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Abstract

In this paper, we address the problem of efficient diagnosis
in real-time systems capable of on-line information gather-
ing, such as sending ”probes” (i.e., test transactions, such
as ”traceroute” or ”ping”) in order to identify network faults
and evaluate performance of distributed computer systems.
We use a Bayesian network to model probabilistic relations
between the problems (faults, performance degradation) and
symptoms (probe outcomes). Due to intractability of ex-
act probabilistic inference in large systems, we investigated
approximation techniques, such as a local-inference scheme
called mini-buckets(Dechter & Rish 1997). Our empirical
study demonstrates advantages of local approximations for
large diagnostic problems: the approximation is very efficient
and ”degrades gracefully” with noise; also, the approximation
error gets smaller on networks with higher confidence (prob-
ability) of the exact diagnosis. Since the accuracy of diagno-
sis depends on how much information the probes can provide
about the system states, the second part of our work is focused
on the probe selection task. Small probe sets are desirable in
order to minimize the costs imposed by probing, such as addi-
tional network load and data management requirements. Our
results show that, although finding the optimal collection of
probes is expensive for large networks, efficient approxima-
tion algorithms can be used to find a nearly-optimal set.

Keywords: uncertainty management, Bayesian networks,
approximate inference, adaptive optimization.

Introduction
As distributed systems and networks continue to grow in
size and complexity, tasks such as fault localization and
problem diagnosis become significantly more challenging.
As a result, tools are needed that can assist in performing
these management tasks by both responding quickly and ac-
curately to the ever-increasing volume of system measure-
ments, such as alarms and other events, and also actively
selecting informative tests to minimize the cost of diagnosis
while maximizing its accuracy.

In this paper, we address the problem of diagnosis in
distributed computer systems by using test transactions, or
probes. A distributed system can be represented as a “de-
pendency graph”, where nodes can be either hardware ele-
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ments (e.g., workstations, servers, routers) or software com-
ponents/services, and links can represent both physical and
logical connections between the elements (see Figure 1a).
Probes offer the opportunity to develop an approach to di-
agnosis that is more active than traditional “passive” event
correlation and similar techniques. A probe is a command
or transaction (e.g., ping or traceroute command, an email
message, or a web-page access request), sent from a partic-
ular machine called a probing station to a server or a net-
work element in order to test a particular service (e.g., IP-
connectivity, database- or web-access). A probe returns a
set of measurements, such as response times, status code
(OK/not OK), and so on. Probing technology is widely
used to measure the quality of network performance, often
motivated by the requirements of service-level agreements.
However, applying this technology to fault diagnosis and
problem determination, as well as developing optimal strate-
gies for adaptive, on-line probe scheduling, is still an open
research area.

Fault diagnosis in real-life scenarios often involves han-
dling noise and uncertainty. For example, a probe can fail
even though all the nodes it goes through are OK (e.g., due
to packet loss). Conversely, there is a chance that a probe
succeeds even if a node on its path has failed (e.g., dynamic
routing may result in the probe following a different path).
Thus the task is to determine the most likely configuration of
the states of the network elements.

We approach the problem of handling uncertainty by us-
ing the graphical framework of Bayesian networks (Pearl
1988) that provides both a compact factorized representa-
tion for multivariate probabilistic distributions as well as a
convenient tool for probabilistic inference. An example of a
simple Bayesian network for problem diagnosis is shown in
Figure 1b: a bipartite (two-layer) graph where the top-layer
nodes represent marginally independent faults or other prob-
lems1 and the bottom-layer nodes represent probe results.
Since the exact inference in Bayesian networks is generally
hard (NP-hard) (Cooper 1990), we investigate the applica-
bility of approximation techniques and present experimental
results that suggest that a local-inference approach performs
well and provides a cost-effective method for fault diagnosis

1If the problems are not marginally independent, appropriate
edges must be added between them.
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Figure 1: (a) An example of probing environment; (b)
a two-layer Bayesian network structure for a set X =
(X1; X2; X3) of network elements and a set of probes T =
(T1; T2).

in large networks.
Another important issue involved in the diagnosis is the

selection of a most-informative probe set. To use probes,
probing stations must first be selected at one or more loca-
tions in the network. Then the probes must be configured; it
must be decided which network elements to target and which
station each probe should originate from. Using probes im-
poses a cost, both because of the additional network load
that their use entails and also because the probe results must
be collected, stored and analyzed. Cost-effective diagno-
sis requires a small probe set, yet the probe set must also
provide wide coverage, in order to locate problems any-
where in the network. By reasoning about the interactions
among the probe paths, an information-theoretic estimate of
which probes are valuable can be constructed. This yields
a quadratic-time algorithm which finds near-optimal probe
sets. We also implement a linear-time algorithm which can
be used to find small probe sets very quickly; a reduction of
almost 50% in the probe set size is achieved.

Problem formulation
We now consider a simplified model of a computer network
where each node (router, server, or workstation) can be in
one of two states, 0 (fault) or 1 (no fault). To avoid confu-
sion with the previous section, we change notation slightly:
the states of the network elements are denoted by a vector
X = (X1; :::; Xn) of unobserved boolean variables. Each
probe, or test, Tj , originates at a particular node (probing
workstation) and goes to some destination node (server or
router). We also make an assumption that source routing is
supported, i.e. we can specify the probe path in advance.
A vector T = (T1; :::; Tm) of observed boolean variables

denoting the outcomes (0 - failure, 1 - OK) of m probes.
Lower-case letters, such as xi and tj , denote the values of
the corresponding variables, i.e. x = (x1; :::; xn) denotes
a particular assignment of node states, and t = (t1; ::; tm)
denotes a particular outcome of m probes. We assume that
the probe outcome is affected by all nodes on its path, and
that node failures are marginally independent. These as-
sumptions yield a causal structure depicted by a two-layer
Bayesian network, such as one in Figure 1b. The joint prob-
ability P (x; t) for such network can be then written as fol-
lows:

P (x; t) =

nY

i=1

P (xi)

mY

j=1

P (tj jpa(tj)); (1)

where P (tj jpa(tj)) is the conditional probability distribu-
tion (CPD) of node Ti given the set of its parents Pai, i.e.
the nodes pointing to Ti in the directed graph, and P (xi) is
the prior probability that Xi = xi.

We now specify the quantitative part of those network,
i.e. the CPDs P (tj jpa(tj). In general, a CPD defined
on binary variables is represented as a k-dimensional ta-
ble where k = jPa(tj)j. Thus, just the specification com-
plexity is O(2k) which is very inefficient, if not intractable,
in large networks with long probe path (i.e. large parent
set). It seems reasonable to assume that each element on
the probe’s path affects the probe’s outcome independently,
so that there is no need to specify the probability of T i for
all possible value combinations ofXi1 ; :::; Xik (the assump-
tion known as causal independence (Heckerman & Breese
1995)). For example, in the absence of uncertainty, a probe
fails if and only if at least one node on its path fails, i.e.
Ti = Xi1 ^ ::: ^ Xik , where ^ denotes logical AND, and
Xi1 ; :::; Xik are all the nodes probe Ti goes through; there-
fore, once it is known that some Xij = 0, the probe fails
independently of the values of other components. In prac-
tice, however, this relationship may be disturbed by ”noise”.
For example, a probe can fail even though all nodes it goes
through are OK (e.g., if network performance degradation
leads to high response times interpreted as a failure). Vice
versa, there is a chance the probe succeeds even if a node
on its path is failed, e.g. due to routing change. Such un-
certainties yield a noisy-AND model which implies that sev-
eral causes (e.g., node failures) contribute independently to
a common effect (probe failure)and is formally defined as
follows:

P (t = 1jx1; : : : ; xk) = (1� l)

nY

xi=0

qi; and (2)

P (t = 1jx1 = 1; :::; xk = 1) = 1� l; (3)

where l is the leak probability which accounts for the cases
of probe failing even when all the nodes on its path are OK,
and the link probabilities, qi, account for the second kind
of ”noise” in the noisy-AND relationship, namely, for cases
when probe succeeds with a small probability q i even if node
Xi on its path fails2.

2Note that this noisy-AND definition is equivalent to the noisy-



In a noise-free environment (i.e., when probe outcomes
are logical-AND functions of the nodes they go through), the
bipartite Bayesian network described above can be reduce
to a simpler representation by dependency matrix D(i; j),
where D(i; j) = 1 if probe Ti passes through node Xj , and
D(i; j) = 0 otherwise. Thus, D is an m-by-nmatrix, where
m is the number of probes. (This representation is motivated
by the ”coding” approach to event correlation suggested by
(Kliger et al. 1997).)

Once a Bayesian network is specified, the diagnosis task
can be formulated as finding the maximum probable expla-
nation (MPE), i.e. a most-likely assignment to all X i nodes
given the probe outcomes, i.e. x� = argmaxx P (xjt).
Since P (xjt) = P (x;t)

P (t) , where P (t) does not depend on
x, we get x� = argmaxx P (x; t).

When there is no noise in noisy-AND (i.e. leak and link
probabilities are zero), the CPDs become deterministic, i.e.
each probe Ti = ti imposes a constraint ti = xi1 ^ ::: ^ xik
on the values of its parent nodes Xi1 ; :::; Xik . Now, finding
an MPE can be viewed as a constrained optimization prob-
lem of finding x� = argmaxx1;:::;xn

Qn

j=1 P (xj) subject
to those constraints. In a particular case of uniform priors
P (xj), diagnosis is reduced to solving a constraint satisfac-
tion problem. Clearly, the quality of diagnosis depends on
the set of probes: the only way to guarantee the correct di-
agnosis is to have a constraint set with a unique solution.
This guarantee can only be achieved for m � n, since 2m

probe outcomes must ”code” uniquely for 2n node state as-
signments.

Accuracy of diagnosis
In this section, we investigate the accuracy of the MPE di-
agnosis as a function of the number of probes and the noise
parameters. A lower bound on the diagnosis error allows to
reject the parameter regions that can never yield an asymp-
totically error-free diagnosis.

The MPE error, ErrMPE , is the probability that diag-
nosis x� differs from the true state x (by at least one value
xi). Given an assignment T = t, X = x, and diagnosis
X� = x�, we get P (x 6= x � jt) = Ix6=x� where Is is the
indicator function, Is = 1 if s = true and Is = 0 otherwise.
Then the MPE error can be written as

ErrMPE = P (X 6= X�jT) =
X

x;t

P (x; t)Ix6=x�jt =

X

t

(1� P (x�jt)) = 1�
X

t

P (x�; t); (4)

where x� is an MPE assignment.

Lemma 1 Given Bayesian network defining a joint distri-
bution P (x; t) as specified by the equation 1, where all

OR definition in (Henrion et al. 1996) if we replace every value by
its logical negation (all 0’s will be replaced by 1’s and vice versa).
We also note that instead of considering the leak probability sep-
arately, we may assume there is an additional ”leak node” always
set to 0 that affects an outcome of a probe Ti according to its link
probability (1� li).
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Figure 2: (a) Minimum number of probes m to guarantee
zero error bound, versus fault prior p: low prior yields lower
than n = 15 number of probes. (b) lower bound on MPE er-
ror versus link probability q (”noise”): the longer the probes
(higher r), and the more of them (higher m), the lower the
MPE error bound for fixed noise q; also, the sharper the tran-
sition from 0 to 100% error.

P (tj jpa(tj) are noisy-AND CPDs having same link prob-
ability q, leak probability l, and the number of parents r, the
MPE diagnosis error is bounded from below as follows:

ErrMPE � LM = 1� (1� p)n((1� l)(1� qr) + 1)m: (5)

Proof. See (Rish et al. 2001) for details.
Note that in the absence of noise (l=0 and q=0) we get

ErrMPE � LM = 1� (1� p)n2m, thus, for uniform fault
priors, p = 0:5, an error-free MPE diagnosis is only possi-
ble if n = m, as we noted before; however, for smaller p,
zero-error can be achieved with smaller number of probes.
Namely, solving LM � 0 for m yields the necessary con-

dition for zero lower bound, m � �n log(1�p)
log(1+(1�l)(1�qr)) ,

plotted in Figure 2a as a function of p. Generally, solving
LM � 0 for m provides a way of specifying the minimum
necessary number of probes that yield zero lower bound for
a specified values of other parameters3.

3Clearly, finding a set of probes that may actually achieve the
bound, if such set of probes exists, is a much harder task.



Also, from the expression 5 we can see that the lower
bound on the MPE diagnosis error is a monotone function of
each parameter,n,m, p, l, q or r, given that other parameters
are fixed. Namely, the error (bound) increases with increas-
ing number of nodes n, fault probability p, leak probability
l, and link probability q, but decreases with increasing num-
ber of probesm and probe route length r, which agrees with
ones intuition that having more nodes on probe’s path, as
well as a larger number of probes, provides more informa-
tion about the true node states. For example, the sensitivity
of the error bound to noise is illustrated in Figure 2b: note a
quite sharp transition form 0 to 100%-error with increasing
noise; it sharpness increases with increasing m and r.

Computational complexity and approximations
Let us first consider the complexity of diagnosis in the ab-
sence of noise. Finding the most-likely diagnosis is reduced
to constraint satisfaction in the following two cases. The
first case is when the probe constraints allow exactly one
solution (an assignment x simultaneously satisfying all con-
straints). The second case corresponds to the uniform pri-
ors P (xi) which also yield the uniform posterior probability
P (xjt); therefore, any assignment x consistent with probe
constraints is an MPE solution. Although constraint satis-
faction is generally NP-hard, the particular problem induced
by probing constraints can be solved in O(n) time as fol-
lows.

Each successful probe yields a constraint xi1^:::^xik = 1
which implies xi = 1 for any node Xi on its path; the rest
of the nodes are only included in constraints of the form
xi1 ^ ::: ^ xik = 0, or equivalently,:xi1 ^ ::: ^ :xik = 1
imposed by failed probes. Thus, a O(n)-time algorithm as-
signs 1 to every node appearing on the path of a successful
probe, and 0 to the rest of nodes. This is equivalent to unit
propagation in Horn theories, which are propositional theo-
ries defined as a conjunction of clauses, or disjuncts, where
each disjunct includes no more than one positive literal. It
is easy to see that probe constraints yield a Horn theory and
thus can be solved by unit propagation in linear time. Thus,
finding MPE diagnosis is O(n) time when it is equivalent to
a constraint satisfaction in the absence of noise, as in cases
of either uniform priors, or in case of unique diagnosis. In
general, however, even in the absence of noise finding MPE
is an NP-hard constrained optimization problem, with worst-
case complexity O(exp(n)).

Similarly, in the presence of noise, finding MPE solution
in a Bayesian network yields the complexity O(exp(w�))
where w� is the induced width of the network (Dechter &
Pearl 1987), i.e. the size of largest clique created by an ex-
act inference algorithm, such as variable elimination. It is
easy to show that w� � k where k is the maximum number
parents of a probe node, and w� = n in the worst case4.

Thus, we focused on approximating MPE, and studied

4Algorithm Quickscore(Heckerman 1989), specifically derived
for noisy-OR networks, has the complexity O(2p) where p is the
number of ”positive findings” (failed probes in our case). However,
the algorithm is tailored to belief updating and cannot be used for
finding MPE.
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Figure 3: (a) ”Graceful degradation” of MPE approximation
quality with noise, where the approximation quality is mea-
sured as P (L=MPE) > 1 � e for e = 0:01 and e = 0:1:
the quality is higher when the noise is smaller, and when the
probe path is longer (r = 8 vs. r = 4).

empirically algorithm approx-mpe(i) (with i = 1, to be pre-
cise), which belongs to the family of mini-bucket approxi-
mations for general constrained optimization, and particu-
larly, for finding MPE (Dechter & Rish 1997; Rish 1999).
Generally, the mini-bucket algorithms approx-mpe(i) per-
form a limited level of variable-elimination, similar to en-
forcing directional i-consistency, and then greedily com-
pute a suboptimal variable assignment in linear time5. The
preprocessing allows to find an upper bound U on M =
maxx P (x; t), where t is the evidence (clearly, MPE =
M=P (t)), while the probability L = P (x0; e) of their sub-
optimal solution provides an lower bound on M . Gener-
ally, L increases with the level of preprocessing controlled
by i, thus allowing a flexible accuracy vs. efficiency trade-
off. The algorithm returns the suboptimal solution x 0 and
the upper and lower bounds, U and L, on M ; ratio U=L is a
measure of the approximation error.

(increasing the parameter i corresponds to a more
”coarse” partitioning of P (xijpai) into subproducts before
maximization; e.g., i = n yields the exact MPE computa-
tion).

We tested approx-mpe(1) on the networks constructed
in a way that guarantees the unique diagnosis in the ab-
sence of noise (particularly, besides m probes each hav-
ing r randomly selected parents, we also generated n ad-
ditional probes each having exactly one parent node, so that
all Xi nodes are tested directly). Note that in the absence
of noise (i.e., for deterministic probe outcomes) approx-
mpe(1) is equivalent to enforcing arc-consistency in a con-
straint network, or performing unit propagation on a propo-
sitional theory (Rish 1999), thus, in deterministic case, its
solution coincides with the optimal one. Adding noise in
a form of link probability q caused graceful degradation of

5A closely related example is local belief propagation (Pearl
1988), a linear-time approximation which became a surprisingly
effective state-of-the art technique in error-correcting coding (Frey
& MacKay 1998).



the approximation quality, as shown in Figure 3. The figure
summarizes the results for 50 randomly generated networks
with n = 15 unobserved nodes (having uniform fault priors
p = P (xi = 0) = 0:5), n = 15 direct probes, one for each
node, and n = 15 noisy-AND probes, each with r = 4 ran-
domly selected parents among the unobserved nodes, zero
leak l = 0 probability. The link probability (noise level)
q varied from 0.01 to 0.64, taking 15 different values; the
results are shown for all noise levels together. For each net-
work, 100 instances of evidence (probe outcomes) were gen-
erated by Monte-Carlo simulation of x and t according to
their conditional distributions.

Also, as demonstrated in Figures 4a and b, there is a
clear positive correlation between MPE value and approx-
imation quality measured both as L=MPE (Figure 4a) and
U=L (Figure 4a); there is also an interesting threshold phe-
nomenon: the approximation quality suddenly increases to
practically perfect (L/MPE=1) once the MPE reaches a cer-
tain threshold value determined by the network parameters
m, n, and r. An initial theoretical explanation of such phe-
nomenon can be found in (Rish, Brodie, & Ma 2002a).

Probe set construction
In this section, we address the other important problem in-
volved in fault diagnosis, namely, constructing the optimal
probe set. Generally, the accuracy of diagnosis increases
with increasing the number of probes (see the analytical re-
sults on the diagnostic error); however, in order to decrease
the cost of probing (e.g., additional network load), we would
like to achieve the maximum diagnostic accuracy with the
minimum number of probes.

Assumptions: in this section, we only consider noise-
free diagnosis, i.e. deterministic (logical-AND) dependence
of each probe outcome on the node states, and will there-
fore use the dependency matrix representation of the corre-
sponding Bayesian network. Another simplifying assump-
tion is that the probability of simultaneous faults of differ-
ent nodes is very small and can be ignored; thus, no more
than one node can fail at a time. (In other words, we im-
pose a constraint on the prior distribution P (X), assuming
that P (x) = 0 if

Pn

i=1 xi > 1.) However, this assump-
tion does not restrict the generality of our approach and is
dictated only by computational reasons since the complex-
ity of our algorithms is linear in the number of possible fault
combinations, which is O(2n) in the unrestricted case.

We will further use the example in Figure 5 as an illustra-
tion of our approach. Here we assume that one probe is sent
along the path N1 ! N2 ! N5 while another is sent along
the path N1 ! N3 ! N6. The resulting dependency matrix
is shown to the right of the network (probes are indexed by
their start and end nodes).

Problem Statement
Our objective is to find a minimal subset of probes (given
set of all possible probes) that can always diagnose a single
failed node.

We can formulate probe selection as a constrained opti-
mization problem, as follows. Let P denote the initial probe
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Figure 4: Approximation quality of algorithm approx-
mpe(1) tends to be higher for higher MPE, i.e. for more
likely diagnosis: a) L/MPE vs. MPE and b) U/L vs. MPE.
Note: a) a sharp transition in approximation quality for
MPE � 2e�6; similar results observed for other networks,
where the ”transition point” is determined by parameters n,
m and p; b) lower bound L is often more accurate than the
upper bound U (U/L is far from 1 when L/MPE is near 1).

Figure 5: An example network and dependency matrix.



set P , and let D denote the dependency matrix. Let P 0 be
any subset of P . Define, for j = 1 to n, Cj = fDijg; Pi 2
P 0; Cj is the j’th sub-column of D, with the extracted rows
corresponding to the probes in P 0. Then the number of diag-
nosable problems is given by counting the number of unique
columns:
h(P 0) =

Pn

1 cj , cj = 1 if Cj is distinct from C1, ..., Cj�1

(otherwise cj = 0).
The probe selection problem is to find the smallest probe

subset that can diagnose all the problems; i.e., min jP 0j such
that h(P 0) = n.

The set of candidate probes can be provided from what-
ever sources are available; for example a human expert may
specify which probes are possible. However it may also
be useful to compute the available probes from the network
structure and the location of the probe stations.

We begin by selecting from the n nodes a subset of k
nodes as the probe stations. (In this work we do not ad-
dress the question of how to select the probe stations, since
they usually cannot be chosen to optimize the probing strat-
egy; other considerations, such as gaining access to the ma-
chines, may be more important for choosing probe stations.)
A probe can be sent to any node from any probe station.
Thus the candidate set of probes could conceivably contain
a probe for every possible route between every probe sta-
tion and every node. In practice it cannot be guaranteed that
a probe follows a particular path through the network, and
thus routing strategies restrict the set of available probes;
for example a probe may follow the least cost path through
the network. In the example we will assume that the probe
follows the shortest path from probe-station to target. This
creates a candidate set of probes of size m = O(n); note
that this set is sufficient to diagnose any single node being
down because one can simply use one probe station and send
a probe to every node.

Diagnostic ability of a set of probes
The dependency matrix decomposes the network into a dis-
joint collection of nodes, where each group consists of the
nodes Nj whose columns Cj are identical; i.e. each group
contains those nodes whose failure cannot be distinguished
from one another by the given set of probes. A naive ap-
proach to computing this decomposition would compare
each column with every other column. We can do better
by proceeding row-by-row and computing the decomposi-
tion incrementally. The key is that adding a row (i.e. a
probe) always results in a more extensive decomposition,
because nodes in distinct groups remain distinguishable; an
additional probe can only have the effect of distinguishing
previously indistinguishable nodes.

For example, let us consider the probe set defined for the
network having 6 nodes denoted N1; :::; N6 (the column
NF denotes the additional ”no failure” situation)

N1 N2 N3 N4 N5 N6 NF
P15 1 1 0 0 1 0 0
P16 1 0 1 0 0 1 0

It is easy to see that the corresponding decomposition is (us-
ing N7 as the extra ”node” representing ”no failure”)

S={{1}, {2,5}, {3,6}, {4,7}}

Suppose we add the probe P42 : N4 ! N3 ! N2, giving
the following dependency matrix:

N1 N2 N3 N4 N5 N6 NF
P15 1 1 0 0 1 0 0
P16 1 0 1 0 0 1 0
P42 0 1 1 1 0 0 0

To compute the new decomposition we traverse the current
decomposition and split each subset into further subsets de-
pending on whether or not the new probe passes through
each node. For example, since P42 passes through N2 but
not N5, the subset f2; 5g in DP gets split into f2g and f5g.
The new decomposition is

S={{1}, {2}, {3}, {4}, {5}, {6}, {7}}

Note that since each column is unique, any single node
failure among the 6 nodes can be uniquely diagnosed by this
set of three probes.

In general the count h(P ) of the number of unique prob-
lems detectable by a probe subset P may not be a good
measure of the diagnostic ability of P (unless h(P ) = n).
For example, suppose probe set P1 induces the decompo-
sition S1 = ff1; 2g; f3; 4gg while probe set P2 induces
the decomposition S2 = ff1g; f2; 3; 4gg. Although P2 can
uniquely diagnose one of the nodes and P1 cannot, it is pos-
sible to add just a single probe to P1 and thereby diagnose
all the nodes, whereas at least two additional probes must be
added to P2 before all the nodes can be diagnosed. There-
fore, S1 is a more ”informative” decomposition than S2.

We define the diagnostic ability H(P ) of a set of probes
P to be the expected minimal number of further probes
needed to uniquely diagnose all nodes. The decomposition
S induced by P is a disjoint collection of k groups; each
group contains nodes whose failures cannot be distinguished
from one another. Let ni be the number of nodes in group
gi. Note that for any node in gi, at least log(ni) additional
probes are needed to uniquely diagnose that node. Since a
random node lies in gi with probability ni=n, the diagnostic
ability H(P ) is given by

H(P ) =

kX

i=1

ni
n
log(ni) (6)

Alternatively, if N = f1; :::; ng is the variable denot-
ing the node, and G = f1; :::; kg is the variable denoting
which group contains the node, then the diagnostic abil-
ity can be regarded as the conditional entropy H(N jG) =Pk

i=1 p(G = gi)H(N jG = gi) (by definition in (Cover &
Thomas 1991)). Simple algebraic manipulations (see (Rish,
Brodie, & Ma 2002b) for the derivation) yield:

H(N jG) =

kX

i=1

ni
n
log(ni):

Note that lower values for H(P ) correspond to better probe
sets. For example, H(S1) = H(ff1; 2g; f3; 4gg) =
1
2 log2 + 1

2 log2 = log2 = 1, while H(S2) =

H(ff1g; f2; 3; 4gg) = 1
4 log1 + 3

4 log3 = 3
4 log3 = 1:19.



This formula for H(S) is valid if failures are equally likely
in any node. If this is not the case prior knowledge about the
likelihood of different types of failures can be incorporated
into the measure of diagnostic ability.

Finding the Minimal Set of Probes

We now investigate the question of finding the minimal set
of probes that has the same diagnostic ability as the initial
set. Clearly, the minimal set of probes may not be unique,
although the minimal number of probes is.

We now examine algorithms for finding the minimal
probe set. Since exhaustive search is easily seen to require
exponential-time and is therefore impractical for large net-
works, two approximation algorithms are considered; one
(“subtractive search”) requiring linear time and the other
(“greedy search”) requiring quadratic time. An experimental
comparison of the algorithms is presented in Section .

Subtractive Search Subtractive search starts with the ini-
tial set of r probes, considers each probe in turn, and dis-
cards it if it is not needed; i.e. if the diagnostic ability re-
mains the same even if it is dropped from the probe set. This
process terminates in a subset with the same diagnostic abil-
ity as the original set but which may not necessarily be of
minimal size. The running time is linear in the size of the
original probe set, because each probe is considered only
once; this gives a computational complexity ofO(m), which
is O(n) if m = O(n), as it was mentioned above.

The order of the initial probe set is quite important for the
performance of this algorithm. If the probes are ordered by
probe station, the algorithm will remove all the probes un-
til the last n (all of which are from the last probe station),
since these suffice to diagnose any node. This reduces the
opportunity of exploiting probes from different probe sta-
tions. The size of the probe set can be reduced by randomly
ordering the initial probe set, or ordering it by target node.

Greedy Search Another approach is a greedy search al-
gorithm where at each step we add the probe that results in
the “most informative” decomposition, using the measure
of diagnostic ability defined in Section . The additive algo-
rithm starts with the empty set and repeatedly adds the probe
which gives the decomposition of highest diagnostic ability.
This algorithm also finds a non-optimal probe subset with
the same diagnostic ability as the original set.

The running time of this algorithm is quadratic in m, the
size of the original probe set, because at each step the di-
agnostic ability achieved by adding each of the remaining
probes must be computed. This gives a computational com-
plexity of O(n2) if m = O(n).

Experiments

This section investigates experimentally both the general be-
havior of the minimum set size and how the two approxima-
tion algorithms compare with exhaustive search in comput-
ing the probe set. The main result is that the approximation
algorithms find a probe set which is very close to the true
minimum set size, and can be effectively used on large net-
works where exhaustive search is impractical.

Figure 6: Three Algorithms for Computing Probe Sets.

For each network size n, we generate a network with
n nodes by randomly connecting each node to four other
nodes. Each link is then given a randomly generated weight,
to reflect network load. The probe stations are selected ran-
domly. One probe is generated from each probe station to
every node using shortest-path routing. The three algorithms
described in the previous sections are then executed. This
process is repeated ten times for each network size and the
results averaged.

Figure 6 shows the case of three probe stations. The size
of the probe set found by all the algorithms lies between
log(n) + 1 and n, as expected. The minimal size is always
larger than the theoretical lower bound of log(n)+1, for two
reasons:

� The networks are not very dense; since each node is linked
to four other nodes, the number of edges increases only
linearly with network size. Thus many probe paths are
simply not possible.

� Since the probes follow the least-cost path from probe
station to node, the probe paths tend to be short, pass-
ing through few nodes. This reduces the opportunities for
exploiting interactions between probe paths.

The results also show that the approximation algorithms
perform well; the size of the probe set is much closer to
the true minimum than to the upper bound. Experiments on
larger networks having up to 150 nodes for which exhaustive
search is not feasible (Figure 7), showed that quadratic-time
algorithm slightly outperforms the linear-time algorithm, but
its computational cost is higher. An alternative approach is
to run the linear-time algorithm many times with different
initial orderings and take the best result. The savings are
almost 50% over the naive approach of sending a probe to
every node.



Figure 7: Approximation algorithms on large networks.

Related Work
The formulation of problem diagnosis using a matrix ap-
proach, where ”problem events” are ”decoded” from ”symp-
tom events”, was first proposed by (Kliger et al. 1997). In
our framework, the result of a probe constitutes a ”symptom
event”, while a node failure is a ”problem event”. The major
difference between the two approaches is that we use an ac-
tive probing approach versus a ”passive” analysis of symp-
tom events. Another important difference is that (Kliger et
al. 1997) lacks a detailed discussion of efficient algorithms.

Approaches using probabilistic graphical models to find
the most likely explanation of a collection of alarms have
been suggested by (Gruschke 1998; I.Katzela & M.Schwartz
1995; Hood & Ji 1997). However, to the best of our knowl-
edge, none of those previous works includes an active ap-
proach to probe set selection, which allows us to control the
quality of diagnosis. Also, it lacks a systematic study of di-
agnosis with a focus on using probes, which would include
theoretical bounds on the diagnostic error, asymptotic be-
havior of diagnosis quality, and a systematic study of the
quality of approximate solutions, as presented herein.

Conclusions
In this paper, we address both theoretically and empirically
the problem of the most-likely diagnosis given the obser-
vations (MPE diagnosis), studying as an example the fault
diagnosis in computer networks using probing technology.
The key efficiency issues include minimizing both the num-
ber of tests and the computational complexity of diagnosis
while maximizing its accuracy. Herein, we derive a bound
on the diagnosis accuracy and analyze it with respect to
the problem parameters such as noise level and the num-
ber of tests, suggesting feasible regions when an asymptotic
(with problem size) error-free diagnosis can be achieved.
Since the exact diagnosis is often intractable, we also pro-
vide an empirical study of some efficient approximate diag-

nosis algorithms and a theoretical analysis of their behavior
with increasing noise. Our studies demonstrate a ”graceful
degradation” of the approximation accuracy with increasing
noise and suggest the applicability of such approximations
to nearly-deterministic diagnosis problems that are often en-
countered in practical applications.

Since the accuracy of diagnosis depends on how much
information the probes can provide about the system states,
the second part of our work is focused on the probe selection
task. Small probe sets are desirable in order to minimize the
costs imposed by probing, such as additional network load
and data management requirements. Our results show that,
although finding the optimal collection of probes is expen-
sive for large networks, efficient approximation algorithms
can be used to find a nearly-optimal set. Extending our probe
selection approach to noisy environments is a direction for
future work.
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