

∂x
.

Obviously, one way to measure the sensitivity of the whole
Bayesian network is to take the average over all of the pa-
rameter sensitivities under the possible combinations of the
queries, the evidence and the parameters. Note that differ-
ent evidence can occur with different marginal likelihood,
so the average over the weighted parameter sensitivities
p(e) · ∂p(y|e)

∂x may be more indicative as a measure of net-
work sensitivity.

Based on parameter sensitivity, we can identify which pa-
rameters in a Bayesian network are the most important. In-
tuitively, when the different parameters undergo the same

amount of variation, those with higher parameter sensitiv-
ity causes bigger changes in the query, and thus, affect the
network’s performance stronger. With consideration of mul-
tiple queries and evidence scenarios, we can define the im-
portance of a parameter in a Bayesian network as below:

Definition 3 (Parameter Importance) Let B be a
Bayesian network, x be a probability parameter, y be
a query, and e be evidence entered into B. Parameter
importance of x in B refers to the average of x’s sensitivity
over possible y and e:

I(x) =
1

mn

∑
y,e

S(x|y, e) =
∑
y,e

∂p(y|e)
∂x

,

where m is the number of queries and n is the number of
evidence scenarios.

Selective Parameter Update in Bayesian
Network Learning

Definition of parameter importance provides a measure to
the importance of the probability parameters in a Bayesian
network with respect to the sensitivity of its queries under
the possible evidence scenarios. Efficient algorithms for
sensitivity analysis in Bayesian networks made it possible to
recognize the important probability parameters using Defini-
tion 3. As a result, we can apply sensitivity analysis to iden-
tify those important parameters and focus our effort to re-
fine their corresponding prior hyperparameters in Bayesian
learning. Similar efforts have been made to improve the ef-
ficiency of quantifying a medical application of Bayesian
networks using sensitivity analysis technique (Coupé et al.
1999; Couṕe, van der Gaag, & Habbema 2000).

As summarized in Algorithm 1, the parameters in a Bayesian
network can be selectively refined as follows. It begins with
a Bayesian network learned from data with uniform distri-
butions for the prior hyperparameters. Then importance of
each meta parameter in the network is computed using sen-
sitivity analysis algorithm. Given a threshold of the impor-
tance value, those parameters with a higher value than the
threshold are identified and put into theimportant param-
eter set. For the important parameters not refined before,
informative prior parameters are collected from experts or
learned from new data. With the updated informative hyper-
parameters for the important probability parameters,MAP
estimates are recomputed for these probabilities and the net-
work is repopulated with the newly learned probability pa-
rameters. Iteratively perform sensitivity analysis and repa-
rameterize the network with informative priors until no more
parameters seem important and unrefined, or until the cost of
further elicitation outweigh the benefits of higher accuracy.
Practically, the stopping rules should include: a) satisfactory
behavior of the network is achieved, and b) higher accuracy
can no longer be attained due to lack of knowledge. In this



iteratively repeated procedure, the domain experts can focus
their attention on the probabilities to which the network’s
behavior shows high sensitivity. Those uninfluential param-
eters can be left with crude estimates.

Algorithm 1 Selective Parameter Refinement
Input : a Bayesian networkB = (G, Θ), thresholdδ
Output : a Bayesian networkB = (G, Θ′)
cose effective = true;
while cost effective do

(1) Calculate importanceI(θ) for all meta parameters
θ in B;
(2) Identify a set of the most sensitive parameters
paraIndex = {θ : I(θ) > δ};
if all paraIndex have been refined before, or cost of
knowledge extraction is unaffordablethen

cost effective = false;
else

(3) Extract priorsα for all paraIndex from experts
or new data;
(4) Recompute parameters for allparaIndex with α

and data counts;
(5) UpdateB with the new parametersΘ′, s.t. B =
(G, Θ′);

end if
end while
OutputB

Implementation

We implemented the algorithm to utilize sensitivity analy-
sis in learning probability parameters of Bayesian networks.
BNT (Murphy 2001), a Matlab Bayesian Network Toolbox
developed at UC Bekerley, was used for the implementa-
tion. Equation 5 was used to calculate parameter sensitivity
for parameter importance.

Experiment and Results

We used the Sprinkler network adapted from Russell and
Norvig (Russell & Norvig 1995) in our experiment. The
Sprinkler network is a very simple network which has
four nodes: Cloudy, Sprinkle, Rainand Wetgrass. There
are four edges totally in the network:Cloudy→Sprinkle,
Cloudy→Rain, Sprinkle→Wetgrass, and Rain→Wetgrass.
The network describes a simple mechanism about the prob-
abilistic dependence relationships among the wet grass and
its possible causes: whether it rains or the sprinkler is turned
on. And the later two events depend on whether it is cloudy
or not.

We chose the Sprinkler network for our tests because this
simple network allows us to do exact inference for complete
set of meta parameters in a very short time. For large net-
works to which exact inference is too expensive to apply,
approximate inference can be used for sensitivity analysis.
In our experiment, a query variable is randomly generated.
Since our network is very small, we only assign one query
node and two evidence nodes. In addition, the query node
and evidence nodes are exclusive.

Our training data were generated by probabilistic logic sam-
pling (Henrion 1988) from the true model. The data set con-
tains 100 sample cases. 5 evidence scenarios were used for
sensitivity analysis. Each of the evidence scenario consists
of 2 observations. The observed nodes and their states are
generated randomly. We assume the first state of the query
node is of interest, and calculate its posterior probability for
sensitivity analysis.

We tested our algorithm for selective parameter refinement
with Sprinkler network. The goal is to illustrate the conver-
gence of probability distributions with selective refinement
to the true probability distributions. We used Hellinger dis-
tance between the two distributions to measure their differ-
ence. Hellinger distance between the two probability distri-
butionsp andq is defined as

H =
∑

(
√

p−√
q)2 .

To simulate an expert’s prior knowledge, we generated a sec-
ond data set using probabilistic logic sampling. This data
set is used to estimate the informative hyperparametersα
in step (3) of the Algorithm 1. When setting the sensitivity
thresholdδ = 0.2, we found three parameters are important
and recompute their probability values using informativeα
parameters. As expected, the Hellinger distance decreased
with the selective refinement and thus, the probability distri-
butions converged to the true distributions. Therefore, the al-
gorithm for selective parameter refinement is demonstrated
to be effective.

Figure 2 shows the parameter sensitivity values in Sprinkler
network (totally 8 independent probability parameters). The
figure also displays the Hellinger distances of the probability
distributions before and after refining the most important 3
probabilities to the true distributions, which is 0.0307 and
0.0277 respectively. The decreased distance indicates the
refined probabilities are closer to the true probabilities.

Discussion and Future Work

The algorithm for refining the probabilities can also be used
for active information gathering. The active learning enables
selecting new data for those important probabilities for more
accurate estimate. When collecting data is very expensive,
or when data volume is extremely large and requires too long



Figure 2: Parameter sensitivities of Sprinkler network and
Hellinger distances of the probability distributions before
and after refining 3 important probabilities to the true dis-
tributions

time to process, it may be unaffordable to get all of the prob-
ability parameters at the same accuracy level. Under these
situation, our algorithm adaptable to active learning is very
useful.

One factor missed in the current criteria for sensitivity is
sample risk, which describes the absolute change in any
probability parameterx measured by the variance of the pa-
rameter distribution. When we computed sensitivity value
by the partial derivative of the sensitivity function,∂p(y|e)

∂x ,
we usedx’s value encoded in the network without consider-
ing x’s distribution and its probability of taking this value.
As discussed in section of learning parameters, the probabil-
ity value learned from data is aMAP estimate. The parame-
terx is unknown variable governed by a probability distribu-
tion. Taking into account the variance ofx’s distribution can
model its noise level. This way, the sensitivity value gives
a more indicative measure of the change of the network’s
performance as result ofx’s uncertainty.

One part of our future work is to incorporate sample risk into
sensitivity measure and improve sensitivity analysis tech-
nique for Bayesian networks. In addition, we plan to do
more experiments on data for large-scale networks and en-
hance our learning algorithms to be more efficient and ap-
plicable to real-world problems. We will also extend our
algorithm for active learning and selective data gathering.
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Oniśko, A.; Druzdzel, M. J.; and Wasyluk, H. 2000. Ex-
tension of the Hepar II model to multiple-disorder diagno-
sis. In M.K̃lopotek, M.M̃ichalewicz, S. W., ed.,Intelligent
Information Systems,Advances in Soft ComputingSeries,
303–313. Heidelberg: Physica-Verlag (A Springer-Verlag
Company).
Pradhan, M.; Henrion, M.; Provan, G.; del Favero, B.; and
Huang, K. 1996. The sensitivity of belief networks to im-
precise probabilities: An experimental investigation.Arti-
ficial Intelligence85(1–2):363–397.
Rish, I. 2000. Advances in Bayesian learning. InPro-
ceedings of the 2000 International Conference on Artificial
Intelligence (IC-AI’2000), 95–102. Las Vegas, Nevada:
CSREA Press.
Russell, S. J., and Norvig, P. 1995.Artificial Intelligence:
A Modern Approach. Englewood Cliffs, NJ: Prentice Hall.
van der Gaag, L. C., and Coupé, V. M. 2000. Sensitivity
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