
RC22408 (W0204-095) April 24, 2002
Computer Science

IBM Research Report

Member-Group Relationships Among Objects

William H. Harrison, Harold L. Ossher
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Member-Group Relationships Among Objects
William Harrison, Harold Ossher

IBM T. J. Watson Research
P.O. Box 704

Yorktown Heights, NY 10598
{harrisn, ossher}@watson.ibm.com

ABSTRACT

Aspect-Oriented Software is a broad term, encompassing several
different views on the nature of the aspects and the relationships
between aspects and objects. Attaching aspects to objects is one
way of forming a group. While there are many useful patterns of
interaction, e.g. strategies[2], decorators, and the like, we focus on
groups in which the group delegates to members to obtain behav-
ior and the members may either perform their own behavior or
delegate to the group. Using issues of behavior, this paper ex-
plores and classifies the relationships between objects and groups
of objects in which they may participate as a first step in laying a
foundation for unifying these different views as special cases of a
common framework.

Keywords
Aspect-oriented software development, delegation, composition,
method combination.

1. OVERVIEW
The first section analyzes a number of the major factors that char-
acterize the ways in which an object’s behavior can be related to a
group of which it is part and then applies these factors to enumer-
ating the potential kinds of relationships between objects and their
groups. We winnow the enumeration by analyzing conflicts and
usages that can lead to difficulties. The section concludes with a
discussion of synergy and conflict in the relationships a single
object may bear to multiple groups. The second section builds on
and re-applies the factor analysis and winnowing process to
classes instead of instances of objects. The third section discusses
the behavior of composition operations when dealing with poten-
tial conflicts in multiple relationships. The fourth section dis-
cusses the implication of some implementation decisions on ob-
ject and class composition systems.

2. INSTANCE RELATIONSHIPS
2.1 Factors in Describing Relationships
Assume that, in concept, Java™ objects are either primitive ob-
jects, with fields and method bodies written by developers, or
group objects, created by composition operations that do nothing
but call methods of primitive objects as determined by the compo-
sitions. Assume also that any of the methods of the primitive ob-
jects in a group can also be called on the group object, and that in
writing the bodies of these methods, either of two identities might
be used, called this and self. Many factors enter the analysis, but
when they are different, this refers to the primitive and self to the
group. Trying to remain independent of the way the behaviors are
actually implemented, we try to explore and categorize the kinds
of relationships among these objects to lay the groundwork for
systematic support.

Leaving aside, until Section 2.4, situations in which groups act as
members of larger groups, each kind of relationship between a
primitive object and a group can be operationally characterized by
several effects. The following table lists the relationships along
with the effects ascribed to each. Explanation of columns:

Identity Assuming that Java’s reference equality semantics
are appropriately extended, comparison of the
identity of a primitive object and the identity of its
group object yields “equal” or “not equal”.

Primitive-
to-group

When a primitive object calls a method on a primi-
tive object, the primitive object can cause group
behavior rather than use its own method imple-
mentation. Three alternatives can be listed:

 no The primitive does not cause group
behavior, but performs its primitive
behavior instead.

 identical The primitive yields to common
group behavior (that which results
when the method is called on the
group object)

 variant The primitive causes group behavior
different from the common group
behavior (such as including its own
behavior in addition to the common
group behavior).

Group-to-
primitive

When a method is called on a group, the group
uses behavior defined by various primitive objects
of the group. Three alternatives can be listed for
how the group uses the primitive’s behavior:

 no The primitive’s behavior is not in-
cluded in the group behavior.

 self=
primitive

Group behavior includes the primi-
tive’s behavior, but in interpreting the
primitive’s behavior, references to
itself as self, are not to be interpreted
as if referring to the group, but as
references to the primitive.

 self=
group

Group behavior includes the primi-
tive’s behavior and in interpreting the
primitive’s behavior, references to
itself as self are to be interpreted as
references to the group rather than as
references to the primitive. (But see
the automanipulation alternatives,
next).

Auto-
manipula-
tion

When self=group, there are a number of ways in
which the behavior in a Java method may refer to
the group by using self. The developer might ex-
plicitly refer to self, if this is permitted. (It would
be, in effect, a Java language extension whose
normal Java semantics might be innocuous.) With-
out a language extension, reference to the group
can arise by reinterpreting the Java “this”. Three
cases can be listed:

 this=
primitive

Explicit and implicit uses of this refer
to the primitive.

 this=
group

Explicit and implicit uses of this use
the value of self, and in this case,
self=group.

 mixed Although there are hundreds of differ-
ent mixed variations, corresponding
to the different ways in which this
appears in Java the most frequent
suggestion is to make manifest uses of
this refer to the primitive while other
uses use the value of self. The only
reason that this variation is particu-
larly interesting is that, accomplished
in-spite-of any general policy, it can
be forced by a developer who copies
the bodies of final methods into
places where they are manifestly in-
voked on this.

2.2 Relationships Induced By the Factors
We can make some general observations that reduce the resulting
number of enumerable forms to 7, with what we believe to be less
controversial rules first:

• Group-to-primitive forms of “no” or “self=primitive” render
the automanipulation choice irrelevant, eliminating 24 of the
54 enumerable relationships.

• When the primitive-to-group behavior form is “identical”,
the automanipulation forms of “this=primitive” and
“ this=group” are equivalent. This rules out one of the re-
maining enumerable relationships.

• One of the most useful operational definitions of identity is
that two objects have the same identity iff performing an op-
eration on one of them always has the same result as per-
forming the operation on the other. Of the remaining 29
enumerable relationships, this “identity rule” rules out the 10
in which “identity” disagrees with “primitive-to-group”.

• Mixed “automanipulation” can be made only with respect to
the coding of the body of an object’s methods. This is an in-
vasive, coding-dependent process that is probably better car-
ried out by a developer making explicit use of self and adopt-
ing the “this=primitive” form of automanipulation. On the
grounds of this fragility, we believe that manifest and other
mixed automanipulation forms should be avoided and that
the relationships should be deprecated. Of the 19 remaining
enumerable relationships, “‘mixed’ deprecated” rules out 4.

• The variant form of primitive-to-group interaction can lead to
a rather confusing collection of behaviors in which each

member of the group has different behavior. We are left to
wonder why this construct should be regarded as a group at
all. An alternative would be to treat each varied behavior as a
group of its own, with which the members can be associated
on an “identical” footing. Of the 15 remaining enumerable
relationships, “‘variant’ deprecated” encompasses 8.

• We have reservations about relationship 6 (maverick). The
claim is that the object has the group’s identity and has group
behavior when called from primitive objects, but when called
from the group its self-calls are not given group behavior.
But we do not see a contradiction or a reasonable rule of
meaning that prohibits the relationship.

Name for ob-
ject’s relation-
ship to group

Identity
Primi-
tive-to-
group

Group-
to-

primitive

Automanipula-
tion

1. Stand-alone
un-

equal
no no

(this=self=
primitive)

2. Associate
un-

equal
no

self=
primitive

(this=self=
primitive)

3. Aspect this=primitive

4. Affiliate this=group

(“mixed” dep-
recated)

un-
equal

no
self=
group

mixed

(“variant” dep-
recated)

un-
equal

variant — —

(Violates iden-
tity rule)

un-
equal

identical — —

equivalent to 5 this=primitive

5. Facet this=group

(“mixed” dep-
recated)

equal identical
self=
group

mixed

6. Maverick equal identical
self=

primitive
(this=self=
primitive)

7. Router equal identical no (not used)

(“variant” dep-
recated)

equal variant — —

(Violates iden-
tity rule)

equal no — —

We could, of course, rule out any of these relationships for im-
plementation convenience.

2.3 Objects in Multiple Relationships
We can also examine the question of what relationships an object
can have simultaneously to two groups.

 1 2 3 4 5 6 7 Notes

1 Y Y Y N N N Stand-alone doesn’t pass control
to a group when called from out-
side

2 Y Y Y Y Y Y Associate, Aspect, Affiliate can
i t ith b i t d l

3 Y Y Y Y Y

4 Y Y Y Y

coexist with being stand-alone or
with being in a group.

5 N N N

6 N N

7 N

Can delegate to at most one group
when called from outside

2.4 Higher-Order (Group-Group) Relation-
ships
Allowing groups to be members of other groups introduces no
new situations. For the nonce, call the group with groups as mem-
bers a “supergroup”, although we intend to observe that it is no
different from any other group. Since all real method function lies
in primitives, a supergroup never need use a group as an interme-
diary. With appropriate group-group communication to facilitate
plan-sharing, a supergroup can directly employ the primitives.
And with respect to primitive-to-group delegation, only the super-
group, with the complete plan, need be the delegation target.
There are two basic circumstances. First, if the member has iden-
tity unequal to the group identity, there is no primitive-to-group
delegation to be accounted for. Second, if it has equal identity
then the identities of all the primitives and groups contained must
also be equal, since equality is transitive. A method call from the
“outside” is delegated to the supergroup and from there to the
primitive objects. Intermediate groups become routers. There is,
after all, still only a single this and a single self.

3. CLASS RELATIONSHIPS
Not all fields and methods of a class belong to instances, and the
above classification can apply independently to the static behav-
ior, and their corresponding meaning must be phrased in terms of
classes rather than instances:

• We are fortunate that Java provides no way to compare
classes for identity1. Fortunate, because the fact that Java
does not support class equality2 of differently named classes,
which causes great trouble for some Java-generation tools,
means that we do not need to eliminate facets, mavericks,
and routers as class relationships. But eliminating the “iden-
tity” column causes no coalescence of relationships because
the “group-to-primitive” column preserves its distinctions.

• The variation of forms for automanipulation refers to the
interpretation of this in method bodies. Static methods have
no this, but the analogous meaning for classes applies to how
calls on static methods defined by the class itself are handled.
The “this=primitive” form is interpreted easily as leaving the
calls to own class, which are always manifest, as calls to its
own class. Likewise, the “this=group” form is interpreted by
making them refer to the class appropriate to the self= form
in use. This can be done by rewriting a copy of the body ap-

1 We are ignoring the library support for reflection. While reflec-

tion introduces objects that represent classes, methods, etc., the
object is not the class, but only a representative of the class in
the current execution. Two different class objects can represent
the same class at the same time on two different machines and
inequality of class objects is not the same as inequality of
classes.

2 A Java class is either a subclass of, a superclass of, or unrelated
to any differently named Java class. Though useful, cycles are
not permitted in inheritance graphs.

propriate to each group from which the static method is
called.

• The group-to-primitive forms for “self=” must also be rein-
terpreted without reference to a particular instance. This can
be performed, as suggested above, by selecting the appropri-
ate rewriting.

An important case of static behavior is creation. The Java new
operation (not the constructors that become involved later, during
initialization) is equivalent to a static method in the class being
instantiated. Creation of an instance of a class may or may not be
delegated to a group, which may then call for creation of its parts,
including the original.

In general, the class composition form and the instance composi-
tion form can be independently selected, so there are actually
72=49 kinds of relationships. Of these, perhaps only 13 are of
importance, those in which the class composition relation and the
instance composition relationships are the same, and those in
which the class composition relationship is “stand-alone”. We will
distinguish these two by prefixing the relationship name with
“full-“ or “partial-” 3. When omitted, “partial-” is assumed.

The same constraints on multiple relationships among classes
apply as those for instances, and for the same reason. But, for both
instances and classes, these constraints can be interpreted either as
prohibitions or as reinterpretations of composition operations.

4. COMPOSITION OPERATORS
Groups are created and modified by composition operators. Com-
position can be described in terms of two operators: com-
pose(relationship,details,group-class-name,object-class-name) and
compose(relationship,details,group,object). Both of these opera-
tors can produce Java class definitions, and the latter may produce
objects and changes to objects as well.

In the discussion of “Objects in Multiple Relationships”, certain
relationship combinations were noted to be impermissible. That
is, however, a static statement. There are two possible ways in
which compose operators could respond to specifying an imper-
missible combination: the combination could be rejected, or the
object could be cloned and the operation performed with respect
to its clone. We call these two variant operators: compose-two-
way and compose-one-way.

4.1 Instance Composition and Temporal In-
stability of Identity – Cloning
The impermissible relationship combinations all arise from in-
compatible handling of primitive-to-group. And if variant primi-
tive-to-group is forbidden, this is equivalent to the requirement on
identity.

So performing a compose operation for an impermissible combi-
nation of instances runs afoul of the conventional idea that iden-
tity is an unchanging characteristic4. What difficulties can arise
from permitting temporal instability in identity? A concrete exam-
ple occurs if a standalone becomes a facet, router, or maverick of
a group, or an object in one of those relationships becomes stand-

3 except in the case of “stand-alone”, where they are the same
4 In fact, there are languages, like Irish, that have two entirely

different verb forms for the “changeable is” and the “unchange-
able is”.

alone. Comparisons of its identity with that of the group yield
different values after the composition from what they yield before.
But facts about the result of this identity test may be presumed
externally, and already taken into account in a way that becomes
meaningless. This phenomenon is one instance of what we have
called “object schizophrenia”. A common example of object
schizophrenia arises in forming data structures representing sets of
objects: no matter how many times an object is added to a set, it is
present only once. But what if two objects are added and then they
become facets of the same group? The presumed and proven in-
variant governing the set becomes violated after-the-fact.

However, if it can be assured the group contains at most one facet,
maverick or router whose identity it takes, and that no prior re-
main to other of its facets, mavericks or routers, object-
schizophrenia will not arise. Defining compose-two-way to throw
an error after performing the composition is one way of permitting
the composition to go ahead but requiring programmers to think
about whether they can prove that the identity has not escaped in
writing the catch. Another, more convenient, solution is to use
compose-one-way. The clone it creates is a new object without
outstanding uses of its identity.

4.2 Class Composition and Cloning
The same conflicts, with the same potential solutions, arise for
class composition as for instance composition, although from
different grounds. Classes can always be referenced since their
names are available to past and future Java programs with the
proper access rights. This means that, except through careful pro-
gram analysis, developers cannot assure that the exception arising
from compose-two-way can be ignored. Note that this does not
mean an object can not be a facet of two groups, only that the two
groups must be merged into one larger group so that they are also
identical.

5. IMPLEMENTATION NOTES
5.1 Class Composition
Multiple rewriting of a static method has significant cost. The
cases in which additional rewritings are needed are noted by shad-
ing below in a collapsed version of the table above5. If unimple-
mented, only the 10 relationships: stand-alone, full-associate,
associate, aspect6, affiliate, facet7, full-maverick, maverick, full-
router, and router become available.

Object’s rela-
tionship to

group

Iden-
tity

Primitive-
to-group

Group-to-
primitive

Automanipula-
tion

1. Stand-alone
un-

equal
no no

(this=self=
primitive)

2. Associate
un-

equal
no self=

primitive
(this=self=
primitive)

5 “Aspect” with self=group, this=primitive is implementable

without additional rewritings, unless explicit uses of “self-
Class” occur in the body. But then, what’s the point; it is the
same as associate.

6 AspectJ’s “aspect” [4]
7 full-facet is implemented by Hyper/J [5]

3. Aspect
un-

equal
no self=group

this=
primitive

4. Affiliate this=group

5. Facet equal identical
self=
group

this=group

6. Maverick equal identical
self=

primitive
(this=self=
primitive)

7. Router equal identical no (not used)

5.2 Instance Composition
Discussion of instance composition presumed that it is possible to
treat the call of a method (whether in a group or in a primitive
object) from a primitive instance from its call from a group. Dis-
cussion of instance composition also presumed that method calls
to the group can be distinguished from calls to the primitive ob-
jects that are members. The simplest ways of making these
distinctions are use two objects, to use two methods, or both.
With two methods on two objects, all of the relationships pre-
sented can be supported, but without them, some choices are lost.

5.2.1 Instance Composition with a Single Method on
Two Objects
The only way of distinguishing calls to an object from a group
from calls to the object from outside primitives without coining an
additional method is to prevent calls from the outside, managing
to substitute the group’s identity except in calls from the group.
Only in the case of a stand-alone object can the primitive’s iden-
tity be used outside, and that is because it is never invoked as a
group member at all. This voids the columns dealing with identity
and primitive-to-group forms, eliminates routers, and renders
affiliates and mavericks redundant.

Object’s relationship to
group

Group-to-
primitive

Automanipula-
tion

1. Stand-alone no
(this=self=
primitive)

2. Associate 6. Maver-
ick

self=
primitive

(this=self=
primitive)

3. Aspect this=primitive

4. Affiliate this=group

5. Facet 4. Affiliate

self=
group

this=group

6. Maverick
self=

primitive
(this=self=
primitive)

7. Router no (not used)

5.2.2 Instance Composition with Two Methods on a
Single Object
One way of distinguishing calls to objects from a group from calls
to the object from outside the group is to use two sets of methods.
Using a single object for both the group and its primitives rules

out cases in which the identity test should yield “unequal”, except
in the case of stand-alone objects, which are not part of a group in
any case. Despite the fact that coalescing the group object with the
member cannot always be employed, it can be used to reduce
overheads for facets, mavericks and routers.

Object’s rela-
tionship to

group

Iden-
tity

Primitive-
to-group

Group-to-
primitive

Automanipula-
tion

1. Stand-alone
un-

equal
no no

(this=self=
primitive)

2. Associate
un-

equal
no self=

primitive
(this=self=
primitive)

3. Aspect
this=

primitive

4. Affiliate

un-
equal

no self=group

this=group

5. Facet equal identical
self=
group

this=group

6. Maverick equal identical
self=

primitive
(this=self=
primitive)

7. Router equal identical no (not used)

6. RELATED WORK
6.1 Composition Filters
The concept of wrappers and, in particular, wrappers for objects,
has long application in software development. Composition filters
[1] extend the object-wrapper concept to a group-wrapper. The
group embodies dispatch strategies based on its state – a set of
predicates about the objects in the group. In the classification
given above, composition filters are groups. The filtered objects
are aspects or full aspects. With composition filters, group behav-
ior is obtained only by directing messages to the group. It has the
compose-two-way variant of the instance composition operator.

6.2 Subject-Oriented Programming
Subject-Oriented programming [3] introduced the notion that
objects in a group can have the same identity and that creation of
an instance of one of the member classes causes creation of the
group. The member is a class facet, although the creation need not
be delegated to all members. As discussed above, this implies that
the group should handle the messages directed to its members. In
SOP, the subjects are all full facets.

6.3 Objects in Groups
Doug Lea has written a survey on objects in groups [6] recapping
prior work. He also presents an alternative delivery model relying
on channels rather than on object identity to describe the target
for the message. The introduction of channels does not change the
basic form for the analysis presented above, but does allow for
many more mixed or intermediate cases in the analysis.

6.4 Aspect-Oriented Programming
Aspect-Oriented Programming [5] retained the concept that crea-
tion of an instance of one of the member classes causes creation of

the group. But it does so for only one of the member classes,
called the base. Other member classes are treated like members of
composition filters. In AOP, the base and the aspects have differ-
ent relationships to the group. The base is a full facet but the as-
pects are full aspects. It has the compose-two-way class composi-
tion operator. AspectJ[4] provides a realization of AOP in which
the group and the facet are coalesced into a single object.

6.5 Hyper/J
Hyper/J[7] is a realization of MDSOC, an evolution from SOP. It
has both the compose-two-way and the compose-one-way variants
of the class composition operator. In Hyper/J, the group and all
the facets are coalesced into a single object

6.6 Compound References
Mezini and Ostermann [8] identified a number of separate compo-
sition properties, subsets of which are usually bundled together to
form composition mechanisms like inheritance and delegation.
They showed that use of more powerfully interpreted references,
called compound references, allows flexible combination of these
properties and provides important semantic options not tradition-
ally available. While shifting discussion of dispatch from objects
to generalized references provides an important alternative to
group formation, this paper deals with solutions within the more
traditional view of object identity and reference.

7. REFERENCES
[1] Aksit M., Bergmans L., Vural S. An object-oriented lan-

guage-database integration model: the composition-filters
approach. In Proceedings of the European Conference on
Object-Oriented Programming. Springer Verlag, 1992

[2] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Pat-
terns. Addison-Wesley, 1995

[3] Harrison, W., and Ossher, H. Subject-Oriented Programming
- A Critique of Pure Objects. In Proceedings of the 1993
Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications. September 1993

[4] Kiczales, G. Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
and Griswold, W.G. An overview of AspectJ. In Proceedings
of the European Conference on Object-Oriented Program-
ming. Finland, 1997

[5] Kiczales, G. Lamping, J., Mendhekar, A., Maeda, C., Videira
Lopes, C., Loingtier, J-M. Irwin, J. Aspect-oriented pro-
gramming. In Proceedings of the European Conference on
Object-Oriented Programming. Finland, 1997. Invited pres-
entation.

[6] Lea D., Objects in Groups, December, 1993,
http://gee.cs.oswego.edu/dl/groups/groups.html

[7] Ossher, H., Tarr, P., Multi-dimensional separation of con-
cerns and the hyperspace approach. In Proceedings of the
Symposium on Software Architectures and Component Tech-
nology: The State of the Art in Software Development. Klu-
wer, 2001.

[8] Ostermann, K., Mezini, M. Object-Oriented Composition
Untangled. In Proceedings of the 2001 Conference on Ob-
ject-Oriented Programming Systems, Languages, and Appli-
cations. October 2001.

