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Abstract

In order to enable high-level semantics-based video an-
notation and interpretation, we tackle the problem of au-
tomatic decomposition of motion pictures into meaningful
story units, namely scenes. Since a scene is a complicated
and subjective concept, we first propose guidelines from film
production to determine when a scene change occurs in film.
We examine different rules and conventions followed as part
of Film Grammar to guide and shape our algorithmic solu-
tion for determining a scene boundary. Two different tech-
niques are proposed as new solutions in this paper. Our
experimental results on 10 full-length movies show that our
technique based on shot sequence coherence performs well
and reasonably better than the color edges-based approach.

1. Introduction

Motion pictures, like other video genre are constructed
from shots, which are contiguous sequences of images cap-
tured by a single camera. Until now, a large body of work
has been devoted to solving the problem of automatic shot
boundary detection using color, edges, object correlation
and motion cues, singly or in combination. While shots
are fundamental, they are analogous to letters or words in
a written language (depending on their length and com-
plexity) and convey little semantic information in isolation.
Most meaningful information is embedded at a higher level
of film structure, known as scenes or story units, which re-
flect the aggregation of multiple shots revolving around a
single dramatic persona, incidence or location [2].

Since scenes are composed of many shots, automatic
detection of scene boundaries requires high-level concepts
spanning shot sequences and between shots analysis. There
are currently two major trends in exploiting visual informa-
tion for scene boundary extraction. The first trend groups
shots into different clusters and interprets the temporal or-

dering of elements from each cluster [4]. Techniques from
the second trend [3, 6] develop a memory viewer based
model that is either causal/finite or non-causal/infinite to de-
fine a shot coherence measure based on shot recall ability
and scenes are detected by searching for local minima on
this coherence curve. The problem with techniques from
the first trend is that they critically depend upon clustering
parameters (threshold, number of clusters), as clustering is
the fundamental step in this approach. Clustering also in-
hibits the ability to visualize the progression across shots
that would be useful in locating scene boundaries. Tech-
niques from the second trend require accurate local minima
detection from a rather noisy signal (due to many param-
eters involved in computations – shot length, spacing, etc)
which would be difficult. Further, this model draws guid-
ance from subjective perception of viewers, as opposed to
being based on knowledge of how scenes are constructed
using cinematic devices by directors worldwide.

Our approach is based on careful examination of forces
that go into crafting scenes in film. Leveraging Film Gram-
mar as the means to inspire and shape our algorithmic
solution to the problem of scene extraction, we investi-
gate different rules and conventions that are employed in
composing scenes in motion pictures. We propose two
new approaches to extracting scene boundaries using visual
content. The first detects scene transitions using a multi-
resolution edge detection scheme on the � , � , and � values
of the shot signal, and is inspired by a recent work on movie
tempo [1]. The second technique is based on computing a
neighborhood visual coherence measure at each shot bound-
ary. We also propose a new shot similarity measure that
takes similarity of colors into account in the formulation of
our color coherence measure. We report results from exper-
iments on contemporary mainstream color motion pictures.

2. Film Grammar on Scene Composition

The term ‘scene’ is borrowed from the French classical
theater that had a precise beginning and ending correspond-



ing to the arrival and departure of characters. In the Film
Encyclopedia, Katz states: “In the strictest sense, a scene
is defined as a section of a motion picture which is unified
in time and space. It is made up from a series of shots from
varying angles and is usually filmed in one session. As a
unit of language, the scene is intermediate between a shot
and a sequence, being a larger unit than the first and smaller
unit than the latter” [2]. Given this definition, we use the
following rules as guidelines to set up the ground truth for
our experiments with film and to define scenes in our work
(see motivation and details in [7]):

1. When there are no two interwoven parallel actions,
a change in location or time or both defines a scene
change.

2. An establishing shot is considered part of that scene.
3. When parallel actions are present and interleaved, and

there is a switch between one action to another, a scene
boundary is marked if and only if the duration of the
action is shown for at least 30 sec.

4. A montage sequence involving “dynamic cutting”,
where shots containing different spatial properties are
rapidly joined to convey a single dramatic event, forms
a single scene.

The two most commonly used scene structures are Sep-
aration and Familar Image as described by Sharff in his
investigation of cinesthetic impact [5]. Separation is the
arrangement of shots showing subjects individually and in-
terwoven, creating the shot pattern ...ABABAB.... In ad-
dition, in separation, any action involving motion should
take place while the characters are involved in the screen,
minimizing abrupt visual changes. The familiar image is a
scene structure in which a picture reappears in a film with
rhythmic frequency with approximately the same compo-
sition and framing [5]. It can be distributed throughout
the film to create the effect of recall. Within a scene, it
functions as a pivot image. Separation and familiar image
are among the factors motivating the computation of shot
neighborhood coherence presented in this paper.

It is also well understood that color plays an important
role to connote a certain character, time, setting or mood.
Therefore, transitions between scenes essentially involving
changes in time and space are often associated with changes
in characters and mood, resulting in great visual changes,
and this is exploited in our computation.

3. Feature Extraction

Given a digital stream of a movie in the form of MPEG-
1-encoded data, shot detection is first carried out. Shot at-
tributes such as average � , � , � histograms are computed.
The HLS space is quantized using 12 bins of hue, 5 bins
of lightness, and 4 bins of saturation, resulting in a total of���
	����������������������������� �!�"�#�$���%���

in our final quan-
tized color palette. Using a normalization scheme [7] that

weights the color content of a shot by the duration it remains
in effect, we compute normalized shot color histograms.

4. Scene Transitions via Edge Detection

Changes in the overall color atmosphere in a film will
result in changes, together or individually, in the � , � , �
histograms of associated shots. These color transitions can
be detected using an edge detector based on Deriche’s recur-
sive filtering algorithm using Gaussian kernels [1]. This is a
multi-scale edge detector that is parameterized by & , which
determines the slope of target edges in the signal. Larger& detects smaller slope of the target edges and vice versa.
Two thresholds ( ' , and - ' ), one negative and one positive,
can be applied to the output from this multi-resolution al-
gorithm, known as the edge signal, to locate true edges: the
higher the threshold, the larger the edges detected, and vice
versa. The section above/below these thresholds means a
negative/positive change in the original signal. Since there
are three different edge signals in our feature set, one for
each � , � , and � signal, they are added before applying
thresholds to extract edges. Hence, for each & and shot in-
dex ( , the accumulated edge signal )+*�,�-. is computed from
individual edge signals ) * . , ) ,. and ) - . as follows:) */,�-. � & ���10 2 ) * . � & �
2
�43�2 ) ,. � & �52���672 ) - . � & �5298

The weighting reflects different degrees of contribution
of changes in � , � and � to a scene change. Currently, with
the absence of specific statistical information about their
proportional contributions, we set all weights to 1. Then,) *�,�-. � & � is thresholded to extract edges that denote true
scene transitions. Figure 1 shows the computed edges on
the � , � and � signals for a segment of the movie, Twelve
Monkeys. Each column indicates the temporal extent of
each detected edge.

Visually, a shot should be more similar to other shots in
the same scene than to shots in a different scene. Therefore,
the exact location of a scene transition should maximize av-
erage inter-differences between shots of the previous scene
and shots of the next scene. For a detected edge temporally
spanning shots :�; to :�< , the exact scene transition position= ��>@?BA��

, (i.e., the index of the first shot of the next scene)
in terms of shot indices can be determined as:= �C>!?DA��E�GF"H/2JILKNM;PORQSOT<

U QSV�W.NX ; U <YDX Q�Z � : . ? : Y ���H[�@>��5��A%�!H��1�"�]\ ?
where Z is the similarity measure between two shots as de-
fined in the next section.

5. Scene Transitions via Shot Neighborhood
Coherence

Measuring the visual similarity between shots is the ba-
sis of most scene boundary detection techniques that use
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Figure 1. Scene tranistions from detected
edges on average � , � and � from shots.

visual content. However, these techniques have failed to
handle at least one of the following issues adequately, espe-
cially the first one:

1. The similarity between two colors should be modeled
as a continuous, rather than a discrete value. Shots
within a scene may exhibit different lighting or shading
characteristics, due to different camera shooting angle
and overall motion.

2. In fast motion scenes, or slow disclosure shots, only
a part of a shot is similar to another shot of the same
scene. Therefore, we should use as many frames as
needed to evaluate the similarity between shots.

We address the first issue by moving away from tradi-
tional image/frame comparison using bin-wise histogram
comparison, which does not take similarities between
shades of colors into consideration. We propose a new sim-
ilarity measure, which mimics the process of measuring the
similarity between two images by gradually computing and
excluding regions with the highest similarity. We first form
the color similarity matrix ^ based on the Euclidean distance
between colors in � , � and � space. Moreover, we set the
distance to INF when the � components of two colors are
more than two hue levels apart. This is to confirm the fact
that it is neither possible to obtain both blue and red colors
for the same object or background region by changing the
camera angle nor to have both red, blue shading of the same
color. Other values are normalized to within range [0-1].
Let _ .a` bdc denote the bin b of frame _ . , and ^#e"Q , the similar-
ity between colors b and

H
. We define component similarity

between two frames _ . , _ Y and two bins b ?BH as:f � _ . ? _ Y ? b ?BHB�E� ^#e"Q ILKNM�� _ .a` bdc ? _ Yg` H c �#8

The overall similarity of two frames can be calculated as the
recursive sum of individual component similarities:

Z � _ . ? _ Y �E�ih Z � _kj. ? _kjY ��� f � _ . ? _ Y ? bRl ?BH l �nmo� bRl ?BH l �p
otherwise.

with� bRl ?BH l �E�GFq� b ?BHB� 2��GIsrutWwvxegy QSvTz ^#e"Q �#? f � _ . ? _ Y ? b ?BHB��{|p \
_ j. ` bRc �}h _ .a` bRc �@I~KNM+� _ .D` bxlwc ? _ Yg` H l
c � if b � bxl_ .a` bRc otherwise.

_ jY ` H c �ih _ Y ` H c �@ILK�M�� _ . ` b l c ? _ Y ` H l c � if
H7�1H l_ Y ` H c otherwise.

This means that after taking the component similarity of
the two most similar colors, the component similarities of
the remaining parts of the two histograms are recursively
extracted until there does not exist any pair of colors from
each histogram that have component similarity greater than
zero, i.e., two colors are not similar at all or the bin size of
at least one of the colors is zero. The value of Z is then nor-
malized by the total number of pixels in a frame. It should
be noted that this measure will become essentially the bin-
wise intersection metric when ^ is the identity matrix.

In order to handle the second issue, we formulate the
similarity between two shots as the maximum similarity be-
tween any pair of representative frames, � -frames of these
shots. In our � -frame representation of a shot [7], the
number of frames needed for each shot is proportional to
the magnitude of visual changes within the shot. If two
shots are static, only their first frames are used. On the other
hand, during a chase scene, many frames are used for each
shot to adequately cover the continuously changing visual
space.

Z � : . ? : Y ��� Isrut�x�������g�g�� y �R���5�
�g�g�� Z � _�� ��� ? _�� �#� �#8
We then define the shot neighborhood coherence mea-

sure at the shot :�; as the maximum similarity Z between
neighborhood shots preceding and succeeding this shot and
within a window ' .� � :�; ��� Isrut. OT;kv Y y Y O .���� Z � : . ? : Y �w8
The low visual variance within a scene as well as the shot
repetition (separate, dialogue, familiar images) means that
the shots within a scene are highly coherent. On the other
hand, we are unlikely to find two similar shots between two
scenes, where the coherence between shots across the scene
boundaries is typically low. In our implementation, we use
both the number of frames and number of shots in defin-
ing the temporal window as it would cater to both long and
short shots. The shot coherence can now be thresholded to
extract scene indices.

3



Ground Truth Edge Based Coherence Based
Movie Dur Scenes Genre Rec Prec Rec Prec

Star Wars I 134 97 Scifi/Adv/Act 79.4 67.0 87.7 73.4
The 13th Floor 100 65 Mys/Scifi/Thrl 70.8 80.7 84.7 83.4
The Matrix 136 60 Act/Thrl/Scifi 90.0 71.1 86.7 91.3
Sleepy Hollow 103 61 Fts/Hrr/Mys 83.7 68.0 80.4 83.1
Tall Tale 98 51 Adv/Family 78.5 74.1 84.4 71.7
Chameleon 120 46 Scifi/Thrl 82.7 82.7 93.5 81.2
12 Monkeys 130 68 Drm/Thrl/Scifi 79.5 75.0 92.7 78.8
The Mummy 124 52 Adv/Act/Hrr 67.4 67.4 63.5 75.0
American Beauty 121 74 Drm/Cmd 75.7 84.9 90.6 80.8
The Siege 115 72 Act/Thrl/Drm 79.2 76.0 93.1 78.0
Overall 1181 646 78.7 73.9 86.3 79.2

Table 1. Experimental data and performance statistics.

6. Experimental Results
In order to ensure that the overall performance measures

of the algorithm are not biased toward a specific movie type,
we set up a data set consisting of 10 full-length movies of
all major genres including action (Act), horror (Hrr), sci-
ence fiction (Scifi), adventure (Adv), thriller (Thrl), fantasy
(Fts), family (Fml), drama (Drm), comedy (Cmd) and mys-
tery (Mys). Information about each movie is represented in
Table 1. The genre classification is taken from The Internet
Movie Database Web site (IMDB) (www.imdb.com).

Table 1 shows the results of edge based and coherence
based approaches after being refined by the same post-
processing techniques detailed in [7]. Overall, the shot
neighborhood coherence approach yields better precision
(Prec) and recall (Rec) (86.3, 79.2) compared to the edge
based approach (78.7, 73.9). This also persists across in-
dividual movies except for the recall values of The Matrix,
Sleepy Hollow and The Mummy and the precision values
of Chameleon, Tall Tale and American Beauty. The rea-
son could be that the colors of The Matrix, Sleepy Hollow
and The Mummy are tinted towards specific tones (gray-
ish green, grayish light blue, and earthy respectively). This
lowers shot coherence values across scenes in these movies.
The normalization of the average � , � and � values mag-
nifies slight changes in color atmosphere, hence allowing
more indices to be retrieved by the edge based approach. On
the other hand, Chameleon and American Beauty contain a
wide range of colors making the coherence based method
more sensitive to false alarms than the edge based method,
as the normalization of average � , � and � now would sup-
press small changes in color atmosphere. This also sug-
gests that the coherence based method could be further im-
proved if such normalization processes were incorporated.
The highest results for the edge based approach are obtained
with Chameleon (82.7, 82.7), The Matrix (90.0, 71.1) and
American Beauty (75.7, 84.9). Similarly, the shot coher-
ence based approach performs best on Chameleon (93.5,
81.2), The Matrix (86.7, 91.3), American Beauty (90.6,

80.8) and The Siege (93.1, 78.0).

7. Conclusion
We have addressed the problem of automatically deter-

mining scene boundaries in motion pictures. We investigate
different rules and conventions used in Film Grammar that
underpin and shape an algorithmic solution to this problem.
We proposed two different techniques. The first is based
on detecting scene transitions using a multi-resolution edge
detection mechanism on color signals formed by normal-
ized average Hue, Lightness and Saturation. The second
approach estimates the coherence level at each shot by com-
puting weighted color similarity of neighborhood shots. Ex-
perimental results on 10 full-length movie data show that
our technique based on the shot coherence performs well
and reasonably better than the color edges-based approach.

References

[1] B. Adams, S. Venkatesh, and C. Dorai. Studying shot length
and motion as contributing factors to movie tempo. In ACM
Multimedia 2000, pages 353–355, Los Angeles, October 2000.

[2] E. Katz. The Film Encyclopedia. Harper Collins Publishers,
2nd edition, 1994.

[3] J. R. Kender and B.-L. Yeo. Video scene segmentation via
continuous video coherence. In 1998 IEEE International Con-
ference on Computer Vision and Pattern Recognition, 1998.

[4] Y. Rui, T. S. Huang, and S. Mehrotra. Constructing table-of-
content for videos. ACM Multimedia System Journal: Special
Issue in Multimedia Systems on Video Libraries, 7(5):359–368,
1999.

[5] S. Sharff. The elements of Cinema: Toward a cinesthetic im-
pact. Columbia University Press, New York, 1982.

[6] H. Sundaram and S.-F. Chang. Determining computable
scenes in films and their structures using audio visual memory
models. In ACM Multimedia 2000, CA, October 2000.

[7] B. T. Truong, C. Dorai, and S. Venkatesh. Automatic scene
extraction in motion pictures. Technical Report 1/2002, Curtin
University of Technology, 2002.

4


